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Abstract

Purpose—Spatial position accuracy in magnetic resonance imaging (MRI) is an important 

concern for a variety of applications, including radiation therapy planning, surgical planning, and 

longitudinal studies of morphologic changes to study neurodegenerative diseases. Spatial accuracy 

is strongly influenced by gradient linearity. This work presents a method for characterizing the 

gradient non-linearity fields on a per-system basis, and using this information to provide improved 

and higher-order (9th vs 5th) spherical harmonic coefficients for better spatial accuracy in MRI.

Methods—A large fiducial phantom containing 5229 water-filled spheres in a grid pattern is 

scanned with the MR system, and the positions all the fiducials are measured and compared to the 

corresponding ground truth fiducial positions as reported from a computed tomography (CT) scan 

of the object. Systematic errors from off-resonance (i.e., B0) effects are minimized with the use of 

increased receiver bandwidth (±125 kHz) and two acquisitions with reversed readout gradient 

polarity. The spherical harmonic coefficients are estimated using an iterative process, and can be 

subsequently used to correct for gradient non-linearity. Test-retest stability was assessed with five 

repeated measurements on a single scanner, and cross-scanner variation on four different, 

identically-configured 3T wide-bore systems.
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Results—A decrease in the root-mean-square error (RMSE) over a 50 cm diameter spherical 

volume from 1.80 mm to 0.77 mm is reported here in the case of replacing the vendor’s standard 

5th order spherical harmonic coefficients with custom fitted 9th order coefficients, and from 

1.5mm to 1mm by extending custom fitted 5th order correction to the 9th order. Minimum RMSE 

varied between scanners, but was stable with repeated measurements in the same scanner.

Conclusions—The results suggest that the proposed methods may be used on a per-system basis 

to more accurately calibrate MR gradient non-linearity coefficients when compared to vendor 

standard corrections.
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1. Introduction

There are a variety of applications for which spatial position accuracy in magnetic resonance 

imaging (MRI) is particularly critical, including surgical planning[1], radiation therapy 

planning[2], longitudinal studies of neurodegenerative disease[3,4], and MR-PET 

attenuation correction[5]. In each of these applications, the soft tissue contrast of MRI is 

desired in order to obtain the necessary information, but the spatial distortion of the MR 

image presents a barrier to adoption[6,7].

MRI is particularly attractive for proton beam therapy because of its ability to clearly 

demarcate the target from surrounding radiosensitive organs at risk[8]. There is also interest 

in using MR imaging alone, without a corresponding pre-treatment computed tomography 

(CT) exam, for both photon and proton radiation therapy planning[6,9,10]. A major 

technical challenge in utilizing MRI lies in determining the geometric accuracy of the tissues 

that are to be targeted or avoided during radiation therapy.

A primary source of error affecting the geometric accuracy of an MR image is the spatial 

distortion caused by spatial gradient nonlinearity (GNL). Imaging gradients ideally are 

designed to vary linearly across the magnet’s diameter of spherical volume (DSV) and the 

associated maximum field-of-view (FOV). However, due to the constrained geometry of the 

gradient coils, design or engineering trade-offs, and limitations imposed by Maxwell’s 

equations, residual GNL will be present within the imaging volume. If gradient nonlinearity 

is not accounted for during image reconstruction, the generated MR images will exhibit 

geometric spatial distortion. This distortion can be retrospectively corrected after via image-

based interpolation[11], or circumvented by using a model-based inverse problems 

framework that prospectively accounts for GNL[12–14]. If GNL is not accounted for in any 

manner, however, the generated images will exhibit severe geometric spatial distortion, 

which typically manifests as either a “barrel” or “pincushion” type of effect. In certain 

instances, even GNL-corrected images exhibit some residual distortion, particularly if the 

supplied nonlinearity map was insufficiently accurate or the maximum spatial order of the 

polynomial fit is not sufficiently high. As the magnitude of gradient nonlinearity increases 

with distance from gradient isocenter, this effect is more pronounced towards the edges of 

the FOV, and especially when a large FOV is prescribed. Position errors up to 5 mm from 
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truth have been reported[15], potentially impairing the accuracy of radiation therapy 

treatment planning. Previous work has shown improved GNL correction for a compact 3T 

system using an asymmetric gradient design for the transverse axes and a 26 cm DSV[16]. 

In that work the ADNI phantom was used as a reference and up to 10th order GNL 

correction was studied[17]. The present work extends those methods to whole body systems 

with large (e.g., up to 50 cm) FOV imaging.

2. Methods

This work utilizes a large 3D-printed fiducial phantom[18] that has been previously utilized 

for assessing gradient nonlinearity in large FOV MRI applications. The phantom consists of 

a three-dimensional array of 5229 MR visible water-based paintballs (Rap4, Modern 

Combat Solutions, Gilroy, CA) uniformly distributed throughout. Each paintball has a 

diameter of 6 mm and the center-to-center distance between each neighbor is 25 mm in each 

orthogonal direction. Applying RAS (Right, Anterior, Superior) coordinates to the phantom 

placed in a supine, head-first orientation, the total MR visible extent (marker center-to-

center) of the phantom is 52.5 cm superior/inferior, 47.5 cm left/right, and 35 cm anterior/

posterior. The matrix is made up of low density foam, and secured with acrylic rods.

MR images of the phantom were acquired with a 3D gradient-echo sequence with 614 mm 

square FOV, 1.2 mm acquired and reconstructed isotropic voxels in all three axes and ±125 

kHz receiver bandwidth (readout L/R, phase A/P, slab S/I) utilizing the body coil for 

transmit and receive on a 3T scanner (Discovery MR750w, software version DV25.0, GE 

Healthcare, Waukesha WI) with a nominal 50cm imaging DSV and 70cm patient bore 

aperture. The phantom was placed at magnet/gradient isocenter in S/I and L/R, and aligned 

as closely as possible with the physical axes by iterative positioning with a 2D 3-plane 

gradient-echo localizer scan through aligning the center of the grid with isocenter. In order 

to minimize any effects of main magnetic field (B0) inhomogeneity the imaging was done at 

the maximum available receiver bandwidth. Additionally, paired image sets were acquired 

using the identical imaging parameters, but with the polarity of the readout gradient 

direction reversed[19]. Thus, two scans are required for each experiment, both the DICOM 

image output including the vendor GNL correction and the raw MR data are saved for use in 

the calibration procedure. Total acquisition time for both 3D scans was approximately 71 

minutes (35.5 minutes each gradient readout polarity).

As an overview, Figure 1 shows a schematic representation of the calibration process. To 

determine the true positions of the fiducial markers, the phantom was scanned with X-ray 

CT (SOMATOM Definition AS, Siemens, Erlagen, Germany). Images were acquired with 

1.27 mm in-plane resolution with a 0.6 mm slice thickness using 120 kVp. The fiducial 

positions in the CT data were determined using software associated with the phantom design 

[18], which is a vendor-provided tool. This process could be brought in house with some 

effort, but the existing code was well validated.

Whereas historically the vendor-provided spherical harmonic model coefficients typically 

have been specified only up to 5th order[11], we utilized an independent calibration tool to 

generate 3rd, 5th, 7th, and 9th order model coefficient sets as follows: In all cases, iterative 
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calibration process was initialized with the vendor-provided spherical harmonic coefficients 

in order to bootstrap the process for faster convergence, as the vendor coefficients are 

available and the residual warp field between the vendor correction and the fitted positions 

can be calculated. The standard- and reversed-readout gradient polarity acquisitions were 

mutually registered before any GNL correction was applied using the FMRIB Software 

Library tools “topup” linear estimator[20,21]. This estimator attempts to fit the underlying 

off-resonance field which, when applied to the image data, causes the observed image 

distortions, and using that field solves for a single off-resonance corrected volume. This is 

done to account for any B0 off-resonance based geometric distortion in the image, as the 

reversed gradient polarity acquisition would result in a positional shift equal in magnitude, 

but opposite in direction from the “normal” gradient polarity acquisition. This effect is well 

known [19], but must be compensated before gradient non-linearity calibration procedure to 

ensure B0 effects do not corrupt the GNL model coefficients.

Spherical harmonics as a basis function for characterizing gradient non-linearity has roots in 

a justification that they provide a solution for Laplace’s equation. These are usually 

described in spherical coordinates[22], and are expressed through the associated Legendre 

polynomials. In more detail, the displacement due to gradient non-linearity at any point dk 

(x⃑) for the k-axis where k is the X, Y or Z gradient coil can be described by

where x⃑ is the true position in the volume, r(x⃑), θ(x⃑), and φ(x⃑) are the polar coordinate 

representation of the position x⃑, N is the model order, with  and  representing 

coefficients with order n and degree m for the k-axis gradient coil. Pnm represents the 

aforementioned associated Legendre polynomial with the noted order and degree. The model 

fitting was performed using a subset of spherical harmonic polynomial basis: one 

polynomial term corresponding to a certain degree (m) in each order was used for each 

gradient coil (i.e., An,1 for x gradient, Bn,1 for y gradient, and An,0 for z gradient). This 

configuration is consistent with the standard practice on GE’s gradient system[23] and is 

incorporated in their gradient coil design [24] with a maximum order 5 [11]. We are now 

free to choose the maximum order N for which we will characterize the gradient field. Note 

also that we limit the basis set to odd n, as this is a design constraint for the gradient coils 

under investigation.

The off-resonance corrected image sets were then analyzed using in-house developed 

Matlab-based position estimation software to identify fiducial markers in the MRI data, 

estimate their spatial locations, and compare these physical values against the CT reference. 

Fiducial marker identification and position estimation in the position tracking software was 

performed using a 3D Hough transform[25,26], and was re-estimated at each iteration. 

Using these nominal MR image based marker position estimates and presuming CT 

identified positions as the gold standard, a finite-order spherical harmonic model[22] of the 
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distortion field was estimated using the iterative RMSE minimization scheme proposed by 

Trzasko et al. [17].

Briefly, the fitting procedure minimizes residual mean-square-error between the CT and MR 

position and alters the spherical harmonic coefficients via Gauss-Newton iteration. Note that 

rotations and translations of the MR data compared to the CT data are tracked and 

compensated in the fitting process using a singular value decomposition-based method[27], 

which seeks the rigid transformation matrix minimizing the least-square difference between 

the fiducial positions in the CT and MRI data sets. This fitting procedure was performed (as 

separate trials) over three different diameter spherical volumes (DSVs), 340 mm, 420 mm, 

and 500 mm. It was previously shown that 10 iterations is sufficient for convergence[17]. On 

a dual eight-core Xeon system with 128 GB of RAM, each iteration of this procedure 

required 25 minutes of computation, or about 4.2 hours for the entire fitting process. Using 

the field distortion maps generated from these coefficients, the raw MR images were 

resampled to correct for the observed gradient nonlinearity. Resampling was done in the 

image-domain using cubic spline interpolation[11]. Finally, the 3D magnitude displacement 

compared to the CT image of each fiducial marker interrogated by the fitting routine was 

plotted to generate position dependent accuracy figures.

To test inter-scanner variation of the GNL coefficients, we performed the above-described 

procedure across a total of four MR units of the same model at our institution. These data 

were acquired to investigate whether gradient nonlinearity varies appreciably even between 

like scanners, e.g., due to manufacturing variances such as coil winding errors[22].

To investigate test-retest repeatability of the measurements, we performed this same 

experiment five times on a single MR system over two sessions. The phantom was 

completely removed from and then replaced in the scanner bore between each run to 

simulate an independent experiment in an effort to validate repeatability and invariance to 

small unavoidable translations and rotations of the phantom.

3. Results

An example of the off-resonance effect is shown in Figure 2, where the standard and reverse 

readout polarities manifest opposite shifts in the frequency-encoded direction of fiducial 

markers at the points indicated by arrows in the large set of images. The insets show a 

magnified portion denoted by dashed lines, clearly indicating the off-resonance effect in 

shifting fiducials, especially towards the superior edge of the phantom, with these images 

acquired at approximately 10 cm off-isocenter. The inset on the bottom right shows 

magnified views of part of the image.

Figure 3 shows spatial accuracy in the form of root-summed-squared (RSS) error vs. the CT 

position reference for a 340 mm DSV, comparing the fitted 5th, 7th, and 9th order corrections. 

Additionally, Figure 4 shows the fitted 5,7,9th order corrections for a 500mm DSV. Both 

figures also include the maximum error from the interrogated fiducials, as well as the RMS 

spatial error over all fiducials. The 340 mm DSV results show that there is little to no 

improvement in the RMSE when moving from 5th to 9th order fitted corrections. 
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Considering the 500 mm DSV dataset, there is a large change in RMSE from the fitted 5th to 

the fitted 9th order correction, and the maximum error is also reduced substantially from 

10.96 to 2.21 mm.

Figure 5 shows MR images at axial planes approximately 14 cm inferior to isocenter, and 

coronal planes approximately through isocenter corrected with the fitted up to 5th, 7th and 

9th order models respectively. The two image planes are shown to illustrate that there is an 

improvement in gradient linearity in all three dimensions. Note the fiducial markers in the 

7th and 9th order case, vs 5th order are properly reconstructed to the imaging plane at the 

FOV boundaries and the reduced pincushion effects. The improvement is evidenced in the 

axial plane by the increased number of fiducials visible in what is a planar array of fiducials 

in 3D space. In the 5th order case, many of the fiducial markers have been pulled out of 

plane by uncompensated gradient nonlinearity. As the distortion correction moves to include 

higher order basis functions, the reconstructed image becomes more planar, thus the image 

includes the truly planar fiducial grid.

Figure 6 shows the RMS spatial error comparison as a function of spherical harmonic model 

order used for a single system across the three different diameter spherical volumes. The 

smallest diameter spherical volume shows minimal differences in RMSE across the different 

model orders. However, the larger DSVs show improved accuracy with the 9th order 

correction verses the two lower model order cases.

Figure 7 shows each of the 5 trials comparing the RMSE values of fitted 9th order verses 

vendor standard 5th order on the single scanner tested. The fitted coefficients produce a 

lower RMSE compared to the vendor’s standard 5th order correction.

Table 1 shows results of the spherical harmonic fitting process for the intra-scanner 

comparison from N = 5 experiments. For sake of readability, we have included only the 

superior/inferior coefficients for the 9th order fitting. Compared to the multi-scanner results 

we note a reduction in coefficient of variability, suggesting that 1) our estimation procedure 

is robust, with high repeatability, and 2) that individual system characterization can provide 

some additional benefit, verses one set of coefficients per scanner model. The full set of 

coefficients is available in Table S1 in the supplementary materials.

Table 2 shows results of the spherical harmonic fitting with 9 orders considered for the N = 4 

multi-scanner comparison. For sake of readability, we have included only the superior/

inferior coefficient set. Note that the lower order coefficients are much larger compared to 

the higher orders, and also have a lower coefficient of variability. We note that increasing the 

interrogated DSV from 340 to 420 or 500mm increases the stability of the coefficient 

estimation. The full set of coefficients is available in Table S2.

Figure 8 shows the RMS spatial error across multiple MR scanners of the same hardware 

configuration for three different DSVs for the 9th order fitted coefficients verses the vendor 

standard 5th order coefficients.
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4. Discussion

We have applied an imaging-based method for characterizing and correcting gradient non-

linearity of whole-body scanners on a per-system basis. This adaptive calibration capability 

reduces the RMS spatial error substantially from standard non-adaptive 5th order GNL 

correction that is conventionally used in routine clinical MRI, potentially allowing for a 

higher level of confidence when using MR images for radiation therapy planning. The use of 

3D MRI acquisition (i.e., with two phase encoding directions) avoided B0 errors in the two 

orthogonal phase-encoding directions. By acquiring two sets of images which are identical, 

except for the polarity of the readout gradient, we minimized any confounding off-resonance 

effects on the locations of the fiducial markers measured with MRI in the readout direction. 

Use of a single readout polarity would have mixed gradient non-linearity effects and the off-

resonance effects. This would have been particularly problematic for large FOV acquisitions 

and as well acquisitions for which shimming is difficult, like the paintball phantom utilized 

in this work. Note that there may be some limit to the off resonance correction, as the 

fiducials near the superior and inferior edges of the large DSV studies show consistently 

worse error. This may be due to gross, uncorrectable off resonance effects. In other works 

the forward and reversed gradient readout polarity images themselves are subjected to a 

position estimation step, and then those positions are averaged to find an off-resonance free 

distortion map[28]. We chose to do the B0 correction upfront and perform a single position 

estimation step, but the other method could be used as well.

An important consideration was the limitation of the model to a maximum of order 9. Figure 

S3 shows the RMSE for orders up to and including 11th order, as well as the 13th order. To 

investigate this further, we have applied the coefficients estimated from a single trial of the 

single-scanner experiments to different datasets within that trial. Table S1 shows the results 

of this fitting process. Note: the fitting for 11th order was stable on the largest (500 mm 

DSV) but unstable at the smaller DSVs. This leads to the conclusion that the large size of the 

phantom is essential to the success of this fitting process. Note also the decrease in RMSE as 

order increases from 5th to 7th to 9th to 11th grows smaller with each increment, and the 

increment to 11th order is on the micron level. Given the difficulty in obtaining the fits, we 

believe the 9th order fitting is sufficient. The residual distortion can be due to a series of 

effects, such as the residual off resonance distortion, numerical estimation accuracy in 

fiducial tracking, as well as other residual system imperfections like eddy current, although 

these are minimized by optimizing the acquisition protocol. Note that the calibration was 

performed with odd order terms excluding the even-orders to minimize the impact from 

these effects, which is in consistent with the state-of-the-industry.

We note that the single scanner calibration results show magnitude of coefficients of as order 

of magnitude below the coefficients of variation for the between-scanner results. This order-

of-magnitude difference suggests that 1) the iterative gradient nonlinearity estimation 

method[17] exhibits reproducible performance and capability, and 2) the coefficients of 

gradient nonlinearity distortion field models can and should be optimized for individual MRI 

scanner systems. We remark that these observations are based on heuristic assessment of the 

results in presented in Tables 1 and 2, rather than formal statistical testing. Due to the 

relatively small number of coefficients in the evaluated distortion field models, there was 
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insufficient power to make a statistical significance argument between them. The improved 

root-mean-square-error results shown in Figure 7, however, demonstrate the value of 

calibration on a per-system basis.

While we did compensate for translations and rotations from the MR coordinates to the CT 

coordinates, it is likely that small positioning inconsistencies in the MR data may influence 

the calibration – see results number two in Figure 7 detailing the RMSE for one of five runs 

on a single scanner. These small translations and rotations may result in minute differences 

in whether a few fiducials are recoverable in the fitting process. Some fiducials located 

around the edge of the imaging volume experience dramatically changing distortion field 

from GNL, and slight change of phantom positioning (translation and rotation) may render 

these fiducials to be unrecoverable. It may well be that there is a better position for the 

phantom to be in order to best characterize the gradient field, but we attempted to align with 

system axis in the isocenter. Limiting the spherical harmonic model to the 1st degree was 

also done to allow for rotational invariance with the fitting and increasing robustness to 

slight positioning errors and potential over-fitting to distortions caused by other physical 

effect (i.e. eddy current).

Maximum error is reported for each case in Figures 2 and 3. We note that this metric is of 

interest especially for radiation therapy planning, as it can serve as a metric for “worst case” 

in dose delivery. We note that this maximum error is quite stable for the 340 mm DSV across 

all model orders, but that it decreases quite dramatically as model order increases for the 

large 500 mm DSV. This further demonstrates the value in higher order calculations with 

these large FOVs. Another consequence of this result is that imaging near the isocenter of 

the magnet results in less gradient non-linearity. As is well known, imaging near the 

isocenter should be considered whenever practical.

Note in Figure 5 the subtly increased background noise near the edges of the FOV in the 

identically window/leveled images with the higher order correction. This artifact is due to an 

increase compensation term from “spreading out” image intensity from previously 

overlapping pixels in the image-based correction for gradient nonlinearity. This suggests the 

utility of an integrated gradient nonlinearity correction and image reconstruction[29] that has 

previously been shown to decrease image blurring, to further improve image quality.

In other work[18] it has been demonstrated that a template-based ground truth approach 

could be taken to determine initial fiducial positions. To account for possible manufacturing 

errors in the phantom, we elected to use a CT scan as the gold standard for position. Any 

errors in the CT position information would degrade our measurements, but the CT scan was 

done at a 1.2 mm in-plane spatial resolution, with about 0.6 mm through plane resolution. 

This is substantially smaller than the paintball (6mm diameter) and the spacing (25mm) 

between paintballs. Additionally, the 3D Hough transform method has been shown to 

localize the shapes of interest to sub-voxel precision[30].

An interesting application of this work is to calibrate multiple systems across many sites 

using the described procedure, such that gradient nonlinearity correction processes account 

for system-specific deviations, as opposed to the “one size fits all” coefficients derived from 
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the standard electromagnetic calculations. Further deployment of this technique would allow 

for sufficient statistical power to examine the significance of system-by-system deviation. 

Future work to measure GNL on other systems from other vendors would also be of interest.

While this work does account for gross off-resonance effects caused by imperfections in the 

B0 shim during the gradient non-linearity estimation it does not seek to characterize or 

correct for patient-induced susceptibility effects[31]. In general, those spatial distortions 

caused by off resonance are treated independently from GNL calibration and correction, e.g., 

by tailoring the readout bandwidth to the specific patients acquisition.

The proposed calibration and correction could be practical to implement on a per-system 

basis across a wide fleet of MR scanners. While the phantom is somewhat bulky, it only 

weighs 14 kg. The total acquisition time to acquire the MR data is 71 minutes per system. 

The data analysis can be done off-line, and once the GNL coefficients are determined for a 

particular MR system, we expect they will remain valid indefinitely, or until the gradient coil 

is replaced, as has been previously demonstrated for an MR system[32]. That is to say, since 

the gradient coils are fixed on the installation of the scanner, this procedure could be 

incorporated into the clinical acceptance of the system, subject to coordination with the 

install and maintenance teams. We do note that the current implementation takes a long time 

to process, but the current implementation is a hybrid single-threaded MATLAB analysis 

suite which requires a large amount of small file reading and writing. Some additional time 

polishing the implementation would significantly decrease the calibration time. The 

technique can be useful in multi-site MRI studies where consistent spatial accuracy is 

desired among sites. This is also beneficial for longitudinal clinical MR studies where high 

level of spatial accuracy is needed, as the same patient may get scanned on different scanner 

for repeated sessions. This method has not currently implemented into clinical workflow, as 

IRB approval would be needed to collect raw data and then reconstruct with the modified 

non-linearity corrections. However, the interpolative gradient non-linearity correction is of 

relatively low computational cost, and it takes on the order of seconds. The overall 

correction time would be dominated by system I/O, i.e., saving raw data, transferring to 

server, and DICOM pullback to the scanner host computer’s DICOM database. Analogous 

processes have been used for other IRB-approved applications at our site, and all steps 

routinely are accomplished for more computationally intensive datasets and algorithms in 

under five minutes.

5. Conclusion

In this work, we have demonstrated improved geometric accuracy and precision for large 

FOV MRI by a per-system, calibration and fitting procedure for GNL coefficients. The 

results show improvement in geometrical accuracy not only by going to higher spatial order 

(e.g., from 5th to 9th order), but also comparing 5th order corrections with the custom-fit and 

vendor supplied coefficients.

This work has application in a variety of areas, including pre-surgical planning, and 

particularly to radiation therapy planning.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
An overview of the calibration process. Briefly, the MR image data before any corrections 

are registered together in FSLview via the “topup” command, which creates a single 3D 

volume without off-resonance induced shifts. These data are then corrected via industry 

standard interpolative warping with the vendor-supplied spherical harmonic coefficients as a 

bootstrapping technique to get closer to the mean-square-error-optimal solution. The CT and 

MR image data are then processed to extract the fiducial positions, with the CT data 

translated and rotated via and singular value decomposition-based technique. These 

positions are compared and new spherical harmonic coefficients are estimated on the criteria 

that they minimize the mean square error between the MR and CT fiducial positions. These 

coefficients are then used to correct the original MR data after off-resonance correction, and 

the positions re-estimated. This process continues until convergence.
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Figure 2. 
Off resonance artifact and correction demonstration. Note that in the normal vs. reversed 

gradient polarity the fiducial markers along the green line shift along the frequency-encoded 

direction (right-left). The magnified insets emphasize this effect. These images are 

reconstructed with the vendor standard 5th order gradient non-linearity correction method in 

order to demonstrate the B0 off resonance effect, but the correction itself is done on non-

GNL compensated data.
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Figure 3. 
Color-coded, magnitude displacement error of the fiducial phantom MRI reconstruction as 

compared to the CT-measured ground truth positions for a 340 mm DSV and three different 

model orders used for gradient nonlinearity correction. The 5th, 7th, and 9th order corrections 

are shown from left-to-right. Reported in the inset are the RMSE and maximum error of the 

dataset.
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Figure 4. 
Color-coded, magnitude displacement error of the fiducial phantom MRI reconstruction 

compared to the CT-measured ground truth positions for a 500 mm DSV across three 

different model orders used for gradient nonlinearity correction. Note the improved spatial 

accuracy moving from 5th to 7th, then to 9th order corrections. Reported in the inset are the 

RMSE and maximum error of the dataset.
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Figure 5. 
5th, 7th, and 9th order axial and coronal views of the fiducial phantom. Note that with 

increasing model order, the number of visible paintballs increases due to the improved out-

of-plane non-linearity correction. Axial and coronal planes are presented to illustrate 

distortion correction in all three dimensions.
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Figure 6. 
RMSE verses model order and DSV. Note the relatively flat response to model order by the 

smallest volume interrogated. The large DSV sees the most improvement when going to a 

higher order set of coefficients.
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Figure 7. 
RMSE verses scanner trial broken up by DSV. Each of these compares the 9th order fitted 

with the standard 5th order vendor supplied correction. Note that the standard deviation of 

the measured RMSE is an order of magnitude below the mean.
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Figure 8. 
RMSE with calibrated 9th order coefficients vs. vendor supplied 5th order coefficients, also 

compared across the 4 identical MR systems investigated. Note that for smaller DSV, the 

difference in RMSE is less pronounced as opposed the larger 500 mm DSV. Additionally, 

note that system 4 appears to have somewhat more correctable non-linearity versus systems 

1–3. These differences highlight the importance of performing the calibration on a per-

system basis.
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Table 1

DSV
Superior/Inferior coefficients for 9th order fitting with different calibration volumes – Intra-scanner comparison

9th Order Maximum

3rd order Mean Std Dev CoV

340mm −1.194E-04 8.217E-07 −0.0069

420mm −1.192E-04 1.102E-07 −0.0009

500mm −1.191E-04 1.315E-07 −0.0011

5th order

340mm −1.759E-08 1.319E-09 −0.075

420mm −1.795E-08 1.786E-10 −0.01

500mm −1.794E-08 6.182E-11 −0.0034

7th order

340mm 9.681E-12 1.514E-12 0.1564

420mm 9.990E-12 3.575E-13 0.0358

500mm 9.993E-12 7.026E-14 0.007

9th order

340mm −1.700E-16 4.313E-16 −2.5368

420mm −6.760E-16 1.352E-16 −0.2

500mm −7.245E-16 1.689E-17 −0.0233
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Table 2

DSV
Superior/Inferior coefficients for 9th order fitting with different calibration volumes – Inter-scanner comparison

9th Order Maximum

3rd order Mean Std Dev CoV

340mm −1.186E-04 2.685E-07 −0.0023

420mm −1.193E-04 2.565E-07 −0.0022

500mm −1.193E-04 1.912E-07 −0.0016

5th order

340mm −1.832E-08 4.868E-10 −0.0266

420mm −1.818E-08 8.290E-11 −0.0046

500mm −1.797E-08 8.994E-11 −0.005

7th order

340mm 1.065E-11 4.520E-13 0.0424

420mm 1.043E-11 2.549E-13 0.0244

500mm 1.009E-11 1.018E-13 0.0101

9th order

340mm −1.033E-15 1.122E-15 −1.0862

420mm −8.132E-16 1.835E-16 −0.2256

500mm −7.387E-16 2.755E-17 −0.0373
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