Table 2.
Sparse Linear Regression | ||||
Method | d = 375 | d = 750 | d = 1500 | d = 3000 |
LAD Lasso | 1.1713(0.2915) | 1.1046(0.3640) | 1.8103(0.2919) | 3.1378(0.7753) |
ℓ1.5 Lasso | 12.995(0.5535) | 14.071(0.5966) | 14.382(0.7390) | 16.936(0.5696) |
Dantzig selector | 0.3245(0.1871) | 1.5360(1.8566) | 4.4669(5.9929) | 17.034(23.202) |
SQRT Lasso (flare) | 0.4888(0.0264) | 0.7330(0.1234) | 0.9485(0.2167) | 1.2761(0.1510) |
SQRT Lasso (glmnet) | 0.6417(0.0341) | 0.8794(0.0159) | 1.1406(0.0440) | 2.1675(0.0937) |
Sparse Precision Matrix Estimation | ||||
Method | d = 100 | d = 200 | d = 300 | d=400 |
TIGER | 1.0637(0.0361) | 4.6251(0.0807) | 7.1860(0.0795) | 11.085(0.1715) |
CLIME | 2.5761(0.3807) | 20.137(3.2258) | 42.882(18.188) | 112.50(11.561) |