
Single-cell resolution of intracellular T cell Ca2+ dynamics in 
response to frequency-based H2O2 stimulation

Ariel S. Kniss-Jamesa,b, Catherine A. Riveta,c, Loice Chingozhaa,d, Hang Lua,d, and Melissa 
L. Kempa,b

aThe Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, 
315 Ferst Dr. NW, Atlanta, GA USA 30332-0363

bThe Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology 
and Emory School of Medicine, 950 Atlantic Dr. NW, Atlanta, GA, USA 30332-2000

cSchool of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Dr. 
NW, Atlanta, GA USA 30332-0250

dSchool of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic 
Dr. NW, Atlanta, GA, USA 30332-2000

Abstract

Adaptive immune cells, such as T cells, integrate information from their extracellular environment 

through complex signaling networks with exquisite sensitivity in order to direct decisions on 

proliferation, apoptosis, and cytokine production. These signaling networks are reliant on the 

interplay between finely tuned secondary messengers, such as Ca2+ and H2O2. Frequency 

response analysis, originally developed in control engineering, is a tool used for discerning 

complex networks. This analytical technique has been shown to be useful for understanding 

biological systems and facilitates identification of the dominant behaviour of the system. We 

probed intracellular Ca2+ dynamics in the frequency domain to investigate the complex 

relationship between two second messenger signaling molecules, H2O2 and Ca2+, during T cell 

activation with single cell resolution. Single-cell analysis provides a unique platform for 

interrogating and monitoring cellular processes of interest. We utilized a previously developed 

microfluidic device to monitor individual T cells through time while applying a dynamic input to 

reveal a natural frequency of the system at approximately 2.78 mHz stimulation. Although our 

network was much larger with more unknown connections than previous applications, we are able 

to derive features from our data, observe forced oscillations associated with specific amplitudes 

and frequencies of stimuli, and arrive at conclusions about potential transfer function fits as well as 

the underlying population dynamics.
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Introduction

As part of the adaptive immune response, T cell lymphocytes function to recognize and 

respond to pathogens present in the body. Due to their central role in immunity, T cell 

dysfunction has been implicated in numerous diseased conditions, such as autoimmune 

disorders 1, tumour immunity 2, and allergic reactions 3. T cell activation induces rapid 

proliferation and a change in intracellular signalling cascades to alter gene expression and 

ultimately cytokine release 4. More specifically, when an antigen-presenting cell (APC) 

engages the T cell receptor (TCR), a cascade of activated kinases drive intracellular 

signalling through protein modification 5, 6, ultimately enabling the release of intracellular 

stores of calcium, which drive a multitude of signalling events. Calcium signalling involves 

oscillations, thought to be the result of the stochastic distribution of IP3R within the 

membrane and the result of calcium influx from external sources 7, 8. This signalling profile 

illustrates the ability for calcium to produce complex signals as opposed to molecules that 

produce binary state switches 9. Different frequencies have been shown with varying levels 

of stimulation 10 and have an effect on the activation of downstream transcription factors, 

such as NFAT and NF-κB 6, 11.

The increased signalling capacity during T cell activation is also associated with an increase 

in glucose metabolism and subsequent burst of reactive oxygen species (ROS) from NADPH 

oxidases 12 and the mitochondria 4. ROS, such as hydrogen peroxide (H2O2), are produced 

within the cell and act as secondary messengers in numerous cellular processes through 

protein thiol oxidation, such as reversible phosphatase inactivation and protein 

localization13. Alteration of T cell ROS production and regulation in signalling has been 

reported in immunological diseases such as systemic lupus erythematosus and rheumatoid 

arthritis 14, 15. Aberrant T cell signalling has also been associated with tumour cell 

immunity. However, it is often difficult to measure intracellular ROS and many techniques 

only allow for population averages through time. There is known cross talk between calcium 

and H2O2 during T cell activation; ROS, including H2O2, is able to activate calcium release 

channels 16–18 and increase the channel activity of two ER membrane channels, IP3R and 

RyR 19–23, while NADPH oxidases Duox1/224 and many mitochondrial proteins (e.g. 

VDAC) are calcium sensitive 25. The relationships between these signalling molecules are 

difficult to analyse due to the fast, dynamic kinetics and subcellular localization. We seek to 

better understand these connections in the context of frequency encoding, looking to answer 

the question of whether dynamic stimulation with H2O2 is able to affect Ca2+ signalling in 

the frequency domain within T cell lymphocytes. Furthermore, we seek to determine which 

frequencies of input oscillatory conditions of H2O2 elicit the maximum Ca2+ response.

Current approaches are not sufficient to analyse the signalling network in question because 

of the complexity and lack of understanding of all molecular mechanisms. Novel 

computational models are needed to overcome these limitations and enable an investigation 

of T cell signalling in a more complete and systematic fashion. Control-based computational 

methods have been developed for discerning complex, interconnected networks of signalling 

molecules that are difficult to interrogate with bulk measurements 26. Ultimately, these 

techniques, borrowed from control engineering, can help identify and model only dominant 

interactions within the network by characterizing the behaviour of a system from its 
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responses to well-characterized inputs. This is accomplished by applying known stimuli to 

cells and measuring the resultant gain and phase shift of the output signal. This behaviour 

can be modelled with a transfer function, reducing the parameters necessary to describe a 

biological system. We present here an approach to interrogating calcium dynamics with 

dynamic H2O2 input to elucidate characteristics of the signalling network.

A secondary challenge in studying non-adherent immune cell behaviour is a constraint in 

live cell imaging. T cells develop in the thymus and reside as suspension cells in the blood. 

As suspension cells, they have been historically difficult to analyse dynamically at a single-

cell level because they often float out of the focal place during fluorescent microscopy 

imaging. There are techniques, such as flow cytometry, that enable single-cell analysis, but 

these are end-point assays that cannot monitor a single-cell through time. Appropriate 

experimental techniques require the ability to trap individual T cells and maintain their 

location while delivering precisely tuned stimulation profiles.

Advances in microfluidics have enabled more advantageous methods for interrogating T 

cells, such that hundreds of single T cells can be loaded into a single device and monitored 

dynamically with fluorescent molecules 27–32, providing insight into the underlying 

signalling networks with commonly available fluorescent probes and markers. Recent 

microfluidic devices have also enabled delivery of robust, time-varying chemical signals, in 

contrast to conventional experimental techniques which measure the response of cells to a 

single perturbation of step increase or bolus of stimulus 33, 34. The enhanced experimental 

capability can be combined with frequency response analysis such that the underlying 

complex signalling networks can be discerned more easily. As calcium signalling is an 

almost immediate response to T cell stimulation, occurring within seconds of stimulation, it 

is an appropriate molecular 35 candidate for this analysis technique. Prior examples of this 

approach include biological applications in the osmotic stress response 36 and the galactose 

response pathway 37 in S. cerevisiae. More recently, the utility of microfluidic delivery of 

periodic chemical stimuli to interrogate calcium regulation has been demonstrated in GPCR 

activated HEK293 cells 38.

In this study, we utilized a custom microfluidic platform and frequency response analysis to 

investigate cross-communication between two secondary messenger molecules in Jurkat T 

cells, an immortal T cell lymphocyte line. We probed the dynamics between H2O2 and Ca2+ 

by varying the extracellular H2O2 environment of the cell and recording the intracellular 

cytoplasmic Ca2+ response to varying frequencies. Cells in any given experiment received a 

single frequency of stimulation and cells were combined across conditions for an 

experimental Bode Plot, which provides insight into the filtering properties of cytoplasmic 

Ca2+ signalling in response to H2O2.

Results

Experimental device enables dynamic input with precision

A previously characterized microfluidic device was used for the trapping and subsequent 

fluorescent imaging of suspension Jurkat T cells 33. The two-layer design of this device 

enables fast, robust switching of fluids while cells are maintained in a low-shear stress 
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environment for the duration of the experiment. As can be seen in Figure 1a–d, this device 

consists of cell trap layer, capable of trapping and holding cells for subsequent analysis, 

connected to a large stimulus delivery layer, capable of fast fluid switching, via small 

pores 33. We imaged individual T cells through time with precise, uniform control of the 

cellular environment. With this custom device, we stimulated Jurkat T cells with an 

oscillatory input of H2O2 and measured the gain, phase, and dominant frequencies of the 

output signal (Figure 1e). Here, we were interested in probing the dynamics between 

calcium and H2O2 by varying the extracellular H2O2 environment of the cell and recording 

the intracellular cytoplasmic calcium response to varying frequencies. In this device, cells 

received a single frequency of stimulation; data were then combined from all conditions for 

a Bode Plot, which provides insight into the filter dynamics of cytoplasmic calcium 

signalling in response to H2O2. To complement this enabling experimental pipeline, we 

developed computational analysis techniques to gain an unprecedented view of calcium 

signalling in Jurkat T cells.

We first characterized the stimulus delivery using alternating buffer and buffer carrying a 

dissolved fluorophore to characterize the frequencies delivered in the input (Figure 2a,b). 

Data indicated that the cells should receive a consistent waveform with the designated 

frequency for all subsequent conditions. The resulting single-cell calcium traces were 

recorded and heterogeneity was observed in individual responses (such as two cells shown in 

Figure 2c–f). Traces were analysed for dominant frequencies, as defined by exhibiting an 

area under the curve greater than a designated threshold in the power spectral density (PSD) 

(Figure 2d,f). Interestingly, for given input frequencies, the average trace corresponded to 

the single dominant frequency of oscillatory input (Figure 2g,h). Some cells were forced to 

oscillate similarly to the population average (Figure 2c,d) while others exhibit alternative 

frequency responses (Figure 2e,f), illustrating the necessity to use single-cell analysis in this 

approach.

We also extracted the gain and phase for each individual cell and combined them for further, 

population-based analyses (figure 2d,h). This analysis pipeline allowed us to view individual 

calcium traces as signals in the frequency domain, ultimately providing additional 

information about the response of cytoplasmic calcium to the experimental perturbation that 

cannot be captured with dose-response, bulk measurements.

Single-cell analysis reveals response to oscillatory stimulation

Once single-cell calcium traces were analysed, they were compiled to provide insight to the 

response of cells to frequencies of interest. For cells receiving a frequency of 2.78 mHz 

(corresponding to a period of 6 minutes) we observed diverse dynamic responses resulting in 

a range of dominant frequencies to the stimulation, thus highlighting the emphasis to look at 

a single-cell response as opposed to the population average of these experiments (Figure 

3a,d). This experimental condition was compared to two controls for mechanical switching 

of fluid flow: (1) a media control where the cellular microenvironment switched at the same 

frequency but both solutions contained standard RPMI cell culture media, and (2) a H2O2 

control where the two solutions were both 25 μM H2O2 supplemented RPMI media. We 

observed a clear oscillatory behavior of many cells to an oscillating H2O2 stimulation, more 
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so than in the control conditions (Figure 3). It is evident from these single-cell traces that 

cells can oscillate under specific driving frequencies, in particular the oscillating H2O2 

condition as compared to the two controls (Figure 3d–f).

To quantify cell behaviour, we used spectral analysis to calculate 39 the dominant 

frequencies present in cell signals when driven with a frequency of 2.78 mHz, and found a 

peak in dominant frequencies of the treated cells corresponding to the driving frequency. 

Both the media and H2O2 controls showed a reduced peak in dominant frequency at the 

entrainment value (Figure 3a–c), indicating the experimental application of oscillatory H2O2 

drives this calcium response. This population-based visualization shows that although the 

population is heterogeneous in responses, there is an appreciable shift to correspond with the 

driving frequency of H2O2 stimulation, in at least a subset of the population.

Input amplitude modulates cellular oscillation for a given frequency

Experiments were repeated for different concentrations of H2O2 (10, 25, 50, and 100 μM) to 

test the dependence of the forced oscillation effect on concentration of the stimuli. From the 

dominant frequency histograms, we observed that the forced oscillation is dependent on 

input amplitude (Figure 4a–d). These experiments were all driven at the same frequency, as 

shown before, of 2.78 mHz and only the 25 μM condition exhibits a large peak in output 

signal at this frequency (Figure 4b). This suggests that 25 μM is ideal for eliciting the 

calcium signal: concentrations lower than 25 μM H2O2 were not able to elicit the robust 

response; and similarly, those concentrations tested above 25 μM H2O2 also had diminished 

responsiveness at the driving frequency, potentially due to cytotoxic effects of high 

concentrations of ROS. Thus, all subsequent experiments were performed with 25 μM H2O2.

Cellular oscillation is dependent on input frequency

While keeping the concentration of H2O2 constant at 25 μM H2O2, the input frequency was 

varied in different experiments between 16.7 mHz (1 minute period) and 0.83 mHz (20 

minute period). The cells typically responded to at least the initial input of H2O2 signal, but 

not all frequencies elicited the same response seen with 2.78 mHz (Figure 5f–j). For 

instance, at the higher frequencies of 16.7 and 8.3 mHz, cells did not respond to later inputs 

of H2O2 but instead appear to slowly dampen intracellular calcium signalling (Figure 5f–g). 

This was corroborated by the histograms of dominant frequencies, which show very low or 

no response in the frequency domain at the driving frequency, as denoted with the green 

arrow (Figure 5a,b). This could potentially be the result of fatigue or refractory nature of the 

system, such that the calcium signalling mechanistically cannot recover and respond at this 

rate. For experiments done at lower frequencies, the cells appeared to recover between 

oscillations and exhibit an increase in calcium signalling when the environment is altered, 

although this increase was not sustained through the duration of H2O2 application (Figure 

5i,j). These higher frequencies elevated the H2O2 in the cellular environment for longer 

periods, potentially negatively impacting the cells’ signaling or exhausting the calcium 

signalling. The cellular response heatmaps also reflect the population heterogeneity; single 

cells often have varying responses to the same input signal and this platform best captures 

those differences. The majority of cells responded to the 2.78 mHz frequency with the 

greatest response.
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Second order system captures cell behaviour

To test whether the complex Ca-ROS signalling dynamics can be captured by simpler 

models, we next examined the gain and the phase behaviour of individual cells in frequency 

space. The gain and phase of individual cells was compiled across at least 3 independent 

experiments for each frequency (Figure 6a–d). A definitive peak in the gain response for the 

6 minute period emerges in contrast to all others (Figure 6a,b). It should also be noted that 

there is a drop in phase as the frequency increases, concomitant with an increase in 

variability. More specifically, there is a noticeable decline in gain and phase past the 2.78 

mHz experimental condition, indicating a decrease in the cells’ ability to respond to the 

oscillatory input to periods lower than 6 minutes. This observation is in line with previous 

reports of biological systems behaving as low-pass filters 40. As cells must filter out 

numerous environmental cues and assimilate them to mount a response 41–43; it would 

require great energy expenditure to respond to every fluctuation in the environment. As such, 

these cells appear to filter out signals above and below the experimental condition of 2.78 

mHz, but are slightly responsive with the 10- and 20-minute period conditions. We further 

plotted these experimental conditions in histograms to capture the population heterogeneity 

across gain and phase values (Supplemental Figure 4). Our visualization also provides an 

unparalleled view of single-cell responses within a population of genetically similar Jurkat T 

cells, with a surprisingly large variation in magnitude.

We next sought to determine a transfer function that would enhance our understanding of the 

underlying biological network while providing a model for future hypothesis driven 

experimentation. The experimental data suggests a resonant frequency at approximately 2.78 

mHz. This data trend aligns with an overdamped, second order transfer function of the form:

(1)

where K is the system gain, ωn is the natural frequency in rad/s, and ζ is the damping factor 

(parameter values provided in Table 1). We compared this fitting to that of a first order 

system with transfer function:

(2)

where τc is the time constant and K is the system gain. As can be seen in Figure 7. τc can be 

converted to the cutoff frequency of the resultant low pass filter and describes the frequency 

at which the filter begins attenuating signal (Supplemental Figure 5). As this is the only 

parameter that can be altered, we are unable to reflect the increase in gain around the 2.78 

mHz. The first order system does not recapitulate the natural frequency observed increase in 

gain at 2.78 mHz and we chose to move forward with the second order transfer function.

When fit to the median of the experimental conditions across various frequencies, our 

resultant second order transfer function aligned well (Figure 6e,f). We then subdivided the 
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population of cells into quartiles based on the gain response and again fit the data to a 

second order band pass filter to compare the parameters between subpopulations (Figure 7b 

and Figure 7c). For the top 25% of cells, a much more damped system resulted and the range 

of phase values decreased when compared to both the total population and to the bottom 

quartile (Figure 7b). Interestingly, this result suggests that the cells with highest gain values 

have less variable phase response, implying cells are more in phase with one another than 

when visualizing the entire population. This is not true for the bottom quartile population, as 

the phase variation appears to be more similar to the overall population of cells (Figure 7c). 

Although cells in a given experiment were sampled for a single input frequency and not 

across the entire frequency domain, this subpopulation analysis indicates that different cells 

within the population have distinct and separate filtering capabilities.

Discussion

Cells continually respond to dynamic environmental conditions through intracellular Ca2+ 

signalling. Yet questions remain unanswered about how cells are able to use this secondary 

messenger to elicit a wide range of context dependent responses. Recent reports have 

indicated that the answer lies in better understanding the diverse spatiotemporal dynamics 

giving rise to infinite patterns of Ca2+ responses 44, 45. Ca2+ signalling is believed to increase 

information transmission by reducing extrinsic noise factors on the signal to noise ratio for 

intracellular signalling cascades 46. However, current technological approaches limit the 

delivery of environmental cues and subsequent analysis of single-cell behaviour for testing 

these theories. In this work, we integrated microfluidic and computational technologies to 

overcome this technical barrier and to gain a better understanding of Ca2+ signalling in 

Jurkat T cell lymphocytes by applying frequency response analysis.

Our experimental design varied extracellular H2O2, a reactive oxygen species that has been 

shown to be dynamically induced in T cell activation and plays a role in signal transduction. 

Our advanced view of the interplay between calcium and H2O2 delineates differences 

between individual cells in response to the same, robustly controlled, environmental signal. 

Such a view provides novel insight both for intracellular signalling dynamics as well as for 

differences between cells in a relatively clonal population.

To examine the interplay between these two signalling molecules, we applied oscillatory 

H2O2 input at varying frequencies and amplitudes and compiled a Bode Plot of the results to 

obtain the estimated resonant frequency and damping coefficient of this second order 

system. We found an oscillatory H2O2 input was able to force strong oscillations in the 

calcium dynamics in cells unlike either constant media or H2O2 controls (Figure 3). 

Furthermore, we sampled different amplitudes, or concentrations, of the input H2O2 signal 

and found an optimal concentration of 25 μM H2O2 (Figure 4). This aligns with previous 

literature suggesting different concentrations of Ca2+ stimulation can result in oscillatory or 

refractory signalling 38; the findings further suggest the 25 μM H2O2 concentration is within 

the oscillatory regime of stimulation for our sampled system. With this concentration held 

constant, a frequency sweep was performed for 5 different frequencies and results showed a 

damping of signals both above and below the optimal frequency of 2.78 mHz (Figure 5). 

Identification of a resonant frequency provides experimental conditions by which Jurkat T 
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cells may be rapidly assessed for activation potential. Physiologically, this indicates a 

frequency at which information may be encoded for specific downstream signalling. As 

Ca2+ is a ubiquitous signalling molecule capable of moderating multiple downstream effects, 

signalling systems may be finely tuned to specific frequencies and we suggest this frequency 

warrants further investigation to understand underlying biochemical signals.

To our knowledge, this is the first application of a sinusoidal input to Jurkat T cells, but our 

findings can be related to previous reports of T cell transcriptional encoding with Ca2+ 

spikes at varying frequencies. Observed Ca2+ frequencies vary widely based on cell type and 

stimulation, with values ranging from 100 Hz in excitable cells to 0.01 mHz for non-

excitable cells 47. Our experimental system falls within this reported range, with the natural 

frequency estimated to be at approximately 2.78 mHz for non-excitable T cell system.

In general, cells must decode a wide range of dynamic stimuli, usually by sensing molecules 

that can appropriately modify their behaviour 48. On a molecular level, Ca2+ binds to 

phosphatases and kinases to affect downstream targets, and these on-off kinetics are most 

likely responsible for decoding a range of possible frequencies. With oscillations below 

appropriate frequencies, the signal cannot integrate to mount a response. Ca2+ binds to many 

effectors with high cooperatively and high dissociation, again supporting the idea that a 

range of moderate frequencies, corresponding to these kinetics, encodes more information 

than constant Ca2+ signals or high frequency signals 44. Multiple proteins involved in T cell 

activation are thought to be appropriate for this signalling, including PLC-γ 49, 50, PKCβ 51 

and the mitochondrial Ca2+ uniporter 52.

A downstream step in this signalling pathway is transcription of appropriate genes, and one 

would assume this is maximally achieved within the range of natural frequencies, hence the 

necessity of appropriately timed Ca2+ oscillations. It has been shown in previous studies, for 

multiple genes, that maximal expression is tuned to particular Ca2+ signalling 

characteristics. 11, 44, 53–55. In our approach we conclude H2O2 signalling modulates Ca2+ 

oscillatory kinetics within an effective range necessary for downstream transcription factor 

activation. Our findings implicate connections between Ca2+ and H2O2 that tune frequency 

behaviour of Ca2+ signalling, thus modulating Ca2+ signalling in a less explored domain and 

demonstrating the necessity to better characterize the dynamic regulation. This also 

establishes the ability of our approach to investigate the connection between a plethora of 

chemical cues to better understand the unaltered underlying chemical signalling.

Our investigation of Ca2+ kinetics is the first to compare the Ca2+ response in Jurkat as a 

Bode plot across frequencies. By optimal fitting of our cellular responses to a 2nd order 

transfer function, (Figure 6), we have generated a simple model representation of complex 

behaviour with 3 parameters: ωn, ζ, and K. The benefit of such a reduced system while 

retaining the pertinent responses in the frequency domain is the utility for in silico 
perturbation of the interactions between Ca2+ and H2O2. The transfer function can be 

compared with subsets of mechanistic models to determine dominant feedback controls of 

the large system through model reduction. Furthermore, in future work the specific 

topological features of the Ca2+ and H2O2 regulatory networks could be mapped to the 

control systems-derived parameters discovered here. The molecular contributors, for 
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example, to the damping coefficient ζ would exert significant control over cellular 

information processing by sustaining dynamic cues into frequency encoded transcriptional 

responses or curbing the signal. More importantly to near term applications of this work, 

however, is that the transfer function will be capable of predicting cellular responses to any 

arbitrary input function 34 that may be delivered to the cells, such as a pre-experiment on-

chip assessment of highly active cells.

Lastly, all experimental results showed great population heterogeneity, with a wide range of 

responses that could not be easily captured with any other conventional experimental 

platform such as flow cytometry. These single-cell differences could be the result of 

stochastic differences in gene expression, growth phase of the cells, or epigenetic alterations. 

Maintaining a plethora of responses at the population level would be advantageous for 

mounting an effective immune response 56 by being more or less responsive (gain) to a given 

input and filtering dynamic inputs with more or less stringency. Future experiments may 

attempt to control or visualize more of these levels of variability for a more complete 

understanding of the underlying mechanisms.

Conclusions

Oscillating cytoplasmic calcium spikes have been shown to encode a variety of transcription 

factors in a complex way 11. The ability to extract more of this encoded information using 

frequency response analysis will shed light on potential dominant feedback connections and 

new therapeutic targets. We report a widely applicable platform of technology advancements 

that enable complex and intelligent perturbation of Ca2+ signalling. This includes a 

microfluidic device enabling uniform, dynamic stimulation of suspension cells, and a set of 

analysis techniques to gain single-cell resolution. Together, this approach can be utilized for 

different cell types and signalling molecules of interest. We demonstrated this applicability 

on Jurkat T cells by probing Ca2+ dynamics with H2O2 and found novel biological insight 

that Ca2+ signals exhibit a natural frequency and our results align with literature reports of 

maximal downstream transcription. We highlight the potential for different cells within the 

population to have distinct and separate filtering capabilities, an unprecedented 

understanding of the natural responses of Jurkat T cells to frequency-based stimulation.

Experimental Methods

Microfluidic Device Fabrication

Devices were moulded with polydimethylsiloxane (PDMS) (Sylgard 184, Dow Corning) and 

two master wafers as previously described 33. Both layers were moulded with a 10:1 mixture 

of PDMS pre-polymer to cross linker. The first layer of PDMS was spun on the master with 

cell traps to a level of ~10–12 μm so the pore structures that connect the two layers were 

above the PDMS and thus created holes for fluid to flow through. This layer was baked at 

70°C for approximately 15 minutes, until partially cured. The second layer was poured on 

the stimulus chamber wafer to a height of ~2–3 mm and also partially cured at 70°C for 20 

minutes. Once both layers were partially cured, the stimulus chamber layer was cut, aligned 

with the cell trap layer, and thermally bonded for an additional 40 minutes at 70°C. Once 
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cured, holes were punched with a 19-gauge needle and the two-layer PDMS device was 

plasma bonded onto a clean glass slide.

Cell Culture and Treatments

Experiments were performed on the Jurkat E6-1 human acute T cell lymphoma cell line 

(American Type Culture Collection) grown in conditions as described before 34. Briefly, the 

cells were cultured in Roswell Park Memorial Institute (RPMI) 1640 without Phenol Red 

(Lonza) and with L-glutamine (Sigma-Aldrich), supplemented with 10 mM HEPES buffer 

(Corning), 1 mM sodium pyruvate (Cellgro), 50 units mL-1 penicillin-streptomycin 

(Cellgro), 1× MEM nonessential amino acids (Cellgro), and 10% fetal bovine serum 

(Sigma-Aldrich).

To visualize cytoplasmic calcium in response to varying experimental conditions, the cells 

were loaded with 5 μM Fluo-3 AM, cell permeant (Life Technologies) and 0.05% w/v 

Pluronic F-127 (Sigma-Aldrich) for 30 minutes at 37°C. Cells were subsequently washed 

with PBS and resuspended in complete RPMI media without Phenol Red. Cells were loaded 

into the device at a density of 1 × 106 cells/mL.

Device Operation

Devices were primed with 2% BSA in PBS to prevent unintentional cell-adhesion and non-

specific binding. Once all bubbles were removed, the top, stimulus chamber, was connected 

to two pressurized reservoirs of fluid at 1 psi. Specifically, these reservoirs contained either 

complete media or complete media with the addition of 10, 25, 50, or 100 μM H2O2. Cells 

were loaded into the device via gravity driven flow as previously described 33. Once cells 

were loaded, the different solutions were delivered at alternating frequencies, as defined with 

user input to custom MATLAB (MathWorks™) scripts, which controlled off-chip pinch 

solenoid valves.

Image Acquisition

The device was positioned on the automatic stage of an inverted Nikon Eclipse Ti inverted 

fluorescent microscope and time-lapse microscopy was automated using Elements Software 

(Nikon). Cells were imaged at 10× magnification at a single position on the stage that 

encompassed cells loaded into the traps. Images were acquired using a FITC filter (Omega 

XF22) with exposure time of 800 ms. The sampling rate was every 6 s for a duration of 18–

60 minutes, depending on the oscillatory input condition.

Frequency analysis for single-cell calcium traces

The device was positioned on the automatic stage of an inverted Nikon Eclipse Ti inverted 

fluorescent microscope and time-lapse microscopy was automated using Elements Software 

(Nikon). Cells were imaged at 10× magnification at a single position on the stage that 

encompassed cells loaded into the traps. Images were acquired using a FITC filter (Omega 

XF22) with exposure time of 800 ms. The sampling rate was every 6 s for a duration of 18–

60 minutes, depending on the oscillatory input condition.
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Frequency analysis for single-cell calcium traces

As experimental design becomes increasingly complex and capable of collecting large 

quantities of single-cell data, analysis is becoming dependent on automated techniques to 

identify cells and collect metrics of interest over time. Many techniques available are unable 

to discern anomalous or unrelated features that are similar to those of interest. To combat 

this, our research first utilizes a manual approach for identifying cells of interest, and then 

builds on a combination of Relative Difference Filtering and Clustering (RDFC), which has 

shown to be useful for numerous systems with a predictable pattern of signal. Collected 

images were analysed using custom MATLAB® scripts (MathWorks™). First, cells were 

automatically identified in one of the initial images using a previously described relative 

difference filtering and clustering (RDFC) approach (Zhao et al., In Review). Once the mask 

was created, it was applied to the entire image sequence and the average fluorescent 

intensity of the cells was calculated and the local background was subtracted, based on a 

small area to the top left of each identified cell. Cell traces were discarded if the average 

fluorescent intensity was negative for any value in the measured time points, as this 

indicated the background subtraction being above the mean fluorescent intensity, suggesting 

the identified cell may have squeezed through the trap and was no longer present. For the 

cells that remained in the trap through the duration of the experiment, the average intensity 

was normalized via a linear transformation such that each cell’s signal varies from 0 to 1. 

This step helped to reduce variation in initial loading of cell dye.

Once the normalized fluorescent intensity was calculated for each cell, it was then analysed 

via a modified spectral analysis GUI, as originally developed by Uhlén in 200439. This GUI 

takes the single-cell signals and first fits a second order polynomial to each individually and 

subtracts this from the signal to remove artefacts from the experimental conditions 39, such 

as photo-bleaching of the cytoplasmic calcium indicator, Fluo-3. The Fourier transform is 

then taken of the signal to identify dominant frequencies in the signals. For each cell, the 

power spectral density is normalized to a total area of 1 and the area under the curve for each 

frequency is calculated to determine these dominant frequencies. It is then compiled into 

histograms with each identified frequency being multiplied by the relative power of the 

frequency and combined with the frequency information from all other cells in the 

population and plotted in a weighted histogram. This histogram is then normalized such that 

the total area under the curve is equal to 1 with bins of width 0.5 mHz.

Transfer function model fitting

Parameters to the 2nd order system function were fit to the median of the single-cell data at 

each frequency by using the same approach as for the ROS Ca2+ model. These parameters 

include K, the system gain, ζ, the damping coefficient, and ωn, the systems natural 

frequency in rad/s. The parameters are allowed to vary between given bounds while 

evaluating the genetic algorithm (ga) in the MATLAB® Optimization Toolbox™.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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T cells contribute to adaptive immunity by integrating complex extracellular information 

and directing cellular behavior with exquisite sensitivity. We present innovation with a 

microfluidic platform capable of applying robust, oscillatory stimuli of hydrogen 

peroxide to Jurkat T cells while simultaneously imaging the dynamic calcium response. 

With this platform, we present insight of the interaction between calcium and reactive 

oxygen species during T cell activation, with identification of a natural frequency of the 

system and demonstration of heterogeneity in resulting calcium signal frequency between 

individual cells. This integration of a microfluidic device with live cell imaging enables 

the application of control theory for probing and analyzing T cell signaling in an 

unprecedented manner.
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Figure 1. 
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Figure 2. 
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Figure 3. 

Kniss-James et al. Page 17

Integr Biol (Camb). Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Table 1

Optimized Parameter Values for Transfer Function Fits.

Parameter
Optimized Parameter Values

Bounds
Population Top 25% Bottom 25%

K 7.09e-7 7.80e-6 1.53e-7 [1e-8, 1e-3]

ζ 0.0220 0.104 0.00240 [1e-5, 1]

ωn 0.0177 rad/s 0.0168 rad/s 0.0190 rad/s [0.015, 0.019] rad/s

Error 3.7640 2.5980 3.4388

Poles −0.0004+/− 0.0177i −0.0017+/− 0.0167i −0.000045+/− 0.0190i

Stable? Yes Yes Yes
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