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Abstract

Various proteoforms may be generated from a single gene due to primary structure alterations 

(PSAs) such as genetic variations, alternative splicing, and post-translational modifications 

(PTMs). Top-down mass spectrometry is capable of analyzing intact proteins and identifying 

patterns of multiple PSAs, making it the method of choice for studying complex proteoforms. In 

top-down proteomics, proteoform identification is often performed by searching tandem mass 

spectra against a protein sequence database that contains only one reference protein sequence for 

each gene or transcript variant in a proteome. Because of the incompleteness of the protein 

database, an identified proteoform may contain unknown PSAs compared with the reference 

sequence. Proteoform characterization is to identify and localize PSAs in a proteoform. Although 

many software tools have been proposed for proteoform identification by top-down mass 

spectrometry, the characterization of proteoforms in identified proteoform-spectrum-matches still 

relies mainly on manual annotation. We propose to use the Modification Identification Score 

(MIScore), which is based on Bayesian models, to automatically identify and localize PTMs in 

proteoforms. Experiments showed that the MIScore is accurate in identifying and localizing one or 

two modifications.

Introduction

The expression of a gene may result in many proteoforms,1 which often contain some 

primary structure alterations (PSAs), such as amino acid substitutions, insertions/deletions 

of amino acids or exons, and post-translational modifications (PTMs), compared with the 
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reference protein sequence in the Swiss-Prot2 or RefSeq3 database. Because many PSAs 

alter protein structure, function, and protein-protein interactions, they play a vital role in 

biological processes and are closely related to many diseases such as heart failure4 and age-

dependent memory impairment.5 Researchers have been actively developing experimental 

and computational methods for identifying proteoforms with PSAs.6

Bottom-up mass spectrometry (MS) has dominated proteomics studies for more than two 

decades. However, protein digestion in bottom-up MS cleaves long proteins into short 

peptides, limiting its ability to identify the combinatorial pattern of multiple PSAs in a 

complex proteoform.7 In addition, only a fraction of peptides can be confidently identified, 

and the PSAs on those unidentified peptides cannot be observed. By contrast, top-down MS 

analyzes intact proteins and provides whole protein sequence coverage, making it the 

method of choice for studying complex proteoforms with PSAs. Over the past five years, 

high accuracy and high resolution mass spectrometers (e.g., Orbitrap), which are required 

for top-down MS, have become available to many laboratories. Developments in protein 

separation and MS instrumentation have boosted the applications of top-down MS, which 

open a window into the poorly explored world of proteoforms.1

There are three main approaches to identifying proteoforms by top-down MS: extended 

databases, blind PSA search, and the combination of the first two. In the first approach, an 

extended proteoform database is constructed that includes all known proteoforms, against 

which tandem mass (MS/MS) spectra are searched. The second approach is similar to blind 

PTM search in bottom-up MS, in which MS/MS spectra are searched against an ordinary 

protein database, such as a Swiss-Prot protein database, to identify proteoforms with 

unknown PSAs. These two approaches can be combined, that is, MS/MS spectra are 

searched against an extended proteoform database to identify proteoforms with known 

and/or unknown PSAs. ProteinGoggle8 and the absolute mass search mode of ProSightPC9 

exemplify the first approach. Various methods have been proposed using the second 

approach, such as spectral alignment,10,11 precursor ion independent search (PIITA),12 and 

tag-based methods. 13 ProSightPC provides the Δm and biomarker search modes that are 

based on the third approach. MS-Align-E14 is another example of the third approach, which 

is capable of identifying proteoforms with both variable and unknown PTMs. Although the 

first approach is fast, it often misses many identifications because of the existence of 

unknown PSAs. As a result, the second and third approaches are more efficient in exploring 

the world of unknown complex proteoforms.

In the third approach, the objective is to map a top-down MS/MS spectrum to a proteoform 

of the target gene in the database that shares the maximum number of PSAs with the target 

proteoform. PSAs shared by the database and target proteoforms are known PSAs; those in 

the target proteoform only are unknown or novel PSAs. Although proteoform 

characterization, which identifies and localizes PSAs, is an indispensable step in top-down 

MS data analysis, existing proteoform identification tools often report only the database 

proteoform, but fail to characterize the target proteoform.

In bottom-up MS, many methods have been proposed for the automated identification and 

localization of PTMs, particularly for the localization of phosphorylation, such as A-
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score, 15 PTM score,16 Phosphorylation Localization Score,17 SLoMo,18 PhosphoRS19 and 

Mascot Delta Score.20 After a mass shift in a peptide-spectrum match is identified, these 

methods identify the PTM based on the mass shift and compute a confidence score for each 

possible site of the PTM.21 In addition, there are methods that refine predicted PTMs and 

their locations, such as PTMFinder22 and iPTMClust.23 However, the methods have some 

limitations: PTMFinder uses a peptide-level approach, which favours modified peptides with 

high-abundance; iPTMClust cannot handle peptides with multiple PTMs.

In top-down MS, software tools such as ProSightPC9 provide graphical user interfaces for 

manually characterizing complex proteoforms, but they are inefficient in analyzing high 

throughput data. Software tools for automated characterization of proteoforms are still 

lacking.

Dang et al. described three types of confidence scores in proteoform identification and 

characterization by top-down MS:24 protein identification scores, PTM localization scores, 

and proteoform characterization scores. The last two are used in proteoform 

characterization. The methods for PTM localization on peptides, such as A-score, can be 

extended to compute PTM localization scores in proteoform characterization. However, 

most of the methods were designed for single PTM localization, not for the characterization 

of complex proteoforms with multiple PSAs. LeDuc et al.25 proposed a Bayesian approach 

for proteoform identification, in which C-scores are computed for candidate proteoforms in 

an extended proteoform database. C-scores are proteoform characterization scores when the 

target proteoform does not contain unknown PSAs and the candidate proteoforms are limited 

to those in the extended database.

We limit this study to the identification and localization of PTMs in proteoforms and use 

Bayesian models to compute the Modification Identification Score (MIScore), which is a 

PTM level, not proteoform level, score. While a PTM localization score is the confidence 

score of a potential site of a given PTM; an MIScore is the probability that the reported 

modification and site are correct. The computation of posterior probabilities in the proposed 

models is simpler and faster than that in the C-score method. We give efficient algorithms 

for computing MIScores as well as a divide and conquer method for the localization of two 

modifications. One limitation of the MIScore method is that it can identify at most 2 

modifications from an unknown mass shift. Experiments showed that the MIScore method 

was accurate in identifying and localizing modifications in proteoforms.

Methods

Data sets

The MIScore method was tested on two top-down MS/MS data sets: one from Escherichia 
coli K-12 MG1655 (EC) and the other from Salmonella typhimurium 14028s (ST). In 

addition, a Salmonella typhimurium 14028s bottom-up MS/MS data set was used for the 

validation of identified modification sites.

EC data set—Escherichia coli K-12 MG1655 was grown in M9 minimal medium at 37°C 

with shaking. Cells were harvested at OD600 of 0.6 by centrifugation (2 400 g, 15 min) at 
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4°C, and washed with ammonium bicarbonate buffer (100 mM, pH 8). Cell pellets (1.5 g, 

wet weight) were reconstituted in the ammonium bicarbonate buffer plus 1 mM PMSF. The 

suspension was lysed with bead beating (0.1 mm Zirconia beads) at the maximum speed for 

3 min. The cell debris and beads were removed by centrifugation (10 000 g, 5 min). The 

supernatant represented the soluble protein extract. No reduction and alkylation of cysteine 

residues were performed in the sample preparation. The protein extract was separated by a 

Waters NanoAquity LC system with a custom packed column (80 cm × 75 μm i.d., C5, 5 μm 

particle diameter, 300 Å pore size). Mobile phase A was composed of 0.5% acetic acid, 

0.01% TFA, 5% isopropanol, 10% ACN, and 84.5% water. Mobile phase B consisted of 

0.5% acetic acid, 0.01% TFA, 9.9% water, 45% isopropanol, and 45% ACN. The operating 

flow rate was 0.3 μl/min. The LC system was equilibrated with 100% mobile phase A for 5 

minutes, and then increased to 20% mobile phase B in 1 minute. A 250 minute linear 

gradient was set from 20% mobile phase B to 55% mobile phase B. All the related MS 

analysis was performed using an LTQ Orbitrap Velos mass spectrometer (Thermo Scientific, 

San Jose, CA). FTMS MS and MSn AGC target values were 106 and 2 × 105, respectively. 

For the LC-MS/MS analysis with higher-energy C-trap dissociation (HCD) fragmentation, a 

parent spectrum was collected at a 60K resolution at m/z of 400 and was followed by high 

resolution (60K at m/z of 400) HCD MS/MS spectra of the 6 most intense ions, isolated with 

a 3 m/z window, from the parent mass spectrum. FT MS/MS employed 45% normalized 

collision energy for HCD. Mass calibration was performed prior to analysis according to the 

method recommended by the instrument manufacturer. A total of 3 704 HCD MS/MS 

spectra were collected.

ST data set—Cultures of Salmonella typhimurium 14028s were grown in low-phosphate, 

low-magnesium, low-pH minimal medium (LPM) for infection-like condition. Protein 

samples of the cultures were collected and divided into two portions: one for top-down 

MS/MS analysis and the other for bottom-up MS/MS analysis. No reduction and alkylation 

of cysteine residues were performed in the preparation of the samples. In the top-down 

MS/MS experiment, the protein samples were separated by a reversed phase liquid 

chromatography (RPLC) system and then analyzed by an LTQ Orbitrap Velos mass 

spectrometer. The most 8 intense ions in each MS spectrum were selected to generate high 

resolution (60K) collision-induced dissociation (CID) MS/MS spectra. In the bottom-up 

MS/MS experiment, the protein samples were digested using trypsin and analyzed by an 

high-performance liquid chromatography (HPLC) system coupled with an LTQ Orbitrap 

Velos mass spectrometer. The 6 most intensity ions in each MS spectrum were selected for 

CID MS/MS analysis. Finally, a total of 7 400 top-down and 106 350 bottom-up MS/MS 

were collected. (See Ref 26 for details of the experiments.)

Binary representation of peptides and spectra

An MS/MS spectrum is represented by a precursor mass and a list of peaks. The precursor 

mass corresponds to the molecular mass of the proteoform, and each peak (m/z, intensity) 

corresponds to a fragment ion of the proteoform. The m/z value and intensity are the mass-

to-charge ratio and abundance of the fragment ion, respectively. In preprocessing of top-

down spectra, m/z values are converted into neutral masses of fragment ions by a 

deconvolution algorithm.27–29 The neutral masses and the precursor mass are discretized by 
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multiplying the masses by a scale factor and rounding the resulting values to integers. A 

scale factor 274.335215 was used in the experiments.14 In practice, the scale factor is 

determined by the accuracy of m/z values in top-down MS/MS spectra. For simplicity, peak 

intensities are ignored in the following description of the method.

Let M be the discretized precursor mass of an MS/MS spectrum S. We represent spectrum S 
as a binary string s1s2 … sM, where sj = 1 if j is a discretized neutral fragment mass in S; and 

sj = 0, otherwise (Figure 1). Let F be a proteoform matched to spectrum S. The molecular 

mass of F equals M (within an error tolerance), and the proteoform F is represented as a 

binary string f1f2 … fM, where fj = 1 if j is the discretized neutral mass of a theoretical 

fragment ion of F; and fj = 0, otherwise. For example, when only b- and y-ions are used in 

the generation of theoretical spectra, a proteoform AGR (without modifications) has four 

theoretical neutral fragment ions (b1, b2, y1 and y2) whose masses are 71.04, 128.06, 174.11, 

231.13 Dalton (Da). In addition, the molecular mass of the proteoform is 302.17 Da. After 

discretization with a scale factor 1, the integer molecular mass is 302 and the four integer 

neutral fragment masses are 71, 128, 174, 231. The protein AGR is represented by the 

following binary string:

The shared mass count of S and F is the number of matched 1s in the binary strings of S and 

F, denoted as Score(S, F). When the precursor masses of S and F do not match, Score(S, F) 

= −∞. Notations in this paper are summarized in Table 1.

Single modifications

When a top-down MS/MS spectrum is matched to a proteoform in the database and the 

target proteoform contains unknown modifications compared with the database proteoform, 

the resulting proteoform-spectrum match (PrSM) (between the database proteoform and the 

spectrum) contains some mass shifts identified based on matched theoretical and 

experimental fragment masses.11 When the target proteoform contains one unknown 

modification (and no other types of PSAs) and one mass shift is reported in the PrSM, the 

mass of the modification equals (within an error tolerance) the mass shift. Because the type 

of the modification can be generally determined by the mass shift, the remaining task is to 

find the location of the modification. Following the approach proposed in Ref 25, we use a 

Bayesian model to compute the confidence score for each candidate site of the modification, 

that is, the probability that the modification is on the site. For simplicity, we use the 

following assumptions: (a) the database proteoform is an unmodified protein, (b) the target 

proteoform is not truncated, and (c) the modification can occur on any amino acid of the 

protein.

Suppose a top-down MS/MS spectrum S is generated from a proteoform containing m 
amino acids and a modification. Let P be the unmodified protein sequence of the target 

proteoform, and F1, F2, … , Fm all possible modified proteoforms of P with the 

modification. The modification in Fi is on the ith amino acid. By Bayes’ theorem,
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where Pr(Fi|S) is the posterior probability for proteoform Fi given spectrum S, Pr(S|Fi) is the 

conditional probability of observing spectrum S given proteoform Fi, and Pr(S) is the 

probability of the data S (Table 1). The probability Pr(S) is computed as the sum of the prior 

probabilities Pr(Fj) multiplied by their likelihoods Pr(S|Fj). In practice, the uniform 

distribution is used for the prior probability of each proteoform, that is, Pr(Fj) = 1/m for j = 

1, 2, … , m.

Below we describe how to obtain the values of Pr(S|Fi) for i = 1, 2, … , m, which are needed 

for computing the confidence scores of candidate sites. Let X0 be a random variable that 

represents if a mass that does not match any theoretical fragment masses of a protein in a 

given proteome database is observed in a top-down MS/MS spectrum of the protein. Let X1 

be a random variable that represents if a theoretical fragment mass of a protein in a given 

proteome database is observed in a top-down MS/MS spectrum of the protein. The random 

variable (X0 or X1) equals 1 if the mass is observed; otherwise, 0. A matched pair (sj, fj) in 

the binary strings of S = s1s2 … sM and Fi = f1f2 … fM has four possible values (0, 0), (0, 1), 
(1, 0), and (1, 1). Let z00, z01, z10, z11 be the numbers of (0, 0), (0, 1), (1, 0), and (1, 1) pairs 

in the binary strings, respectively. For example, the numbers of (0, 0), (0, 1), (1, 0) and (1, 1) 

pairs in S = 0101000100 and Fi = 0101001000 are 6, 1, 1, and 2, respectively. That is, z00 = 

6, z01 = 1, z10 = 1 and z11 = 2. The number z11 is the same as Score(S, Fi), the shared mass 

count between S and Fi. By assuming the values in s1s2 … sM and those in f1f2 … fM are 

independent, the likelihood is computed as follows:

(1)

where z00, z01, z10 and z11 are exponents.

To simplify the analysis, we assume that only two types of fragment ions (one is N-terminal 

and the other is C-terminal) are used for generating the binary string of Fi, and that all 

neutral fragment masses are distinct. As a result, the number of 1s in the binary string of Fi 

is 2m−2, where m is the number of amino acids in Fi. Suppose that z01 and z11 are known, 

the values of z00 and z10 are computed as follows: z00 = M−z01−z10−z11 = M−z01−(2m−2); 

z10 = 2m − 2 − z11.

The four probabilities for X0 = 0, X0 = 1, X1 = 0, and X1 = 1 are estimated from training 

data sets of identified PrSMs without modifications. (See Section “Estimation of 

parameters.”) The probability Pr(S|Fi) is determined by the values of m, M, z01, and z11. 

Because m and M are known, the probability Pr(S|Fi) can be computed if z01 and z11 are 

obtained. In practice, an error tolerance is allowed to match a theoretical fragment mass to 

an experimental one. In this case, the value z01 is replaced by the number of fj in the binary 

string of Fi such that fj = 0 and the corresponding mass of fj matches an experimental 

fragment mass within the error tolerance, denoted by RandMatch(S, Fi). Similarly, z11 is 
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replaced by the number of matched theoretical fragment masses within an error tolerance, 

denoted by TheoMatch(S, Fi). For a given error tolerance, the number of fj satisfying that the 

corresponding mass of fj matches an experimental fragment mass within the error tolerance 

is fixed, that is, RandMatch(S, Fi)+TheoMatch(S, Fi) are the same for 1 ≤ i ≤ m. As a result, 

the value RandMatch(S, Fi) can be obtained from TheoMatch(S, Fi). Similarly, z01 + z11 

equals the number of neutral masses in S, and the value z01 can be obtained from z11 = 

Score(S, Fi). Based on the observation, we discuss the computation of Score(S, Fi) and 

TheoMatch(S, Fi) only in the following analysis.

When Score(S, Fi−1) (or TheoMatch(S, Fi−1)) is given, it takes only several operations to 

compute Score(S, Fi) (or TheoMatch(S, Fi)) because the theoretical spectra of Fi−1 and Fi are 

almost the same. The number of operations for computing all probabilities Pr(S|Fi), for i = 1, 
2, … , m, is proportional to n + m, where n is the number of masses in S and m is the 

number amino acids in P. The probability Pr(Fi|S) is a modification localization score. 

Because the type of the modification is known, we also report it as the MIScore. After 

obtaining the MIScores for all potential sites, the best scoring site is reported.

Modifications near N or C termini

A proteoform may have an unknown N-terminal (or C-terminal) truncation and an unknown 

modification near the N-terminus (or C-terminus). The truncation and the type of the 

modification need to be determined simultaneously. Below we use a proteoform with an N-

terminal truncation and a modification near the N-terminus as an example to illustrate how 

to use a Bayesian model to solve the problem. To simplify the description, we assume that 

all modifications can occur on any amino acid of the protein.

Let P be an unmodified protein sequence in the database with m amino acids and S an 

MS/MS spectrum generated from a modified proteoform of P with an N-terminal truncation 

and a modification near the N-terminus. Let Ti,j, 0 ≤ i < j ≤ m, be the proteoform of P in 

which the first i amino acids at the N-terminus are truncated and the modification is on the 

jth amino acid. The proteoform Ti,j is valid if the mass difference between the precursor 

mass of S and the molecular mass of the truncated unmodified protein sequence (the last n − 

i amino acids) matches the mass of a common modification (within an error tolerance). The 

list of common modifications is specified by the user. The prior probability of an invalid 

proteoform is 0; the uniform distribution is assumed for the prior probabilities of valid 

proteoforms. By Bayes’ theorem

Two modifications

When a mass shift in an identified PrSM results from a combination of two modifications, 

the sum of the masses of the two modifications equals (within an error tolerance) the mass 

shift. However, the mass shift may be explained by many combinations of two 

modifications. For example, a mass shift 56.0626 Da can be explained by a methylation site 

Kou et al. Page 7

J Proteome Res. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(14.01565 Da) and a trimethylation site (42.04695 Da) or by two dimethylation sites 

(28.0313 Da each). We propose to solve the problem with two steps: (1) determine the types 

and order of the two modifications and (2) localize the two modifications. Finally, we report 

an ordered pair of modifications, localized sites of the modifications, and their MIScores.

At the first step, we consider only common modifications specified by the user. If a mass 

shift in a PrSM cannot be explained by two common modifications, it will be annotated by a 

unknown mass shift and the proteoform will not be fully characterized. To simplify the 

analysis, we assume that the PrSM contains only one unknown mass shift. Given a mass 

shift d, we find all possible ordered pairs of two common modifications: (x1, y1), (x2, y2),

… , (xk, yk), such that the sum of the masses of xi and yi is similar to d (within an error 

tolerance). Because the pairs are ordered, we treat (methylation, trimethylation) and 

(trimethylation, methylation) as two different pairs. For i = 1, 2, … , k, let i be the set of all 

candidate proteoforms of protein P with two modifications (xi, yi) satisfying that xi is closer 

to the N-terminus of the protein than yi. We compute the probability that the spectrum is 

generated from a proteoform in i, that is, the probability that the types and order of the 

modifications is (xi, yi), as follows:

(2)

In practice, we assume that all the candidate proteoforms with two common modifications 

follow a uniform distribution.

We describe a dynamic programming algorithm that efficiently computes the distribution of 

the shared mass counts between S and all Q ∈ i, which are required for the computation of 

the probability Pr(Q ∈ i|S). In the algorithm, the shared mass count between a prefix of a 

proteoform and an MS/MS spectrum needs to be computed. A length l prefix R of a 

proteoform is represented by a binary string by treating it as a special proteoform with l+1 

amino acids: the first l amino acids are the same as those in the prefix and the l+1th amino 

acid is a special one representing the remaining amino acids. The residue mass of the special 

amino acid is the sum of the residue masses of the remaining amino acids. The shared mass 

count Score(R, S) is the number of matched 1s in the binary strings of R and S.

We fill out a three-dimensional table D(f, g, h) for f = 0, 1, and 2. The value D(f, g, h) 

represents the number of different prefixes R of proteoforms in i satisfying that (1) R 
contains the first f modifications of the pair (xi, yi) (when f = 1, R contains the modification 

xi; when f = 2, the ordered modifications xi and yi), (2) the length of R is g, and (3) Score(R, 
S) = h (Figure 2).

To simplify the analysis, we assume that all theoretical N- and C-terminal fragment masses 

of a proteoform are distinct. When an N-terminal theoretical neutral fragment mass and a C-

terminal one of a proteoform Q ∈ i are the same and matched to a neutral fragment mass in 

S, the proposed algorithm treats them as two matched theoretical fragment masses and 
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reports an approximation of Score(S,Q). In addition, we assume that CID spectra are studied 

and that only b- or y-ions are used for the generation of theoretical spectra.

The masses of xi and yi are denoted as MX and MY, respectively. Let Bg denote the neutral 

mass of the bg ion (the b-ion containing g amino acids) of Q. Let Bf,g be the neutral mass of 

the bg ion with f modifications in (xi, yi) for f = 0, 1, 2, that is, B0,g = Bg, B1,g = Bg +Mx, 

B2,g = Bg +Mx +My (Figure 2a). When the bg ion with f modifications is a product ion of a 

proteoform Q, the neutral mass of the complementary y ion is M − Bf,g, where M is the 

molecular mass of Q. We define

(3)

In addition, we set s0,m = s1,m = s2,m = 0, where m is the length of Q. Figure 2b shows an 

example of table sf,g.

Let t = min{n, 2m−2} be the largest shared mass count score between S and a proteoform in 

i. In the initialization, we set

(4)

The values initialized in Figure 2c are shown in shaded areas. We use the following 

recurrence functions to compute the values D(f, g, h) that are not initialized.

Finally, the values in D(2,m, h) for h = 0, 1, … , t are reported as the distribution of the 

shared mass counts between S and all Q ∈ i. The dynamic programming algorithm is given 

in Figure S1 in the supplementary material. When error tolerances of fragment masses are 
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allowed, the algorithm can be modified to compute distributions of TheoMatch(S,Q) for Q ∈ 

i by introducing error tolerances in Formula (3). Based on the distribution of 

TheoMatch(S,Q), the confidence score for each modification type pair is obtained, and the 

modification type pair with the highest confidence score is reported. The number of 

operations of the algorithm is proportional to m2.

After the types and order of the two modifications (xi, yi) are determined, a divide and 

conquer method is employed to localize the two modifications. We assume that all 

proteoforms in i follow a uniform distribution. Let ij be the set of proteoforms satisfying 

that xi occurs on the first j amino acids and yi on the last n−j amino acids. When S is 

generated from a proteoform Q with a pair of modifications (xi, yi),

The denominator and numerator of the right-hand side of the equation are determined by the 

shared mass count distribution of PrSMs between S and proteoforms in i and that between 

S and proteoforms in ij. The first is computed using the algorithm for determining the 

ordered modification pair; the second can be efficiently calculated using a similar dynamic 

programming algorithm (Figure S2 in the supplementary material). Suppose the highest 

probability among Pr(Q ∈ ij |S,Q ∈ i) for j = 1, 2, … , m is obtained from the set ij*. In 

this case, the proteoform is broken into two sub-proteins: the first contains the first j* amino 

acids and the second the last m−j* amino acids. The two modifications are treated as single 

ones in their corresponding sub-proteins for localization, resulting in two probabilities Pr(xi 

on k1|S,Q ∈ ij*) and Pr(yi on k2|S,Q ∈ ij*) for the best localization sites k1 and k2 of the 

two modifications xi and yi. Finally, we report two probabilities as the MIScores:

(5)

(6)

Determination of the number of modifications

A mass shift in a PrSM may be explained by one or two modifications. For example, a mass 

shift 28.0313 Da can be explained by a dimethylation site (28.0313 Da) or two methylation 

sites (14.01565 Da each). We use a Bayesian model to determine the number of 

modifications that best explain a mass shift. To simplify the analysis, we assume that the 

PrSM (P, S) has only one unknown mass shift. Let ℱ1 (ℱ2) be the set of all proteoforms of 

P with one (two) common modifications whose molecular masses match the precursor mass 

of S. The probability that the target proteoform F contains one modification is estimated as
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In the computation, all proteoforms in ℱ1 have the same prior probability, and all 

proteoforms in ℱ2 have the same prior probability. The ratio r between the prior 

probabilities of the proteoforms with one modification and those with two modifications (r = 

Pr(F ∈ ℱ1)/Pr(F ∈ ℱ2)) is a user-specified parameter.

Multiple modifications

The methods for identifying two modifications from a mass shift can be extended to multiple 

modifications. When a mass shift results from K modifications, the number of ordered K 
modification types that can explain the mass shift is an exponential function with respect to 

K, making the proposed method inefficient. This dynamic programming algorithm in Figure 

S1 in the supplementary material is modified to fill out a table D(f, g, h) for f = 0, 1, … , K. 

We extend the definitions of Bf,g and sf,g for f = 3, 4, … , K and fill out the table using the 

following recurrence function:

The number of operations of the algorithm is proportional to ntK.

This divide and conquer method is employed to localize K ordered modifications. Let ℘i be 

the set of proteoforms of P with ordered modifications xi,1, xi,2, … , xi,K. Let ℘ij be the set 

of proteoforms satisfying that the first modification occurs on the first j amino acids and all 

other modifications on the last m − j amino acids. Using this method, we find a position j* 

with the highest probability Pr(F ∈ ℘ij*|S, F ∈ ℘i) to divide the protein into two parts. The 

first modification is localized as a single modification on the first j* amino acids, and the 

other K −1 modifications are localized using the divide and conquer method progressively.

Results

The MIScore method was implemented in C++ and tested on a desktop with a 3.4 GHz CPU 

(Intel Core i7-3770) and 16 GB memory.

Training and test PrSMs

The proteome database of Escherichia coli K-12 MG1655 was downloaded from UniProt 

(Jun 18, 2015 version, 4 305 entries). All EC top-down MS/MS spectra were deconvoluted 

by MS-Deconv28 and searched against a target-decoy concatenated database by TopPIC.30 

In database searches, the error tolerances for precursor and fragment masses were set as 15 
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ppm, and at most 2 unknown mass shifts were allowed in a PrSM. (The parameters used in 

TopPIC are summarized in Table S1 in the supplementary material.)

A total of 1 533 PrSMs were identified with a 1% spectrum level false discovery rate (FDR), 

including 767 PrSMs without modifications. We further removed PrSMs that contain less 

than 15 matched fragment ions, resulting in 1 277 PrSMs including 610 PrSMs without 

modifications (Table S2 in the supplementary material). Because of the stringent filtering, 

the 610 PrSMs without modifications were treated as correct ones. They are randomly 

divided into two groups with the same size: one for training parameters and the other for 

generating test PrSMs.

Test PrSMs with modifications were generated from the identified PrSMs without 

modifications. Given an identified PrSM without modifications, we change the protein 

sequence to introduce a modification with two steps: (a) randomly select a modification and 

an amino acid on which the modification can occur in the protein sequence, and (b) replace 

the amino acid with a special amino acid “X”, whose residue mass equals the difference 

between the masses of the amino acid residue and the modification. For instance, if the 

selected amino acid is an alanine (71.0371 Da) and the selected modification is methylation 

(+14.0156 Da), the residue mass value of “X” (“X” is a glycine) that replaces the alanine 

residue is 71.0371 − 14.0156 = 57.0215 Da, resulting in a PrSM with a methylation on the 

amino acid “X”. To generate PrSMs with a truncation at the N (or C) terminus and a 

modification near the N (or C) terminus, we limit the replacement to the 15 amino acids at 

the N (or C) terminus and add a random peptide (no longer than 20 amino acids) to the N (or 

C) terminus. PrSMs with two modifications can be generated in a similar way.

Using four common modifications (acetylation, methylation, oxidation, and 

phosphorylation), we generated 6 100 test PrSMs with one modification, 3 050 test PrSMs 

with one modification near the N-terminus and an N-terminal truncation, 3 050 test PrSMs 

with one modification near the C-terminus and a C-terminal truncation, and 6 100 test 

PrSMs with two modifications from the 305 PrSMs without modifications. These PrSMs 

were used as a gold standard in the experiments.

Estimation of parameters

The 305 training PrSMs without modifications were used to estimate the four probabilities: 

Pr(X0 = 0), Pr(X0 = 1), Pr(X1 = 0) and Pr(X1 = 1). (See Section Methods.) For a protein P 
and its matched spectrum S, we compute TheoMatch(S, P) and RandMatch(S, P) with an 

error tolerance of 15 ppm. In addition, we converted the protein into its binary representation 

with a scale factor 274.335215. Let N01 be the sum of RandMatch(S, P) of the training 

PrSMs and N0 the total number of 0s in the binary strings of the proteins in the PrSMs. The 

probability Pr(X0 = 1) is estimated as  and Pr(X0 = 0) = 1 − Pr(X0 = 1). Let N11 be the 

sum of TheoMatch(S, P) of the PrSMs and N1 the total number of 1s in the binary strings of 

the proteins in the PrSMs. The probability Pr(X1 = 1) is estimated as  and Pr(X1 = 0) = 1 

− Pr(X1 = 1). The estimated probabilities are listed in Table S3 in the supplementary 

material.
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The 305 training PrSMs were used to compare the performance of the Bayesian model for 

determining the number of modifications with different settings of the ratio r. For each 

PrSM, we generated two pairs of proteoforms with modifications. In the first pair, one 

proteoform has a dimethylation site and the other has two methylation sites. In the second 

pair, one proteoform has two oxidation sites and the other has a dioxidation site. By setting 

the ratio r to 0.5, 0, 6, … , 1, 1.1, … , 2, we used the proposed method to report the number 

of modifications for each modified proteoform and calculate the accuracy of reported 

modification numbers. The ratio r = 0.8 achieved the best accuracy 83.9% (Figure S3 in the 

supplementary material) and was used in the experiments.

Identification of single modifications

The MIScore method was employed to analyze the 6 100 test PrSMs with one modification, 

in which the correct location of each modification is known. The proposed model reported 

for each PrSM a site with the highest MIScore. A total of 3 038 (49.8%) modification sites 

were localized to a site with an MIScore ≥ 0.45, of which 2 381 (39.0%) were correct 

(Figure S4 in the supplementary material). Many modification sites were not identified with 

a high MIScore because some top-down MS/MS spectra had low sequence coverage and 

failed to provide enough fragment masses for confident localization of modifications. We 

divided the reported sites into 10 groups with scores in [0, 0.1], (0.1, 0.2], … , (0, 9, 1.0]. If 

the reported scores are accurate, the accuracy rate of the sites in each group should be 

similar to their average scores because the scores are the accuracy rates estimated by the 

model. Figure 3 shows that the accuracy rates are similar to the average scores for these 10 

groups, demonstrating that the MIScores reported by the model were accurate.

Identification of modifications near N or C termini

The MIScore method was used to analyze the 6 100 test PrSMs with a truncation at the N or 

C terminus and one modification near the N or C terminus. If the correct truncation and 

modification site are reported, we say the result is correct; otherwise, incorrect. A total of 2 

874 (47.1%) modification sites were localized to a site with an MIScore ≥ 0.45, of which 2 

107 (34.5%) were correct (Figure S5 in the supplementary material). Similar to the previous 

experiment, the reported modification sites were divided into 10 groups based on their 

MIScores, and the average of the scores in each group was compared with the accuracy rate 

of the corresponding sites (Figure S6 in supplementary information). The results showed 

that the model reported accurate MIScores for modifications near N or C termini.

Identification of two modifications

For each of the 6 100 test PrSMs with two modifications, the proposed method reported an 

ordered modification pair, their best locations, and three scores: the first one is the 

confidence score that the modification pair is correct (Equation (2)); the other two are the 

MIScores of the two modifications (Equations (5) and (6)).

First, we evaluated the accuracy of the confidence scores of reported modification pairs. We 

divided the reported modification pairs into 10 groups with scores in [0, 0.1], (0.1, 0.2], … , 
(0, 9, 1.0], and computed the accuracy rate for the modification pairs in each group (Figure 

S7 in supplementary information). The average confidence score is approximately the same 
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to the accuracy rate in each group, demonstrating that the reported confidence scores were 

accurate.

Second, we evaluated the accuracy of reported MIScores. A total of 6 154 (50.4%) 

modification sites were localized to a site with an MIScore ≥ 0.45, of which 4 798 (39.3%) 

were correct (Figure S8 in the supplementary material). Similar to single modifications, we 

divided the reported modification sites into 10 groups based on their scores and compared 

the average scores and accuracy rates of the groups. The results showed that the accuracy 

rates were similar to the average scores (Figure S9 in supplementary information), and that 

the reported MIScores were accurate.

Modifications in the EC data set

Among the 1 277 PrSMs identified by TopPIC30 from the EC data set, 667 PrSMs contain 

mass shifts. A total of 318 PrSMs contain a mass shift about ±1 Da, which may be caused by 

±1 Da errors introduced in the deconvolution of precursor masses. The MIScore method was 

employed to characterize the proteoforms in the remaining 349 PrSMs from 74 proteins. 

Four PTMs (acetylation, methylation, oxidation, and phosphorylation) were chosen as 

common PTMs (Table 2). If a mass shift in the PrSMs can be explained by one common 

PTM, the MIScore method reports the type of the PTM and the site with the best score. If 

several sites have the same best MIScore, all the sites are reported. For a PrSM with one 

mass shift, the mass shift equals the difference between the precursor mass of the spectrum 

and the molecular mass of the protein or a truncated form of the protein. The error tolerance 

(15 ppm) of the precursor mass is used for mapping a mass shift to a modification. Because 

±1 Da errors are often observed in deconvoluted precursor masses, ±1 Da errors are also 

allowed in the mapping. If the error tolerance of the precursor mass is δ, a modification with 

mass m1 is mapped to a mass shift m2 if min{|m1 − m2|, |m1 − m2 + 1.00235|, |m1 − m2 

− 1.00235|} ≤ δ, where 1.00235 Da is the average mass difference between two isotopomers 

whose neutron numbers differ by 1. Similarly, a mass shift is mapped to two modifications if 

the difference between the mass shift and the sum of the masses of the two modifications 

satisfies the condition described above. In this case, the types and best scoring sites of the 

two modifications are reported. Because ±1 Da errors are observed more frequently in large 

fragment masses than small ones, they are allowed for fragment masses that are larger than 

an empirical threshold 5 000 Da, and not allowed for those less than the threshold. The 

running time of the analysis was about 204 seconds.

A total of 116 and 13 mass shifts in the 349 PrSMs match the mass of one common PTM 

and a combination of two common PTMs, respectively. Of the 116 mass shifts explained by 

single PTMs, 28 were localized to a site with an MIScore no less than 0.9 and 10 were 

localized to two candidate sites with the same MIScore no less than 0.45. For the 13 mass 

shifts explained by PTM pairs (26 PTMs in total), 10 PTMs were localized to a site with an 

MIScore no less than 0.9 (Table S4 in the supplementary material). The reason that only a 

small number of PTMs were confidently identified and localized is that most identified 

PrSMs had many missing fragment peaks, lacking enough information to localize PTMs to 

one or two sites.
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The 28 mass shifts that are explained by single PTMs and localized to single sites 

correspond to 15 PTM sites (methylation: 6, oxidation: 8, phosphorylation: 1) in 11 proteins. 

The 10 mass shifts explained by single PTMs and each localized to two sites correspond to 4 

PTMs (methylation: 3, acetylation: 1) in 3 proteins. We compared the reported modification 

sites with the annotations of the proteins in the Swiss-Prot database. The N-terminal 

methylation site K82 in the protein RL7 ECOLI (UniProt ID: P0A7K2) and the N-terminal 

methylation site A2 in the protein RL33 ECOLI (UniProt ID: P0A7N9) were supported by 

the annotations. One main reason for the lack of support by the annotations is that the 

annotation of the EC proteome is incomplete in the Swiss-Prot database. In addition, two N-

terminal methylation sites were reported (M1 in the protein PTHP ECOLI, UniProt ID: 

P0AA04; M1 in the protein RL23 ECOLI, UniProt ID: P0ADZ0). Because N-terminal 

methylation has been found in many proteins,31 these sites may be new identified N-terminal 

methylation sites.

The 5 mass shifts explained by two PTMs correspond to 8 PTM sites (1 oxidation pair and 3 

methylation pairs). Manual inspection showed that the oxidation pair may be explained by a 

dioxidation and that the two methylation pairs may be explained by dimethylation sites.

Comparison with the Mascot Delta Score

The Mascot Delta Score (MD-score)20 is computed based on the difference between the 

scores reported by Mascot32 for the best and second best modified peptides with different 

modification sites and the identical peptide sequence for a bottom-up MS/MS spectrum. We 

tested the MD-score method using the 38 PrSMs identified from the EC data set each of 

which contains an unknown mass shift that is explained by a PTM and localized to either 

one site with an MIScore ≥ 0.9 or two sites each with an MIScore ≥ 0.45 (Table S4 in the 

supplementary material). The 38 spectra were converted to MGF files containing charge +1 

fragment m/z values and divided into four groups based on the PTMs reported by the 

MIScore method: 28 spectra with methylation, 8 with oxidation, 1 with acetylation, and 1 

with phosphorylation. The four groups of spectra were searched separately against the 

Swiss-Prot EC proteome database using the Mascot server at http://www.matrixscience.com. 

For each group, the corresponding PTM was set as the variable PTM. Other parameters of 

Mascot are shown in Table S5 in the supplementary material.

Mascot identified 13 PrSMs with an E-value ≤ 0.05, of which 4 contained a localized N-

terminal modification (all were methylation) and 9 contained a localized modification not at 

the N-terminus. Mascot reported MD-scores for only the latter 9 PrSMs, not for the N-

terminal ones (Table S6 in the supplementary material). Because Mascot treated the top-

down MS/MS spectra as bottom-up ones and these top-down spectra contained many 

fragment peaks, it automatically removed many low abundance peaks from the spectra 

before database search. It may be the main reason that Mascot identified only about 34.2% 

of the test spectra. The 4 N-terminal methylation sites reported by Mascot are consistent 

with those reported by the MIScore method. The two methods reported the same localization 

site for only one of the 9 modification sites with MD-scores and different localization sites 

for the other 8. By manual inspection of the results reported by the two methods, we found 
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that the main reason for the different localized sites is that the MD-score method uses only a 

set of high abundance peaks, not all peaks, for localizing PTM sites.

Modifications in the ST data set

The proteome database of Salmonella typhimurium 14028s were downloaded from UniProt 

(Jul 30, 2015 version, 5369 entries). All top-down MS/MS spectra of the ST data set were 

deconvoluted by MS-Deconv28 and searched against the proteome database concatenated 

with a decoy database by TopPIC30 using the parameters in Table S1 in the supplementary 

material.

After filtering with a 1% spectrum-level FDR and a threshold 15 for the number of matched 

fragment ions, TopPIC30 identified 1 413 PrSMs without mass shifts and 1 278 PrSMs with 

mass shifts (Table S7 in the supplementary material). Those with mass shifts were analyzed 

by the MIScore method using the same parameters in the analysis of the EC data set except 

for the PTM cysteinylation. Ansong et al. showed that cysteinylation is often observed in ST 

in response to infection-like conditions,26 so cysteinylation was also treated as a common 

PTM (mass: 119.00 Da; modified residue: cysteine). The running time of the analysis was 

about 994 seconds.

A total of 132 mass shifts match the mass of one common PTM, of which 58 were localized 

to a site with an MIScore no less than 0.9. These mass shifts correspond to 41 PTM sites 

(acetylation: 10, methylation: 2, oxidation: 2, cysteinylation: 27) in 33 proteins. And 11 

mass shifts explained by single PTMs were localized to two sites each with an MIScore no 

less than 0.45. These mass shifts correspond to 8 PTM sites (acetylation: 4, oxidation: 3, 

cysteinylation: 1) in 6 proteins (Table S8 in the supplementary material). In addition, 14 

mass shift matches the mass of a combination of two common PTMs, but no localized sites 

with high MIScores were reported.

To further validate the localized PTMs, the bottom-up data set generated from the same 

sample was searched against the Salmonella typhimurium 14028s proteome database 

concatenated with a decoy database using MS-GF+.33 A total of five rounds of database 

searches were performed to identify peptides with PTMs. In MS-GF+, the high-resolution 

mode was used (the error tolerances for precursor and fragment masses were 20 ppm and 0.1 

Da, respectively); no fixed PTMs were used; non-tryptic termini were allowed, and the 

default settings were used for the other parameters (Table S9 in the supplementary material). 

In the first round, cysteinylation was set as a variable PTM. With a 5% Q-value cutoff, 52 

825 peptide-spectrum matches were identified. Of the 29 cysteinylation sites identified by 

the proposed method, 8 (all of them are from mass shifts localized to single sites) were 

supported by identified peptide-spectrum matches (Table S10 in the supplementary 

material). The site C239 in the protein Transaldolase (UniProt ID: A0A0F6AWC3) was 

covered by identified peptides without modifications. Proteoforms without modification on 

the sites were also identified by the top-down MS analysis, showing that there exist two 

proteoforms (one modified and the other unmodified) of the protein in the sample. The site 

C36 in the protein Triosephosphate isomerase (UniProt ID: A0A0F6B9R1) was also covered 

by identified peptides without modifications, and proteoforms without the modification were 

not identified by top-down MS. The remaining 19 cysteinylation sites were not supported by 

Kou et al. Page 16

J Proteome Res. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



identified peptides because the bottom-up MS/MS spectra covered only about 18.2% of the 

sequences of identified proteins. When cysteinylation sites were covered by both identified 

proteoforms and peptides, the peptides supported most of the PTM sites (8 out of 10) 

identified by the proposed method. In the other four rounds, similar analyses of the bottom-

up MS/MS spectra were performed to find peptides supporting identified acetylation, 

methylation, oxidation, and phosphorylation sites. However, because of the low protein 

sequence coverage of identified peptides, only two acetylation sites (K314 in Elongation 

factor Tu, UniProt ID: A0A0F6B9X6; K226 in Cysteine synthase, UniProt ID: 

A0A0F6B4H6) were covered by identified peptides, which were not modified and did not 

support the reported PTM sites.

Discussion and conclusions

In this paper, we proposed several Bayesian models that determine the types of 

modifications, localize modifications, and identify truncations for proteoforms with 

unknown mass shifts. The experiments on the test PrSMs generated from the EC data set 

showed that MIScores reported by the models were accurate for proteoforms with one or 

two modifications. In addition, the MIScore method identified and localized many 

modifications from mass shifts in PrSMs reported from the EC and ST data sets, of which 

some were supported Swiss-Prot annotations and some by bottom-up MS/MS spectra.

Several parameters, such as the probability Pr(X0 = 1) in Equation (1) and the ratio r, are 

used in the MIScore method. When a new data set is analyzed, we can train these parameters 

using PrSMs without modifications identified from the data set to improve the accuracy of 

reported MIScores with two steps: (a) A proteoform identification tool is used to report 

PrSMs without modifications from the data set, and (b) the methods described in Section 

“Estimation of parameters” are employed to estimate the parameters.

The MIScore method is faster than the C-score method because the proposed dynamic 

programming algorithms significantly speed up the computation of probabilities. For 

example, when a mass shift identified in a PrSM is explained by two modifications whose 

types are known and each of which has n candidate sites, a total of n2 proteoforms need to 

be considered in the localization of two modifications. In the C-score method, each of the n2 

proteoforms needs to be explicitly generated to compute the conditional probability that the 

spectrum is observed given the proteoform (the likelihood in Table 1) because of the lack of 

efficient algorithms. By contrast, the dynamic programming algorithm in the MIScore 

method can efficiently compute the probabilities of the n2 proteoforms in one run without 

explicitly generating them. Let q be the ratio between the running time for computing all 

probabilities in the MIScore method and that for computing one probability in the C-score 

method. In practice, q is much smaller than n2 and the speed of the MIScore method is about 

n2/q faster than the C-score method.

Top-down spectral deconvolution algorithms may introduce ±1 Da errors in reported 

precursor masses. Since precursor masses are used to compute the mass shifts of unknown 

modifications, the errors in precursor masses may result in incorrect identifications of 
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modifications. Increasing the accuracy of deconvoluted precursor masses is essential to 

improving the accuracy of proteoform characterization.

A simple shared mass count score is used for computing MIScores. Peak intensities and 

errors in matched theoretical and experimental masses also provide valuable information for 

proteoform characterization. Incorporating these information into the proposed models will 

further improve the accuracy of MIScores, but the incorporation also makes it complex to 

compute posterior probabilities in the models. Designing efficient algorithms for computing 

posterior probabilities using these complex probabilistic models is a future research 

direction.

Many possible modifications need to be considered in proteoform characterization in 

proteome-level analyses of complex species. Including all these modifications may increase 

the possibility of reporting incorrectly characterized modifications. One possible solution to 

the problem is to divide identified PrSMs in a proteome-level analysis into groups, each of 

which has one or several common modifications that are expected to be observed based on 

domain knowledge. Using protein-specific modifications can improve the accuracy of 

proteoform characterization.

The MIScore method still has many limitations in analyzing complex proteins and complex 

species such as humans. First, the number of modifications the MIScore method can identify 

from an unknown mass shift is limited to 1 or 2. Second, protein samples of complex 

eukaryotic species may contain many proteoforms generated from alternative splicing, 

which the MIScore method cannot characterize. Third, the accuracy of the MIScore method 

heavily replies on the accuracy of reported precursor masses. When the molecular mass of 

the target proteoform is very large and a large error, e.g. 0.5 Da, is introduced into the 

measured precursor mass, the MIScore method may fail to find the correct modifications. 

Fourth, when a protein has heterogeneous modifications and many possible modification 

sites, liquid chromatography or other separation techniques may fail to separate multiple 

proteoforms with similar molecular masses of the same protein, resulting in multiplexed 

MS/MS spectra. The MIScore method cannot accurately characterize unknown mass shifts 

identified by these multiplexed spectra. Fifth, a mass shift identified in a ultramodified 

protein may result from a combination of three or more modifications because of missing 

peaks. The mass shift can be explained by many combinations of modification types and 

sites and there are no enough matched peaks to distinguish the target proteoforms from other 

candidates. As a result, the MIScore method may fail to characterize and localize these 

modifications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Illustration of the conversion from a deconvoluted spectrum of neutral masses to a binary 

string. A spectrum (top) has three neutral fragment masses 2.2, 3.9, and 8.1 Da (peak 

intensities are ignored), and its precursor mass is 10.1 Da. The precursor and fragment 

masses are discretized by multiplying by a scale factor 1 and rounding to integers, resulting 

in a spectrum with a precursor mass 10 and three fragment masses 2, 4 and 8. The 

discretized spectrum is converted to a binary string 0101000100. The length of the string is 

the same to the integer precursor mass; the three 1s correspond to the three fragment masses.
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Figure 2. 
The three-dimensional table D(f, g, h) for a discretized spectrum with a precursor mass 848 

and four neutral fragment masses 131, 413, 421, 550, a protein sequence MSDYCH, and an 

ordered pair of modifications (phosphorylation, methylation). A scale factor 1 is used in the 

computation. (a) B0,g is the sum of the masses of the first g residues of the protein. B1,g is 

the sum of B0,g and the mass of phosphorylation (80 Da). B2,g is the sum of B0,g and the 

masses of phosphorylation (80 Da) and methylation (14 Da). (b) Table sf,g is generated 

based on Bf,g using Equation (3). (c) D(f, g, h) is filled out by the dynamic programming 

algorithm in Figure S1 in the supplementary material. The shaded areas are initialized using 

Equation (4). The second residue S is a modification site of phosphorylation, and the value 

D(1, 2, 2) is computed as D(0, 1, 2−s1,2+D(1, 1, 2−s1,2) = D(0, 1, 1)+D(1, 1, 1). Similarly, 

the fifth residue C is modification site of methylation, and the value D(2, 5, 3) is computed 

as D(1, 4, 3 − s2,5) + D(2, 4, 3 − s2,5) = D(1, 4, 3) + D(2, 4, 3).
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Figure 3. 
The modification sites reported by the MIScore method from the 6 100 PrSMs with one 

modification are grouped into bins with width 0.1 based on their MIScores. The average 

identification score and accuracy rate of the modification sites in each bin are compared.
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Table 1

Symbol definitions

Symbol Definition

S A top-down tandem mass spectrum

Score(S, F) The shared mass count between spectrum S and a proteoform F.

P The unmodified protein sequence of the target proteoform with length m

Fi The proteoform of P in which the ith amino acid is modified. The molecular mass of Fi matches the precursor mass of S.

Pr(Fi) The prior probability of proteoform Fi

Pr(S) The probability of the data (spectrum). In Bayesian models, it is usually computed as the sum of the prior probabilities of all 
hypotheses multiplied by their likelihoods.

Pr(S|Fi) The likelihood, the conditional probability of observing S given Fi

Pr(Fi|S) The posterior probability, the probability for Fi after taking into account S

Ti,j The proteoform of P in which the first i amino acids are truncated and the jth amino acid is modified. The molecular mass of Ti,j 
matches the precursor mass of S.

i The set of proteoforms of P with a pair of ordered modifications (xi, yi)

ij The set of proteoforms satisfying that the first modification xi occurs on the first j amino acids and the second modification yi on 
the last m − j amino acids

ℱ1 The set of all proteoforms of P with one common modification whose molecular masses match the precursor mass of S

ℱ2 The set of all proteoforms of P with two common modifications whose precursor masses match the precursor mass of S
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Table 2

Four PTMs are treated as common PTMs in proteoform characterization

PTM Modified amino acids at the N-terminus Modified amino acids Monoisotopic mass mass (Da)

Acetylation All 20 amino acids K 42.01

Methylation All 20 amino acids HKNQRILDEST 14.01

Oxidation DKNPYRC* DKNPYRC* 15.99

Phosphorylation STY STY 79.96

*
Artifacts introduced in sample preparations and mass spectrometry experiments are not included.
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