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DHAP	� Dihydroxyacetone phosphate
RCDP	� Rhizomelic chondrodysplasia punctata

Introduction

Immortalized human hepatocyte cell lines are frequently 
used as in vitro models to study liver metabolism in health 
and disease, pharmacokinetics and the efficacy of thera-
peutic interventions. Different immortalization strategies 
have been described to generate hepatocyte cell lines from 
liver samples (Ramboer et  al. 2014). One hepatocyte cell 
line used in several published studies is the immortalized 
human hepatocyte (IHH) cell line, which was established 
by stable transfection of human hepatocytes with sim-
ian virus 40 large T antigen (SV40 Tag) (Schippers et  al. 
1997). Among others, this IHH cell line has been used to 
study hepatic glucose, lipid, lipoprotein and triglycer-
ide metabolism and the effect of therapeutic interventions 
(Perttilä et  al. 2012; Samanez et  al. 2012; Sukowati et  al. 
2012) and recently is gaining increasing research interest 
(Jansen et al. 2016; Nelson et al. 2016; Weider et al. 2016).

Here we studied whether the IHH cell line is a good 
cell model to study hepatic peroxisomal metabolism. Per-
oxisomes are organelles involved in a number of essential 
metabolic pathways involving lipid homeostasis, including 
the β-oxidation of a variety of fatty acids and α-oxidation 
of phytanic acid, and the synthesis of plasmalogens and 
bile acids (Wanders and Waterham 2006). The peroxisomal 
enzymes involved in these pathways are directed to the per-
oxisomal matrix by virtue of one of two defined peroxiso-
mal targeting signals, PTS1 or PTS2, which are recognized 
by the cytosolic receptor proteins PEX5 and PEX7, respec-
tively. The PEX5 receptor is involved in the import of the 
majority of peroxisomal matrix proteins, and consequently, 
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a defect of PEX5 results in a generalized protein import 
defect affecting multiple metabolic pathways and leading to 
a Zellweger spectrum disorder (Dodt et al. 1995). The PEX7 
receptor is involved in the import of only a subset of matrix 
proteins, including alkyl-dihydroxyacetone phosphate 
(DHAP) synthase, peroxisomal 3-ketoacyl-CoA thiolase 
and phytanoyl-CoA hydroxylase. Accordingly, a defect of 
PEX7 only affects the import of these proteins and the met-
abolic pathways in which these proteins participate, leading 
to a different disease entity called rhizomelic chondrodys-
plasia punctata (RCDP) type 1 (Braverman et al. 1997).

We found that the IHH cell line resembled cells from 
RCDP patients and has a marked plasmalogen deficiency 
and a deficient fatty acid α-oxidation due to a complete 
absence of PEX7. Our findings have important implications 
for the future use of this cell line and interpretation of pre-
viously reported results.

Materials and methods

Cell culturing

HepG2 cells (obtained from ATCC), IHH-A5 cells (Schip-
pers et  al. 1997; kindly provided by Dr. Oosterveer from 
the University Medical Center Groningen, The Nether-
lands) and patient primary skin fibroblasts were cultured at 
37 °C under an atmosphere of 5% CO2. Patient skin fibro-
blasts were obtained according to standard procedures, and 
identifiable clinical and personal data from the patients 
were not available for this study. HepG2 cells and patient 
skin fibroblasts were cultured in Dulbecco’s modified 
Eagle’s medium (DMEM) supplemented with l-glutamine  
(BioWhittaker), 10% fetal bovine serum (Life Technolo-
gies), 25  mM HEPES buffer (BioWhittaker), 100  U/mL 
penicillin (Life Technologies), 100  μg/mL streptomycin 
(Life Technologies) and 250 ng/mL Fungizone (Life Tech-
nologies). IHH cells were cultured in Williams E medium 
(Life Technologies), supplemented with 10% fetal bovine 
serum (Life Technologies), 100  U/mL penicillin (Life 
Technologies), 100  μg/mL streptomycin (Life Technolo-
gies), 250  ng/ml Fungizone (Life Technologies), 20  mU/
mL insulin as part (Novo Nordisk) and 50 nM/L dexameth-
asone (Sigma-Aldrich D4902). IHH cells were cultured in 
0.1% gelatin-coated (from porcine skin, Sigma-Aldrich 
G1890) culture flasks.

Immunofluorescence assays

Immunofluorescence microscope analysis was performed 
on IHH cells and HepG2 cells.

The cells were cultured on glass slides to a confluency of 
approximately 50%, and IHH cells were cultured on 0.1% 

gelatin-coated glass slides. Cells were stained as described 
(van Grunsven et al. 1999). The peroxisomal matrix protein 
catalase was labeled with a mouse monoclonal antibody 
against catalase (in-house generation, 1:4 diluted), bioti-
nylated α-mouse antibody (Dako E433, 1:200 diluted) and 
streptavidine-FITC (Dako F422, 1:200). The peroxisomal 
matrix protein 3-ketoacyl-CoA thiolase was labeled with a 
rabbit polyclonal antibody against thiolase (Atlas antibod-
ies HPA007244, 1:200 diluted), biotinylated α-rabbit anti-
body (Dako E432, 1:500 diluted) and streptavidine-FITC 
(Dako F422, 1:200 diluted). Images were taken with a 
Zeiss Axio Observer A1 fluorescence microscope.

Western blot analysis

Immunoblot analysis was performed with homogenates of 
IHH cells, HepG2 cells and skin fibroblasts. Primary skin 
fibroblasts homozygous for PEX7 c.694C>T (p.R232X) 
were used as a PEX7-deficient control. For homogeniza-
tion, cell pellets were suspended in 500 μL of lysis buffer 
[PBS, 0.25% Triton X-100 (BioRad), protease inhibitor 
cocktail tablet (Roche, Mannheim, Germany)] and soni-
cated twice (8 W, 40  J) on ice water. Proteins were sepa-
rated by SDS-polyacrylamide gel electrophoresis and sub-
sequently transferred onto a nitrocellulose membrane using 
semidry blotting. A rabbit polyclonal antibody against 
thiolase (Atlas antibodies HPA007244) and a rabbit poly-
clonal antibody against alkyl-DHAP synthase were used 
[in-house generation (Biermann et  al. 1999)] at a 1:2000 
solution. A rabbit polyclonal antibody against the c termi-
nus of PEX7 (kindly provided by prof. Y. Fujiki, Kyushu 
University, Fukuoka, Japan) was used at a 1:1000 solution. 
For visualization, we used the secondary antibodies IRDye 
800 CW goat anti-rabbit (1:10.000) with the Odyssey Infra-
red Imaging System (LI-COR Biosciences).

Biochemical and enzyme activity assays

The α-oxidation rate of phytanic acid, and the β-oxidation 
rates of cerotic acid (C26:0) and pristanic acid were meas-
ured in IHH, HepG2 and skin fibroblasts using radioactive 
labeled substrate as described (Wanders and Van Roermund 
1993; Wanders et al. 1995). Plasmalogen levels were meas-
ured in pellets of IHH and HepG2 cells and in skin fibro-
blasts as described (Dacremont and Vincent 1995).

Mutation analysis

Genomic DNA was isolated using the NucleoSpin Tis-
sue Genomic DNA purification kit (Macherey–Nagel). All 
exons plus flanking intronic sequences of the PEX7 gene 
were amplified using specific primers for PEX7 tagged 
with a -21M13 (5′-TGTAAAACGACGGCCAGT-3′) 
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sequence or M13rev (5′-CAGGAAACAGCTATGACC-3′) 
sequence. Sequence analysis was performed with the Big 
DyeTM Terminator v.3.1 Cycle Sequencing Kit (Applied 
Biosystems) on an ABI 3730 sequencer (Applied Biosys-
tems) using -21M13 or M13rev primers.

Complementation assay

We performed genetic complementation of IHH cells by 
transfecting the cells with PEX7 and PEX5L cDNA as 
described (Ebberink et al. 2011). PTS2-mediated peroxiso-
mal protein import was assessed by co-transfection of the 
cells with a plasmid encoding PTS2-GFP. Transfection was 
performed with Lipofectamine 2000 transfection reagent 
(Thermo Fisher). The subcellular localization of the PTS2-
GFP was determined three days after transfection by using 
the Zeiss Axio Observer A1 fluorescence microscope.

Results and discussion

In order to characterize the peroxisomal functions of the IHH 
cell line, we measured β-oxidation activities using pristanic 

acid or cerotic acid (C26:0) as substrates, and phytanic acid 
α-oxidation activity, and compared these with the activities 
in HepG2 cells and control primary skin fibroblasts. The 
β-oxidation rates of pristanic acid and cerotic acid (C26:0) 
were similar or higher in IHH cells when compared to those 
in HepG2 cells and control fibroblasts, respectively (Fig. 1a). 
In contrast, however, the α-oxidation of phytanic acid was 
markedly impaired in IHH cells (Fig. 1b). Impaired phytanic 
acid α-oxidation in conjunction with normal β-oxidation 
can be due to an isolated defect of phytanoyl-CoA hydrox-
ylase, as in adult Refsum’s disease (Jansen et  al. 1998), or 
to a defect of the import of this PTS2-targeted peroxiso-
mal enzyme, as in RCDP type 1 (Braverman et  al. 1997). 
We further evaluated PTS2-mediated protein import in the 
IHH cells by immunoblot analysis using antibodies against 
the PTS2-targeted peroxisomal proteins 3-ketoacyl-CoA 
thiolase and alkyl-DHAP synthase. We only detected the 
unprocessed precursors of these proteins in homogenates 
of the IHH cells, indicating that they were not imported 
into peroxisomes where processing into the corresponding 
mature proteins usually occurs. The same unprocessed pre-
cursors are observed in homogenates of fibroblasts from a 
PEX7-deficient RCDP type 1 patient (Fig. 2a).

Fig. 1   a Pristanic acid and cerotic acid (C26:0) β-oxidation [in pmol/(hr.mg)] and b phytanic acid α-oxidation [in pmol/(hr.mg)] in IHH cells, 
HepG2 cells and control human skin fibroblasts, measured using radioactive labeled substrate
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The specific defect in peroxisomal import of PTS2-targeted 
proteins was confirmed by immunofluorescence microscopy 
of IHH cells, using antibodies against 3-ketoacyl-CoA thi-
olase and PTS1-targeted catalase. Antibodies against catalase 
showed a punctate peroxisomal fluorescence pattern in IHH 
cells and HepG2 cells, indicating that PTS1-targeted proteins 
are normally imported. In contrast, a cytosolic fluorescence 
signal was seen in IHH cells when using antibodies against 
3-ketoacyl-CoA thiolase, whereas HepG2 cells showed a 
punctate peroxisomal fluorescence pattern (Fig. 2b–e).

The PTS2-targeted peroxisomal enzyme alkyl-DHAP 
synthase is known to play a crucial role in the biosynthe-
sis of plasmalogens (ether lipids) (Wanders and Waterham 
2006). Accordingly, when we measured plasmalogen lev-
els in the IHH cells, HepG2 cells and control fibroblasts 
a marked plasmalogen deficiency in IHH cells was found 
(Fig. 2f).

Since our combined data clearly pointed to a defect of 
PEX7, we sequenced the coding region of PEX7 in the 
IHH cells. No mutations were found in exons 2–10, but 
we were unable to PCR-amplify exon 1, suggesting a dele-
tion including exon 1 of this gene, which thus prevents the 
synthesis of PEX7 protein. In addition, no PEX7 protein 
could be detected in homogenates of IHH cells by immu-
noblot analysis using an antibody against the c terminus of 
PEX7 (Fig. 2g). The defect in PEX7 was confirmed by res-
toration of peroxisomal PTS2-mediated protein import in 
IHH cells after transfection with control PEX7 cDNA (not 
shown). Since it was recently reported that mutations in the 
PEX5L-specific exon 9 of PEX5 can also cause deficient 
import of PTS2-targeted proteins only (Barøy et al. 2015), 
we also performed genetic complementation of IHH cells 
with PEX5L cDNA. Restoration of PTS2-mediated protein 
import did not occur (not shown).

Fig. 2   a Immunoblot analysis using antibodies against peroxisomal 
3-ketoacyl-CoA thiolase and alkyl-DHAP synthase. b Immunofluores-
cence microscopy analysis using antibodies against catalase in HepG2 
and IHH (c) shows a peroxisomal fluorescence signal. Immunofluo-
rescence microscopy analysis using antibodies against peroxisomal 
3-ketoacyl-CoA thiolase shows a peroxisomal fluorescence signal 

in HepG2 (d), but a cytosolic signal in IHH (e). f Relative amount of 
plasmalogens expressed as the ratio of C16:0 dimethylacetal and C18:0 
dimethylacetal to their corresponding fatty acid methyl ester. g Immu-
noblot analysis using an antibody against the c terminus of PEX7
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Our findings show that the IHH cell line has a defect in 
PEX7, which results in a marked plasmalogen deficiency and 
impairment of phytanic acid α-oxidation and thus affects lipid 
homeostasis in these cells. This defect must have been intro-
duced during the immortalization procedure, because the indi-
vidual whose liver biopsy was used to generate the cell line 
did not clinically present with RCDP (Schippers et al. 1997). 
These findings may have important implications both for 
interpretation of data previously generated using this cell line 
and when considering using this cell line for future research. 
The extent to which these abnormalities impact processes 
important in liver metabolism remains to be determined. How-
ever, multiple studies have suggested a role for plasmalogens 
in cholesterol trafficking (Braverman and Moser 2012) and it 
was recently reported that low levels of plasmalogens influ-
ence cholesterol biosynthesis (Honsho et al. 2015). The IHH 
cell line is a good model to study the effect of plasmalogen 
deficiency on different metabolic pathways.
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