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of transcription factors that control Th1 (T-bet) and Th2-
type (GATA3) immunity. We confirmed a Th2 predis-
position with a mean GATA3/T-bet ratio of 5.51. BCG 
responders showed significantly higher levels of urinary 
(p  =  0.003) and serum neopterin (p  =  0.012), kynure-
nine (p =  0.015), KTR (p =  0.005), IFN-γ (p =  0.005) 
and IL-12 (p =  0.003) during therapy, whereas levels of 
IL-10 decreased significantly (p < 0.001) compared to non-
responders. GATA3/T-bet ratio correlated positively with 
serum neopterin (p = 0.008), IFN-γ (p = 0.013) and KTR 
(p =  0.018) after the first BCG instillation. We observed 
a significant increase in CD4 expression in the Th cell 
population (p < 0.05), with only a modest tendency toward 
higher frequency in responders compared to non-respond-
ers (p =  0.303). The combined assessment of GATA3/T-
bet ratio, neopterin and KTR may be a useful biomarker in 
predicting BCG response. Th2-promoting factors such as 
GATA3 may trigger Th1-type immune responses and thus 
contribute to the BCG success.

Keywords  BCG · Bladder cancer · T cells · Neopterin · 
GATA3 · T-bet
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Abstract  Th1-type immunity is considered to be required 
for efficient response to BCG in bladder cancer, although 
Th2 predisposition of BCG responders has recently been 
reported. The aim was to evaluate the relationship of Th1 
and Th2 components in 23 patients undergoing BCG treat-
ment. Peripheral blood, serum and urine samples were 
prospectively collected at baseline, during and after BCG. 
Th1 (neopterin, tryptophan, kynurenine, kynurenine-to-
tryptophan ratio (KTR), IL-12, IFN-γ, soluble TNF-R75 
and IL-2Rα) and Th2 (IL-4, IL-10) biomarkers as well as 
CD4 expression in T helper (Th), effector and regulatory 
T cells were determined. Local immune cell subsets were 
measured on formalin-fixed, paraffin-embedded cancer 
tissue by immunohistochemistry to examine expression 
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IL	� Interleukin
KTR	� Kynurenine-to-tryptophan ratio
NKT	� Natural killer T cell
NMIBC	� Non-muscle-invasive bladder cancer
PBMC	� Peripheral blood mononuclear cell
ROC	� Receiver operating characteristic
ROS	� Reactive oxygen species
Th	� T helper
Teff	� Effector T cell
Treg	� Regulatory T cell
TNF	� Tumor necrosis factor
TURB	� Transurethral resection of the bladder

Introduction

After decades of skepticism, immunotherapy is poised to 
become a mainstay of cancer treatment [1]. Currently, the 
most promising approach in activating therapeutic antitu-
mor immunity is the blockade of immune checkpoints [2] 
as well as the use of genetically engineered T cells with 
chimeric antigen receptor (CAR) directed against tumor-
associated antigens [3]. Treatment with Bacillus Cal-
mette–Guérin (BCG) belongs to the most successful cancer 
immunotherapies, and in high-risk, non-muscle-invasive 
bladder cancer (NMIBC), it is the standard adjuvant treat-
ment according to the European Association of Urology 
(EAU) guidelines [4]. Forty years after its introduction [5], 
the exact immune mechanism of BCG-induced antitumor 
activity is still not fully understood. Following BCG instil-
lations, intravesical BCG–fibronectin complexes are inter-
nalized at the tumor resection site [6]. Antigen-presenting 
cells in the urothelium can phagocytose BCG and present 
BCG-derived antigens to CD4+ T cells. In vitro work by 
Brandau et al. has demonstrated that BCG activates natural 
killer (NK) cells in a monocyte-dependent manner [7]. It 
is well established that innate lymphocytes including NK 
cells not only participate in the early innate response but 
also promote and shape the subsequent adaptive response 
by triggering dendritic cell maturation [8] and are there-
fore essential for effective BCG immunotherapy [9, 10]. 
Different cytokines such as interleukin (IL)-1, IL-2, IL-6, 
IL-7, IL-8, IL-10, IL-12, tumor necrosis factor-(TNF)-α 
and interferon (IFN)-γ are released and can be detected in 
patients treated with BCG [11–13]. Thus, BCG can induce 
the production of both Th1-type and Th2-type cytokines. 
This fact was confirmed in vitro showing that BCG stim-
ulates cultured murine dendritic cells, which are able to 
induce both IL-12 and IL-10, resulting in a mixed, nontar-
geted Th1 and Th2 immune response [14]. However, a pre-
dominant Th1 cell-mediated immunity with an enhanced 
recognition of cancer cells through infiltrating effector 
cells into the bladder wall is required for subsequent BCG 

response [15]. IL-12- or IFN-γ-depleted animals were 
BCG-resistant with a poor cancer-specific survival [16], 
whereas therapeutic strategies administering BCG along 
with Th1 cytokines and concurrent blocking of Th2 cells 
may enhance BCG-induced IFN-γ production and BCG 
vaccine efficacy [17–20]. Moreover, significant increases 
in urine concentrations of Th1-type cytokines during treat-
ment were noticed in BCG responders [21, 22].

IFN-γ is an important stimulus for the enzyme GTP 
cyclohydrolase (GCH-I) in human monocyte-derived mac-
rophages and dendritic cells, which induces neopterin pro-
duction reflecting cellular immune activation [23, 24]. In 
parallel, IFN-γ activates the enzyme indoleamine 2,3-diox-
ygenase (IDO1), which converts tryptophan to kynurenine 
resulting in increased tryptophan breakdown, and elevated 
kynurenine-to-tryptophan ratio (KTR), [23]. Therefore, 
neopterin production and tryptophan breakdown are surro-
gate markers of IFN-γ production and thus of an ongoing 
Th1-type immune response. Currently, only a letter to the 
editor reported monitoring of neopterin in bladder cancer 
patients during intravesical BCG therapy [25]. Moreover, 
intravesical instillations of autologous IFN-γ-activated 
macrophages resulted in an increase in urinary neopterin 
[26].

It is well known that differentiation of type 1 and type 2 
Th cells [27] as well as innate lymphoid cells [28] is con-
trolled by the transcription factors T-bet and GATA3. Inter-
estingly, a genome-wide analysis has revealed that T-bet is 
sufficient to induce GATA3 binding at Th1 specific sites, 
indicating its direct influence and responsibility for the 
redistribution of GATA3 in Th1 cells [29].

Recently, we confirmed a Th2 predisposition 
(GATA3>T-bet) of tumor-infiltrating immune cells in high-
risk NMIBC patients with response to BCG [30]. The aim 
of the present follow-up study was to examine the relation 
between such a Th2 predisposition and the actual func-
tional phenotype during treatment as a potential biomarker 
of BCG response.

Materials and methods

Patients

This prospective study was approved by the local ethical 
committee of the Medical University of Innsbruck (study 
number AN2014-0121; 336/4.3), and written informed 
consent was obtained before study inclusion. All patients 
with primary NMIBC who had undergone transurethral 
resection of the bladder (TURB) from March 2014 to April 
2015 with consecutive intravesical BCG immunotherapy 
were enrolled in this study. A second TURB was per-
formed in all patients (except primary, isolated carcinoma 
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in  situ) before starting BCG induction and maintenance 
at our outpatient department. Each instillation contained 
2 ×  108–3 ×  109 viable units from live attenuated BCG 
bacteria strain seed RIVM derived from seed 1173-P2 
(BCG Medac, Wedel, Germany). Follow-up included cys-
toscopy and urinary cytology (voided urine and bladder 
washing) 3-monthly, and upper urinary tract imaging (CT 
urography or intravenous urography) once a year and in 
case of cancer recurrence [4]. A muscle-invasive bladder 
cancer detected during follow-up or a high-grade recur-
rence after completion of therapy was defined as BCG 
failure. BCG responders were defined as patients without 
any recurrence or evidence of disease based on follow-up 
cystoscopy and urinary cytology. A flowchart of the study 
design is shown in Fig. 1.

Sample collection, preparation and cryopreservation

Heparinized whole blood, serum and urinary samples were 
collected at 10 different time points: baseline (before first 
BCG instillation), during BCG induction (7 days after each 
of the six BCG instillations) as well as during follow-up 
(at 3, 6 and 9 months). Peripheral blood mononuclear cells 
(PBMCs) were prepared from heparinized whole blood by 
Ficoll density centrifugation, and aliquots (5 ×  106 cells) 
were cryopreserved in liquid nitrogen. Serum samples were 
obtained under standard conditions, clotted at 4–8 °C and 
then centrifuged at 3200 rpm for 6 min. Aliquots of 1.8 ml 
were stored at −80 °C.

Measurement of Th1‑ and Th2‑related inflammatory 
metabolites, cytokines and soluble cytokine receptors

Concentrations of serum neopterin were determined by 
a commercially available ELISA according to the manu-
facturer’s instructions (BRAHMS Diagnostica, Hennigs-
dorf, Germany). Determination of urinary neopterin was 
performed using reversed phase (e.g., C18) HPLC with 
Sörensen phosphate buffer (e.g., 0.015 M, pH = 6.4, flow 
rate  =  1.0  ml/min). Urinary neopterin was detected by 
measurement of its natural fluorescence (excitation wave-
length 353 nm, emission wavelength 438 nm). To exclude 
an inflammation as a cause of neopterin increase, serum 
levels of C-reactive protein (CRP) were measured at the 
same time points. Creatinine concentrations were measured 
in parallel in the same chromatographic run by detection of 
its UV absorption at 235 nm. Measurement of kynurenine 
and tryptophan levels was taken by HPLC as described 
previously [31, 32], using an UV-spectrometric detec-
tor (SPD-6A, Shimadzu), a fluorescence detector (model 
360, Varian ProStar), a Varian ProStar HPLC system with 
a solvent delivery module 210 and an autosampler (model 
400, Varian ProStar). Kynurenine and tryptophan standards 
were purchased from Sigma (Steinheim, Germany). KTR 
was calculated and expressed as μmol/mmol [31]. Levels 
of urinary sIL-2Rα, sTNF-R75 and serum IFN-γ, IL-12 
and IL-10 were determined by ELISA (R&D Systems 
Europe, Ltd., Abingdon, UK) following the manufacturer’s 
protocol.

Fig. 1   Prospective study design showing the planned investigations and blood analyses at each visit (baseline, during and after BCG therapy). 
PBMC peripheral blood mononuclear cells, after (post), BCG Bacillus Calmette–Guérin
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Flow cytometric analyses (FACS)

Subset analyses of freshly isolated non-activated PBMCs 
were performed to determine dynamic changes of the 
CD4 expression in Th cells, effector T cells (Teff) and 
regulatory T cells (Treg). CD3+ T cells were selectively 
analyzed for the expression of CD4 and CD25. Teff 
(CD4+CD25highCD161+) cells were identified by addi-
tional staining of CD161, a pan-cancer prognostic gene 
(http://precog.stanford.edu). CD161 defines T cells with 
a conserved transcriptional signature and the ability to 
perform T cell receptor-independent, innate-like IFN-γ 
production in response to IL-12 and IL-18 [33]. This 
is in line with our own recent work demonstrating that 
CD4+CD161+ T cells produce IFN-γ in response to den-
dritic cell stimulation [34]. In contrast, Treg cells were 
identified by high-level expression of CD25 and additional 
expression of CD39 (Treg cells: CD4+CD25+CD39+ cells), 
[35]. The following fluorophore-conjugated monoclonal 
antibodies were used for phenotyping of PBMCs: anti-CD3 
(UCHT-1-BV510; BD Biosciences), anti-CD4 (MT466-
FITC; Miltenyi Biotec), anti-CD25 (2A3-PE; BD Bio-
sciences), anti-CD39 (TU66-BV421; BD Biosciences) and 
anti-CD161 (HP-3G10-PerCP-Cy5.5; eBioscience). Cells 
were stained in PBS containing 0.5% FCS and 50 μg/ml 
human IgG (Octapharma) to block Fc γ receptors. After 
incubation for 30 min at 4 °C, cells were washed two times, 
resuspended and analyzed in a FACSCanto II flow cytom-
eter using the FACS Diva 6.1.2 as well as FlowJo V7.2.5 
software (BD Biosciences). Fixable viability dye eFluor 
780 was used to label dead cells, and eFluor 780-negative 
cells were gated for further analysis (live cell selection), 
Supplementary Figure. 1.

Immunohistochemistry (IHC)

To evaluate the predisposition for a Th1/Th2 tumor micro-
environment prior to BCG, the density of Th1 and Th2 cells 
in tumor-infiltrating immune cells was measured on forma-
lin-fixed, paraffin-embedded tissue sections of bladder can-
cer (in the lamina propria without invasion, at the invasive 
front, within the neoplastic urothelium and within the pap-
illary stroma) by immunohistochemistry, using a T-bet anti-
body (monoclonal rabbit antihuman T-bet, MRQ-46, predi-
luted, Roche) and a GATA3 antibody (monoclonal mouse 
antihuman GATA3, L50-823, prediluted, Roche), which we 
had already validated in a recently work [30]. IHC stain-
ing was performed using an automated immunostainer 
(BenchMark ULTRA, Ventana Medical Systems, Tucson, 
US) according to the manufacturer’s protocol. We manually 
counted the total density of positive cells for each subset 
in up to 5 high-power fields (HPF) in each region, using 
the same field of view in consecutive slides. Microscope 

images were taken with an Olympus BX50 microscope 
(40x magnification) equipped with the ProgResC10plus 
camera (Jenoptik, Jena, Germany). IHC evaluation was 
performed by an experienced uropathologist.

Statistics

Descriptive statistics (absolute and relative frequencies 
for qualitative data; mean and standard deviation (SD) for 
quantitative data) are given for all variables of interest. 
Bias-corrected and accelerated 95% bootstrapping con-
fidence intervals (CIs) based on 2000 iterations were cal-
culated for the means of all biomarkers at all time points. 
Changes over time in parameters were assessed using the 
Skillings–Mack test designed for block designs with miss-
ing observations [36]. Differences between BCG respond-
ers and non-responders were evaluated using a mixed 
model for repeated measurements with BCG response, time 
point and the interaction term as fixed effects and an AR(1) 
model for the within-subject covariance structure. Dif-
ferences between single time points were evaluated using 
Mann–Whitney U tests. Correlations between parameters 
were assessed with Spearman’s ρ correlation coefficient 
(rs). The predictive power of biomarker levels on BCG 
response was evaluated by plotting receiver operating char-
acteristic (ROC) curves and calculating the area under the 
curve (AUC). Expression levels were compared between 
tumor areas with the Friedman test and Wilcoxon signed-
rank tests for pairwise comparisons. A significance level of 
α = 0.05 (two-tailed) was applied for all p values. Statisti-
cal analyses were performed using SPSS version 22 soft-
ware (IBM Corp., Armonk, NY). Graphics were produced 
with Microsoft Excel and GraphPad PrismTM6 (GraphPad 
Software Inc., La Jolla, CA).

Results

Patients’ characteristics

A total of 23 (20 male and 3 female) patients with a mean 
(range) age of 71.3 (55–80) years were included. Histo-
pathological evaluation confirmed a primary, high-risk 
NMIBC according to the European Organization for 
Research and Treatment of Cancer (EORTC) scoring sys-
tem and risk tables [37]. Three patients showed low-grade 
carcinomas, while 20 (87.0%) of 23 patients had a high-
grade cancer according to the WHO 2004 classification. 
Second TURB was performed in 19 (82.6%) patients, 
with tumor-free status in 12 (63.1%) patients, respectively. 
Descriptive and histopathological characteristics are shown 
in Supplementary Table 1. During a mean (range) follow-
up of 16.2 (13–25) months, 19 (82.6%) patients were 

http://precog.stanford.edu
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classified as BCG responders, while four (17.4%) patients 
showed BCG failure (multifocal, pT1 high-grade urothelial 
carcinoma and concurrent CIS) after a mean (range) fol-
low-up of 7.5 (4–10) months. All those patients with BCG 
failure subsequently underwent radical cystectomy.

Th2 predisposition of tumor‑infiltrating immune cells 
prior to BCG therapy

IHC analysis showed a Th2 predisposition of tumor-infil-
trating immune cells in therapy-naive patients: The mean 

Fig. 2   GATA3 and T-bet 
expression of tumor-infiltrating 
immune cells prior to BCG 
therapy. a Distribution of 
GATA3+, T-bet+ T cells 
and GATA3/T-bet ratio in 
all patients; data represent 
mean ± SEM. b, c Abundance 
of GATA3+ and T-bet+ T cells 
based on analyzed tumor areas. 
Data represent mean ± SEM. 
*p < 0.05; **p < 0.01; 
***p < 0.001; Friedman’s tests 
and Wilcoxon’s signed-rank 
tests. d Frequency of GATA3+, 
T-bet+ tumor-infiltrating T cells 
and GATA3/T-bet ratio with 
respect to treatment outcome 
(response vs. failure). Data 
represent mean ± SEM; Mann–
Whitney U test. e, f Correlation 
analysis (and confidence bands) 
of GATA3, T-bet and GATA3/T-
bet ratio; *p < 0.05; **p < 0.01; 
***p < 0.001. g Superficially 
invasive bladder cancer with a 
high count of GATA3+ tumor-
infiltrating lymphocytes and 
h low expression of T-bet+ T 
cells; Scale bar ~40 µm; i carci-
noma in situ with few GATA3+ 
T cells and j only one intra-
vascular T-bet+ T cell (marked 
with *); Scale bar ~40 µm. LP 
lamina propria without invasion, 
IF invasive front, NU neoplastic 
urothelium, PS papillary stroma, 
rs Spearman’s rank correlation 
coefficient
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(±SD, range) number of GATA3+ or T-bet+ immune cells 
and the GATA3/T-bet ratio was 340.2 (±288, 55–1258), 
90.8 (±71.4, 12–289) and 5.5 (±5.3, 1.1–23.8) in all 
patients, respectively (Fig.  2a). Moreover, a GATA3/T-bet 
ratio >2 was confirmed in 20 (86.9%) of 23 patients and 
in 18 (94.7%) of 19 responders. Significant differences in 
the localization pattern and the density of immune cells 
between the four tumor regions were confirmed for T-bet 
(p < 0.001) and GATA3 (p < 0.001). The highest infiltration 
of GATA3+ (266.9 ±  226.8) and T-bet+ (56.4 ±  50.9) T 
cells was measured in the lamina propria without invasion, 
followed by the invasive front (48.3 ± 139.8 for GATA3; 
15.2 ± 41 for T-bet; p < 0.001), the papillary tumor stroma 
(24.7 ± 22.7 for GATA3; 14.5 ± 16.7 for T-bet) and finally 
within the neoplastic urothelium (0.3 ±  1.0 for GATA3; 
4.7  ±  6.3 for T-bet, p  <  0.001), Fig.  2b, c. By analyz-
ing differences in the expression of GATA3+ and T-bet+ 
immune cells between BCG response and failure, we 
found no statistically significant differences concerning 
GATA3, T-bet and GATA3/T-bet ratio. Nevertheless, BCG 
responders pointed out a clear tendency toward increased 
GATA3+ T cell counts (response vs. failure; 372.6 ± 303.6 
vs. 186 ±  130.1, p =  0.218) and increased GATA3/T-bet 
ratio (6.2 ± 5.7 vs. 2.4 ± 1.1, p = 0.081), while the mean 
(±SD) T-bet+ cell expression was similar (94.1  ±  76.2 
vs. 75 ± 45.6, p = 0.785), Fig. 2d. In BCG failure, post-
BCG tumor tissue analysis revealed no dynamic changes 
(mean ± SD) for GATA3 (199 ± 91.7), T-bet (64 ± 30.8) 
and GATA3/T-bet ratio (2.1 ±  1.8) compared to baseline. 
Significant positive correlations between GATA3 and 
T-bet (rs =  0.74, p  <  0.001) were identified, while T-bet 
correlated inversely with GATA3/T-bet ratio (rs = −0.44, 
p =  0.03), Fig.  2e, f. Representative IHC images of two 
patients with a higher density of GATA3+ T cells compared 
to T-bet+ T cell count are shown in Fig. 2g–j.

Responders displayed increased levels of Th1‑related 
inflammatory metabolites and decreased concentrations 
of IL‑10 compared to non‑responders

Response to BCG has previously been linked to an increase 
in Th1-related cytokines during treatment [21, 22]. Neop-
terin production and tryptophan degradation, measurable 
in serum, are strongly inducible by the Th1-type cytokine 
IFN-γ [38] and thus may reflect Th1 signals induced 
locally within the bladder by BCG. In our study popula-
tion, we observed significant time-dependent changes for 
serum tryptophan (p =  0.024), IFN-γ (p =  0.009), IL-12 
(p = 0.005) and IL-10 (p = 0.048), and a tendency toward 
an increase in serum (nmol/l; p  =  0.056) and urinary 
(µmol/mol creatinine; p  =  0.059) neopterin production 

during BCG therapy. Dichotomizing into patients with 
BCG response and failure, we noticed significantly higher 
increases over the course of time in BCG responders com-
pared to non-responders, for serum neopterin (p = 0.012), 
serum kynurenine (μmol/l; p = 0.015), serum KTR (μmol/
mmol; p =  0.005), urinary neopterin (p =  0.003), serum 
IFN-γ (pg/ml; p =  0.005) and IL-12 (pg/ml; p =  0.003) 
concentrations, whereas the levels of Th2 cytokine IL-10 
(pg/ml; p < 0.001) were significantly lower in responders 
compared to non-responders (Figs.  3, 4, 5). At baseline, 
only urinary neopterin levels were significantly higher in 
BCG responders compared to BCG failure (mean ±  SD, 
219 ± 133 vs. 107 ± 38.2; p = 0.021), Fig. 4. ROC anal-
ysis showed that the best cutoff (=highest Youden Index: 
0.789) for urinary neopterin was ≥137.5  μmol/mol cre-
atinine, with 78.9% sensitivity and 100% specificity in 
the prediction of BCG response [area under the curve 
(AUC) = 0.862; 95% CI 0.707–1.00; p = 0.026].  

With regard to changes from baseline to the time after 
the first BCG instillation, BCG responders could be identi-
fied by an increased level of serum neopterin (mean ± SD, 
22.2  ±  25.9 vs. 7.9  ±  2.3; p  =  0.044), serum KTR 
(mean  ±  SD, 51.8  ±  24.6 vs. 30.7  ±  7.2; p  =  0.024), 
serum IFN-γ (mean  ±  SD, 15.9  ±  15.3 vs. 2.1  ±  1.1; 
p = 0.003) and urinary neopterin (mean ± SD, 328 ± 336 
vs. 117 ±  17.6; p =  0.016). Dynamic changes in serum 
kynurenine concentrations were observed after completed 
BCG induction: BCG responders displayed a signifi-
cant increase in 3  months (mean ±  SD, 55.7 ±  19.9 vs. 
27.6 ± 4.8; p = 0.001), 6 months (mean ± SD, 54.3 ± 19.2 
vs. 33.1 ±  13.0; p =  0.014) and 9  months (mean ±  SD, 
60.9 ± 20.3 vs. 28.8 ± 6.4; p = 0.028) after BCG induc-
tion in comparison with BCG failure. In contrast, no signif-
icant differences of serum IL-4, urinary sIL-2Rα or sTNF-
R75 levels could be noticed in response to BCG therapy, 
Figs. 3, 4 and 5.

Significant correlations between urinary and serum 
Th1‑type immune response‑associated markers 
at baseline

As a next step, we investigated the extent to which urinary 
and serum neopterin production correlated with trypto-
phan breakdown. Correlation analyses revealed significant 
associations of serum neopterin with urinary neopterin 
(rs =  0.761, p  <  0.001), serum tryptophan (rs =  -0.395, 
p  =  0.069), serum kynurenine (rs  =  0.783, p  <  0.001), 
serum KTR (rs  =  0.817, p  <  0.001) and serum IFN-γ 
(rs  =  0.462, p  =  0.026). Moreover, urinary sTNF-R75 
correlated significantly with urinary sIL-2Rα (rs =  0.744, 
p < 0.001), Supplementary Figure 2.
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Intratumoral GATA3/T‑bet ratio correlated with serum 
neopterin, IFN‑γ and KTR levels after first BCG 
instillation

Consistent with the hypothesis that a predominant Th2 
tumor microenvironment relates to a functional Th1 
response during BCG treatment, we confirmed a positive 
correlation between GATA3/T-bet ratio prior BCG induc-
tion and levels of serum neopterin (rs = 0.533, p = 0.008), 
IFN-γ (rs  =  0.505, p  =  0.013) and KTR (rs  =  0.508, 
p = 0.018) after the first BCG instillation, respectively.

CD4 expression in Th cells increased significantly 
during BCG therapy

CD3+ and CD4+ T cells as well as Treg cells have 
shown to differentially influence BCG vaccine effi-
cacy [39, 40], being potential candidates for monitoring 
response to BCG immunotherapy. As shown in Fig.  6a, 
the CD4 expression in Th cells changed significantly 
during BCG induction (p  =  0.049). In detail, the CD4 
expression in Th cells increased steadily from base-
line (mean  ±  SD, 2144.3  ±  1132.8) to the third BCG 

Fig. 3   Levels of serum neopterin and tryptophan degradation 
at baseline, during and after BCG therapy. Patients were strati-
fied by treatment outcome (BCG response vs. failure). Data repre-
sent mean ±  95% confidence interval (CI); *p  <  0.05; **p  <  0.01; 

***p  <  0.001; overall p value from a mixed model analysis for 
repeated measures between responders and non-responders; Mann–
Whitney U tests for single time point comparisons. KTR kynurenine-
to-tryptophan ratio
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instillation (2770.2 ± 891.8), respectively (Fig. 6a). Based 
on therapy outcome, BCG responders showed a tendency 
toward an increased CD4 expression in Th cells during 
treatment compared to BCG failure, already after the first 
BCG instillation (2686.1  ±  995.3 vs. 1931.3  ±  261.1; 
p = 0.109), but without statistical significance, Fig. 6b. In 
contrast, the CD4 expression in CD4+CD25+CD39+ Treg 
and CD4+CD25highCD161+ Teff cell populations remained 
relatively stable in the total population as well as strati-
fied by therapy response (Fig. 6c–f). Moreover, we noticed 
no significant differences neither in the CD4+/Treg ratio 
of the total study population (Fig.  6g) nor in the change 
of the CD4+/Treg ratio during therapy between responders 
and non-responders (Fig.  6h). However, BCG responders 
showed a trend toward increased CD4+/Treg ratio compared 

to BCG failure (after three instillations, 1.26 ±  0.85 vs. 
0.69 ± 0.12, p = 0.571). In addition, we observed no sig-
nificant correlations between the CD4 expression in Th 
cells, Treg and Teff cells, and the serum concentrations of 
neopterin and tryptophan degradation.

Discussion

Immunity to pathogens including mycobacteria is medi-
ated by type 1 effector Th cells (Th1 cells), which produce 
IFN-γ [27]. Whereas the T cell transcription factor T-bet 
(encoded by Tbx21) has a fundamental role in coordinat-
ing a type 1 immune response, GATA3 is considered to be 
the master regulator of the Th2 cell differentiation program 

Fig. 4   Levels of urinary neopterin, sTNF-R75 and sIL-2Rα (pro 
creatinine) at baseline, during and after BCG therapy. Patients were 
stratified by treatment outcome (BCG response vs. failure). Data rep-
resent mean ± 95% confidence interval (CI); *p < 0.05; **p < 0.01; 

***p  <  0.001; overall p value from a mixed model analysis for 
repeated measures between responders and non-responders; Mann–
Whitney U tests for single time point comparisons. s soluble, TNF 
tumor necrosis factor, IL interleukin
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characterized by the production of IL-4, IL-5 and IL-13. 
T-bet also promotes Th1-type responses by preventing 
GATA3-mediated Th2 cell development [41, 42]. Despite 
this established concept of mutually exclusive Th cell dif-
ferentiation, there is also evidence that Th2-type cytokines 
such as IL-4 are important for memory T cell generation 
[43] and for the development of CD8+ T cell immunity 
against intracellular parasites [44].

A Th2 (GATA3>T-bet) predisposition has been reported 
in different cancer entities and metastatic lymph nodes 
and was found to be associated with cancer recurrence, 

progression and poor survival [45–48]. This fact may sup-
port the hypothesis of an inverse correlation of GATA3 
and T-bet expression, suggesting that the presence of Th2 
immune cells limits functional Th1-type responses within 
the tumor microenvironment. In the present study, we 
observed a positive correlation between GATA3 and T-bet 
expression in tumor-infiltrating immune cells. In detail, 
when GATA3 expression was high, also T-bet was increased 
and vice versa. Our present findings together with results 
recently published by our study group [30] clearly indicate 
a Th2 predisposition of tumor-infiltrating immune cells 

Fig. 5   Levels of serum IFN-γ, IL-12, IL-10 and IL-4 (pg/ml) at 
baseline, during and after BCG therapy. Patients were stratified by 
treatment outcome (BCG response vs. BCG failure). Data repre-
sent mean ±  95% confidence interval (CI); *p  <  0.05; **p  <  0.01; 
***p < 0.001; overall p value for changes over time points by Skill-

ings–Mack test; p value from a mixed model analysis for repeated 
measures between responders and non-responders; Mann–Whitney U 
tests for single time point comparisons between responders and non-
responders. IL interleukin
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in BCG responders. However, increased levels of GATA3 
expression and GATA3/T-bet ratio were significantly asso-
ciated with a prolonged, and not a poor recurrence-free sur-
vival [30]. Moreover, our current data also showed the ten-
dency toward increased numbers of GATA3+ immune cells 
in BCG responders compared to BCG failure. These results 
are comparable with the trial by Nunez-Nateras et al. [49] 
analyzing the pretreatment immunologic tumor microenvi-
ronment within tumor-infiltrating lymphocytes. They also 

showed an increased pretherapeutic GATA3/T-bet ratio in 
responders in comparison with BCG failure.

Using real-time PCR to asses the gene expression of 
GATA3 and T-bet, a reduced Th2 phenotype (decreased 
GATA3 expression) correlated with disease aggressive-
ness (high-grade tumors and muscle-invasive status) and a 
poor cancer-specific survival in bladder cancer [50]. In line 
with this observation, we observed that the Th2 cytokine 
IL-4 can directly suppress the growth of tumor cells [51]. 
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Whereas GATA3 expression remained mostly negative in 
prostate and renal cell carcinoma, up to 70% of invasive 
urothelial carcinomas were GATA3 positive in one study 
[52]. However, real-time PCR analysis confirmed higher 
expression of T-bet among BCG responders as compared to 
BCG failure (p = 0.02), whereas heavy smokers with low 
expression levels of GATA3 were poor responders to BCG 
(p = 0.01), [50].

Focusing on tumor cells, GATA3 has been shown to pre-
vent bladder cancer progression and metastasis by inhibit-
ing cell migration and invasion as well as epithelial-to-mes-
enchymal transition in  vitro [53]. On the contrary, strong 
expression of GATA3 was associated with progression and 
poor cancer-specific survival in muscle-invasive bladder 
tumors [54]. Thus, the role of GATA3 has to be further vali-
dated and needs to be interpreted with caution. A possible 
explanation of these conflicting results may be the interac-
tion of GATA3 with steroid hormone receptor signals influ-
encing bladder cancer growth adversely by both stimula-
tory and inhibitory effects via androgen receptor (AR), 
estrogen receptor (ER)α and/or ERβ [55, 56]. For example, 
GATA3 expression correlated with a loss of ERβ as well as 
with AR/ERα overexpression in bladder cancer [54].

It is well established that Th1-type immunity is required 
for effective BCG-induced antitumor activity in bladder 
cancer. BCG efficacy may be increased by ex vivo tumor 
antigen-loading and dendritic cell activation as BCG stimu-
lated dendritic cells to secrete TNF-α, which is responsible 

for phenotypic and functional changes [57]. Ponticiello 
et al. [58], for instance, noticed a significant increase in the 
CD4+ Th1 subsets during BCG therapy. Moreover, BCG 
resulted in an increase in Th1 cytokines and lower levels 
of Th2 cytokines during therapy in  vitro and in humans 
[13, 21, 22, 59, 60]. Moreover, parenteral exposure to BCG 
before instillations triggered an accelerated T cell entry into 
the bladder in vitro, with an improved recurrence-free sur-
vival in patients [60]. Therefore, shifting the Th2 dominant 
immunologic landscape toward a Th1 response during ther-
apy seems to be an important mechanism for adequate BCG 
response [61]. Another likely point of view is that a certain 
Th2 capacity is necessary for the generation of an adequate 
Th1 response. For instance, exposure to the Th2 cytokine 
IL-4 has been shown to result in an enhanced CD8+ T cell 
response to pathogens, improving a proinflammatory Th1 
immune response [43]. However, the exact mechanism how 
IL-4 alters the frequency of CD8+ T cells in humans is still 
unclear. In mice, IL-4-producing NKT cells correlated with 
thymic innate memory CD8+ T cells [62]. In renal cell car-
cinoma, IL-4 and TNF-α synergistically induced apoptosis 
and cytokine production in vitro, promoting the recruitment 
of different immune effector cells [51]. Thus, simultaneous 
induction of both Th1 and Th2 response seems to be neces-
sary for efficient systemic antitumor activity [63, 64]. As 
an example, a Th2-biased response to MAGE-6 epitopes 
prior to treatment shifted to a Th1-mediated response after 
therapy in two patients (renal cell carcinoma and mela-
noma) with complete therapeutic response [65]. Our pre-
sent results confirm this view, since patients with Th2 pre-
dominant tumor-infiltrating immune cells displayed a Th1 
functional phenotype during BCG induction.

IFN-γ-induced neopterin production and tryptophan 
breakdown are typical markers for Th1-activated cell-
mediated immunity [23, 24]. So far, only a letter to the 
editor assessed changes in neopterin levels during BCG. 
Mack et  al. [25] showed for the first time in 30 patients 
that BCG response was associated with a significant peak 
of serum and urinary neopterin after each BCG instilla-
tion as a sign of a Th1 cell-mediated immune activation. 
Our results are in line with these data as BCG responders 
also displayed higher levels of urinary and serum neopterin 
during intravesical BCG induction. In addition, we demon-
strate for the first time enhanced tryptophan breakdown in 
the serum of BCG responders. Moreover, concentrations 
of neopterin correlated significantly with those for trypto-
phan breakdown at each time point confirming that IFN-γ 
induces simultaneously induces two different biochemical 
pathways: first, deprivation of tryptophan by IDO1; second, 
neopterin and reactive oxygen species (ROS) production by 
GCH-I [66]. Moreover, it is remarkable that neopterin and 
tryptophan metabolites can be detected in human serum as 

Fig. 6   CD4 expression in the Th cell population, 
CD4+CD25+CD39+ Treg cells and CD4+CD25highCD161+ Teff cells, 
and CD4+/Treg ratio. a Significant changes in the CD4 expression 
in Th cells at baseline and during treatment in all patients; Skill-
ings–Mack test; scatter dot plot. b CD4 expression in Th cells at 
baseline and throughout treatment, depending on therapeutic out-
come (response vs. failure); mixed model analysis for repeated meas-
ures and Mann–Whitney U tests for single time point comparisons. 
Data represent mean ±  SD; c no significant dynamic changes con-
cerning the CD4 expression in Treg at baseline and during treatment 
in all patients; Skillings–Mack test; scatter dot plot. d CD4 expres-
sion in Treg cells at baseline and throughout treatment, depending on 
therapeutic outcome (response vs. failure); mixed model analysis for 
repeated measures and Mann–Whitney U tests for single time point 
comparisons. Data represent mean ±  SD; e no significant dynamic 
changes concerning the CD4 expression in Teff cells at baseline and 
during treatment in all patients; Skillings–Mack test; scatter dot plot. 
f CD4 expression in Teff cells at baseline and throughout treatment, 
depending on therapeutic outcome (response vs. failure); mixed 
model analysis for repeated measures and Mann–Whitney U tests 
for single time point comparisons. Data represent mean ± SD; g no 
significant dynamic changes concerning the CD4 expression in total 
CD4+/Treg ratio at baseline and during treatment in all patients; Skill-
ings-Mack test; Scatter dot plot. h CD4 expression in CD4+/Treg ratio 
at baseline and throughout treatment, depending on therapeutic out-
come (response vs. failure); mixed model analysis for repeated meas-
ures and Mann–Whitney U tests for single time point comparisons. 
Data represent mean ±  SD; *p  <  0.05; **p  <  0.01; ***p  <  0.001; 
MFI mean fluorescence intensity

◂
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surrogate markers of a local IFN-γ response occurring in 
the bladder or the draining lymph nodes after BCG therapy.

As a result of a chronically activated immune system, 
also counter-regulatory and immunosuppressive mecha-
nisms can be activated with decreased T cell responsiveness 
and development of immunodeficiency as a consequence 
of Treg cell expansion [67, 68]. A positive correlation was 
found between high IDO1 expression in bone marrow-
derived mesenchymal stem cells and elevated percentage 
of Treg cells in acute myeloid leukemia [69]. Therefore, the 
proportion of CD4+CD25+CD39+ Treg cells was analyzed 
in PMBCs at baseline, during and after BCG therapy. How-
ever, we noticed no significant correlations between serum 
levels of neopterin or tryptophan degradation and distribu-
tion of Treg cells in PBMCs. Nevertheless, BCG responders 
showed the tendency toward increased Treg cells compared 
to BCG failure, but without statistical significance.

The obvious limitation of this prospective pilot study 
is the relatively small sample size of 23 patients, which 
restricts statistical methods of interpretation. Therefore, 
further prospective and multi-institutional randomized tri-
als with sufficient statistical power and long-term follow-
up are required to validate these preliminary findings and 
to verify in detail the prognostic role of Th1-related inflam-
matory metabolites in the context of Th2-driving transcrip-
tion factor overexpression.

Conclusions

In patients receiving intravesical BCG therapy, a general 
intratumoral Th2 predisposition at the level of transcription 
factors (GATA3>T-bet) was combined with an increased 
productive Th1-type immunity in responders compared to 
non-responders. A better understanding of Th1 regulation by 
Th2 components at the molecular level would be helpful in 
developing a more efficient and targeted cancer immunother-
apy, particularly in bladder cancer patients with BCG failure.
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