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Abstract

Herein we disclose a scalable organo-catalytic direct arylation approach for the regio- and 

atroposelective synthesis of non-C2-symmetric 2,2′-dihydroxy-1,1′-binaphthalenes (BINOLs). In 

the presence of catalytic amounts of axially chiral phosphoric acids, phenols and naphthols are 

coupled with iminoquinones via a cascade process that involves sequential aminal formation, 

sigmatropic rearrangement, and rearomatization to afford enantiomerically enriched BINOL 

derivatives in good to excellent yields. Our studies suggest that the (local) symmetry of the 

initially formed aminal intermediate has a dramatic impact on the level of enantioinduction in the 

final product. Aminals with a plane of symmetry give rise to BINOL derivatives with significantly 

lower enantiomeric excess than unsymmetrical ones featuring a stereogenic center. Presumably 

asymmetric induction in the sigmatropic rearrangement step is significantly more challenging than 

during aminal formation. Sigmatropic rearrangement of the enantiomerically enriched aminal and 

subsequent rearomatization transfers the central chirality into axial chirality with high fidelity.

Biaryl compounds that exhibit axial chirality (i.e., hindered rotation about the C–C bond) are 

common among natural products, pharmaceuticals, ligands, and catalysts (Figure 1A). The 

ease of racemization in enantiopure biaryls depends on the magnitude of the rotational 

barrier, which is determined by both the size and number of substituents at the ortho 

positions flanking the aryl–aryl bond.1 During the past two decades, both C2- and non-C2-

symmetric axially chiral biaryl compounds1a–c (e.g., BINAP, BINOL, BINAM, NOBIN, and 

their derivatives; Figure 1A) have played key roles as ligands for transition metals in the 

development of catalytic enantioselective transformations.2 In addition to their role as 
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“privileged chiral catalysts”,2j recently it was recognized that controlling the chirality of 

functionalized biaryl structures will have enormous implications in the future development 

of pharmaceuticals.3 In view of the importance of biaryls, it is surprising that relatively few 

methods are available for their atroposelective synthesis in an operationally simple and 

scalable fashion.4 Current strategies5 include classical resolution of racemic biaryls, 

desymmetrization of preformed prochiral biaryls, dynamic kinetic resolution of rapidly 

racemizing preformed chiral biaryls,5c,i transition-metal-catalyzed aryl–aryl coupling,4b,5d 

de novo construction of an aromatic ring,5b,j and central-to-axial chirality exchange5f,h,k 

(Figure 1B).

As part of an ongoing program in the Kürti group to develop new and practical transition-

metal-free direct arylation methods for the preparation of highly functionalized symmetrical 

and unsymmetrical biaryls,6a,5h,6b we recently successfully exploited quinone and 

iminoquinone monoacetals as arylating agents to access both BINOL- and NOBIN-type 

functionalized biaryls that are atropoisomeric but non-C2-symmetric from phenols and 

naphthols under organocatalytic conditions (1 + 2 → 5; Figure 2A).6b We also briefly 

explored the possibility of using chiral BINOL-derived phosphoric acids as catalysts to 

obtain the biaryl products in an enantiomerically enriched form. Unfortunately, although 

moderate to good isolated yields were achieved, the level of enantioinduction was very poor 

(3–10% enantiomeric excess, ee), which we partially attributed to interference by the MeOH 

liberated during the formation of the mixed-acetal intermediate (1 + 2 → 3; Figure 2A);6b 

addition of 3 Å molecular sieves (MS) did not improve the ee. We observed similar 

interference by proton donors (i.e., H2O) during the catalytic synthesis of BINAM 

derivatives;5h in that case the addition of 4 Å MS was advantageous.

On the basis of these findings,6b we decided to redesign the quinone monoacetal coupling 

partner in a way that avoids the generation of a proton source (i.e., MeOH), thereby 

removing this potentially detrimental factor from the catalytic cycle.7 We selected readily 

available N-sulfonyl-protected iminoquinones as substrates, as these were expected to 

undergo acid-catalyzed in situ aminal formation8 and subsequent [3,3]-rearrangement/

rearomatization (Figure 2B). In contrast, a 1,4-addition mechanism was recently proposed 

by Tan and co-workers for a related reaction (Figure 2C).5k We were pleased to observe that 

a 10 mol % loading of chiral phosphoric acid 7b catalyzed the coupling of 6a with 2a under 

mild conditions and led to the formation of functionalized biaryl 9a in excellent isolated 

yield with 49% ee. Encouraged by this initial result, we conducted a survey of structurally 

diverse BINOL-derived chiral phosphoric acid catalysts2d,9 and solvents to find the optimum 

conditions that maximize the enantiomeric excess of the product (Table 1; see the 

Supporting Information (SI) for details).

On the basis of the optimization studies described in Table 1, we selected DCE as the 

preferred solvent, chiral phosphoric acid 7c (at 10 mol % loading) as the preferred catalyst, 

and either 25 or 50 °C as the optimum reaction temperature. At first we evaluated the 

coupling of iminoquinone 6a with 14 structurally different hydroxyarenes, including 11 

naphthols (Table 2, entries 1–11) and three monocyclic phenols (Table 2, entries 12–14).
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For 2-naphthols, the biaryl products were formed in good to excellent yields, and the 

observed enantioselectivities ranged between 78 and 96% ee. No clear pattern showing how 

electron-withdrawing and electron-donating groups on the naphthalene ring influence the 

level of enantioinduction can be discerned.

The nearly perfect enantioselectivity (99% ee) obtained during the formation of terphenyl 

compound 9ea’ from 2,3-dihydroxynapthalene (Table 2, entry 15) is remarkable and 

suggests that significant substrate stereocontrol occurs as the second biaryl linkage is 

established (see the discussion in the SI).

With one exception (Table 2, entry 14), monocyclic phenols afforded good levels of 

enantioinduction (entries 12 and 13). In a few cases (entries 1 and 5), using chlorobenzene 

as the solvent instead of DCE improved the enantioselectivity.

Next, we explored how structural changes (i.e., symmetry as well as size and nature of the 

substituents) in the iminoquinone (6b–j) influence the yield and enantioselectivity of the 

biaryl product (Table 3). Among the unsymmetrical iminoquinones 6b–e that were coupled 

with 2,3-dihydroxynaphthalene (2e), the presence of a large substituent (i.e, i-Pr) at the ortho 

position of the N-Ts imine moiety led to a somewhat lower isolated yield and ee for 9ed 
(entry 18) relative to isomeric 9eb and 9ec (entries 16 and 17) with a smaller Me substituent 

at the ortho position. Presumably, the larger i-Pr group slows aminal formation and lowers 

the enantioselectivity of this step. The nature of the acyl/sulfonyl group on the N atom also 

appears to be important: the ee increases as more electron-withdrawing groups are used (i.e., 

Ts ≥ Ms > Ac > p-NO2-benzoyl; compare 9aa in Table 1 with entries 16, 23, and 24 in Table 

2).

The most dramatic drop in the level of enantioinduction occurred when symmetrical (6f) and 

pseudosymmetrical (6g) iminoquinones were utilized as coupling partners (Table 3, entries 

20 and 21). In fact, the poor ee’s observed for biaryls 9ef and 9eg provided us with a very 

valuable clue that helped us establish whether indeed aminal formation as opposed to 1,4-

addition is involved in the key stereochemistry-determining step.

On the basis of several experimental findings (Figure 3), it appears that in catalytic 

enantioselective processes where sequential chirality-transfer steps are involved, the highest 

level of enantioinduction will most likely take place in those cases where the catalyst does 

not “miss/skip” an opportunity to transfer chiral information. One way to “lose” or “skip” an 

opportunity for chirality transfer is when one or more symmetrical intermediates are formed 

along the pathway (see Figure 3A,C). Naturally, symmetrical (i.e., prochiral) intermediates 

can be desymmetrized using chiral catalysts, but the level of enantioinduction in these 

desymmetrizations must be very high, which is often difficult to achieve. In particular, 

organocatalytic asymmetric versions of the Claisen rearrangement are challenging, and there 

are only a few highly enantioselective examples in the literature.10

In light of the enantioinduction levels for biaryls 9ea (96% ee) and 9eg (21% ee), we can 

make a convincing mechanistic case for the involvement of sequential aminal formation/

[3,3]-rearrangement. Figure 4 clearly shows that if a direct 1,4-addition were operational, the 
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influence of the highlighted extra methyl group could not account for the dramatic loss of 

enantioselectivity.

In conclusion, we have successfully developed a practical organocatalytic atroposelective 

synthesis of non-C2-symmetric BINOL derivatives starting from readily available 

hydroxyarenes and iminoquinones. The nearly two dozen axially chiral and structurally 

diverse functionalized biaryl products represent new chemical space and are expected to find 

broad utility in asymmetric catalysis, drug discovery, and materials science.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Organocatalytic atroposelective direct arylation of hydroxyarenes to afford non-C2-

symmetric BINOLs.
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Figure 2. 
Development of our catalytic atroposelective direct arylation approach to non-C2-symmetric 

BINOL derivatives (A,6b B) and a recent report by Tan and co-workers (C).5k
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Figure 3. 
Symmetries of intermediates in chirality transfer processes have a dramatic impact on the 

final products’ ee.
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Figure 4. 
Case is made for the aminal-formation/[3,3]-rearrangement sequence as opposed to a direct 

1,4-addition.
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Table 1

Catalyst Screen for the Atroposelective Synthesis of 9a from 6a and 2a

Entrya Solvent Time (h) erb ee (%)

1 CH2Cl2 48 88.5:11.5 77

2 toluene 48 86:14 72

3 1,2-dichloroethane (DCE) 48 94:6 88

4 CHCl3 48 90.5:9.5 81

5 chlorobenzene 84 97:3 94

6 1,3-di-CF3-benzene 60 93:7 86

7c 1,2-dichloroethane (DCE) 24 94:6 88

8c chlorobenzene 48 96:4 92

9d 1,2-dichloroethane (DCE) 8 91:9 82

10c,e 1,2-dichloroethane(DCE) 100 88.5:11.5 77

a
Reaction conditions: 2a (0.075 mmol), 6a (0.05 mmol), cat. (10 mol %), solvent (1 mL). Reactions were stopped when all of the 6a was 

consumed.

b
Enantiomeric ratios were determined by HPLC analysis.

c
Reacted at 50 °C.

d
Reacted at 80 °C.

e
Using 5 mol % 7c.
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Table 2

Exploration of the Substrate Scope by Coupling of 6a with Structurally Diverse Hydroxyarenes

a
Reaction conditions: 2 (0.225 mmol), 6a (0.15 mmol), cat. 7c (10 mol %), DCE or chlorobenzene (3 mL), rt or 50 °C, unless indicated otherwise.

b
Reactions were stopped when all of the 6a was consumed.

c
Determined by HPLC analysis.

d
Compound 9ea was obtained in 92% yield with 94% ee when the reaction was performed on a 3 mmol scale in chlorobenzene.

e
At 50 °C over 2 h the reaction proceeded in 97% yield to afford 9na with 21% ee.
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f
2a:6a ratio = 2.5:1; the absolute configuration of 9ea’ is (R,R).
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Table 3

Expansion of the Substrate Scope by Coupling of Structurally Diverse Iminoquinones

a
Reaction conditions: 2 (0.225 mmol), 3a (0.15 mmol), cat. 1c (10 mol %), DCE or chlorobenzene (3 mL), rt or 50 °C.

b
Reactions were stopped when all of the 6b–j was consumed.

c
Determined by HPLC analysis.

d
Compound 9aj’ was found to racemize easily: even at room temperature overnight, the initial 25% ee decreased to 12% ee.
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