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Abstract

Actigraphy has attracted much attention for assessing physical activity in the past decade. Many 

algorithms have been developed to automate the analysis process, but none has targeted a general 

model to discover related features for detecting or predicting mobility function, or more 

specifically, mobility impairment and major mobility disability (MMD). Men (N=357) and women 

(N=778) aged 70–89 years wore a tri-axial accelerometer (Actigraph GT3X) on the right hip 

during free-living conditions for 8.4±3.0 days. One-second epoch data were summarized into 67 

features. Several machine learning techniques were used to select features from the free-living 

condition to predict mobility impairment, defined as 400 m walking speed <0.80 m/sec. Selected 

features were also included in a model to predict the first occurrence of MMD— defined as the 

loss in the ability to walk 400 meters. Each method yielded a similar estimate of 400 meter 

walking speed with a root mean square error of ~0.07 m/sec and an R-squared values ranging from 

0.37–0.41. Sensitivity and specificity of identifying slow walkers was approximately 70% and 

80% for all methods, respectively. The top five features, which were related to movement pace and 

amount (activity counts and steps), length in activity engagement (bout length), accumulation 

patterns of activity, and movement variability significantly improved the prediction of MMD 
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beyond that found with common covariates (age, diseases, anthropometry etc.). This study 

identified a subset of actigraphy features collected in free-living conditions that are moderately 

accurate in identifying persons with clinically-assessed mobility impaired and significantly 

improve the prediction of MMD. These findings suggest that the combination of features as 

opposed to a specific feature is important to consider when choosing features and/or combinations 

of features for prediction of mobility phenotypes in older adults.
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1. Introduction

Over the past decade, actigraphy monitors (e.g. accelerometers) have been widely used for 

monitoring physical activities (Aminian and Najafi 2004; Zijlstra and Aminian 2007). 

Improvements in technology now provide high-resolution multi-axis data that can accurately 

characterize movement and mobility (Lemoyne et al. 2008). Despite the accuracy in 

detecting ambulation (Pruitt et al. 2008), very few studies have expanded these data beyond 

physical activity ascertainment. This is partly due to the complex nature of these data that 

often requires non-traditional methods to process and extract meaningful information. 

Machine learning techniques have become popular for this purpose, but they have typically 

been applied to characterizing physical activity type and intensity (Kwapisz et al. 2011; 

Lakka et al. 2003). Characterizing specific features of the actigraphy signal could have 

broader applications for identifying mobility issues in older adults regardless of the types 

and intensity of physical activity. One could envision using body worn actigraphs for 

quantifying the degree and quality of movement patterns, similar to the way in which a heart 

rate Holter monitor evaluates cardiac function in free-living conditions.

Multi-axis accelerometers are currently being used to detect gait quality in overt disease 

conditions such as Parkinson’s and when attempting to characterize fall events (Cancela et 

al. 2011). Results from these studies suggest that data from multidimensional accelerometers 

are correlated with the severity of mobility disturbances both in the laboratory (Weiss et al. 

2011) and in free-living conditions (Frenkel-Toledo et al. 2005; Schaafsma et al. 2003). 

Recent work suggests that transitions in movement recorded by an accelerometer (e.g. sit to 

stand) can discriminate between young and older adults, and fallers versus non-fallers (Iluz 

et al. 2015; Weiss et al. 2013). This work provides the foundation for using accelerometers 

to predict mobility impairment risk individually or in conjunction with traditional clinic-

based and medically oriented markers.

There is little work done to understand the connection between activity patterns and mobility 

in older adults. Hip-worn accelerometers provide a unique opportunity to extract data 

patterns related to not only activity, but also gaps in activity time (i.e. bouts of sedentary 

time). Regarding the latter, sedentary behavior is an independent predictor of several chronic 

diseases (Ensrud et al. 2014), physical frailty (Cawthon et al. 2015; Song et al. 2015) and 

future decline in physical function (Langenberg et al. 2015). However, despite this 
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knowledge, most of the existing work has focused on laboratory-based measures of mobility 

in patients with overt gait abnormalities (e.g., Parkinson’s Disease) (Weiss et al. 2011). 

Capturing free-living accelerometry data over an extended duration might reveal subtle 

signatures of current and/or future limitation. This information can provide an accelerometry 

profile that indicates future mobility problems.

In this paper, we aim to extend previous findings in the laboratory by examining 

accelerometer data to predicting mobility impairments. The overarching process involved 

extracting, selecting, and evaluating features from the actigraphy signal from a large source 

of multi-dimensional actigraphy data along from older adults enrolled in the Lifestyle 

Interventions and Independence for Elders (LIFE) study. In this study, free-living data for 

each participant was collected from a hip-worn accelerometer for a period of approximately 

one week. Our primary goal was to identify actigraphy features that are connected to a 

phenotype of mobility of impairment of slow walking speed — a strong predictor of 

mobility disability in older adults (Perera et al. 2015; Studenski et al. 2011). We then 

extended this evaluation to determine whether the features also predicted other mobility 

outcomes— specifically the inability to walk 400 meters. This approach is a novel extension 

from its original use, which was to monitor adherence and compliance to the physical 

activity intervention in the LIFE study.

2. Materials and methods

2.1. Participants

The LIFE study was a multicenter, single-blinded, parallel randomized trial (N=1635) 

conducted at 8 field centers across the U.S (Fielding et al. 2011). Participants were enrolled 

between February 2010 and December 2011 and who participated in the intervention for an 

average of 2.6 years. The inclusion criteria for the LIFE study were: (1) age 70–89 years, (2) 

summary score <10 on the Short Physical Performance Battery (SPPB) (Guralnik et al. 

1995), (3) sedentary lifestyle, (4) ability to complete a 400m walk test, (5) ability to safely 

participate in the intervention as determined by medical history, physical exam and resting 

ECG, and (6) no major cognitive impairment (Modified Mini-Mental State Examination 

[3MSE] 1.5 standard deviations below education- and race-specific norms). Institutional 

review boards approved the study protocol at all sites. Written informed consent was 

obtained from all study participants. The study was monitored by a data and safety 

monitoring board appointed by the National Institute on Aging. The trial is registered at 

ClinicalsTrials.gov with the identifier NCT01072500.

2.2. Accelerometry

For this study, the analysis was performed on the baseline accelerometry data that were 

collected from a hip worn Actigraph GT3X. The device was worn on the right hip, which is 

considered an ideal location for capturing ambulatory activity and information about 

kinematics of gait (Preece et al. 2009). The Tri-axial accelerometer sampled movements in 

three directions (horizontal, perpendicular and vertical) and activity count data (calculated 

for 1 second epochs) were collected for approximately one week on each participant. Raw 

acceleration data was not collected due to limits in length of data collection, which was a 
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maximum of a few hours for this version of hardware. The sample was constrained to 

participants having ≥5 valid days where a valid day was defined as having ≥10 hours of wear 

time. We followed standard guidelines for detecting time intervals when a participant was 

not wearing the monitor (i.e., non-wear) by calculating non-wear time using an amplitude 

threshold of zero for a period of a consecutive 90-min time window with an allowance of a 

2-min interval of nonzero counts (Choi et al. 2011). There were 1135 participants who met 

all the necessary criteria to be included in the analysis. Figure 1 illustrates a flow diagram 

with the eligible participants available after applying the constraints. Version 2.1 of the LIFE 

accelerometry dataset was used for all computations.

2.3. Walking speed, major mobility disability (MMD) and other measures

The walk speed was obtained from the baseline 400 m walk test that corresponded to 

participant’s baseline accelerometry data (Fielding et al. 2011; Pahor et al. 2014). Briefly, 

participants were asked to walk 400 m at their usual pace, without over-exerting, on a 20 m 

course for 10 laps (40 m per lap). Participants were allowed to stop for up to 1 minute for 

fatigue or other clinical symptoms. All participants were able to walk 400 m at baseline, but 

participants walking slower than <0.80 m/sec were defined as having mobility impairments 

(Perera et al. 2015; Studenski et al. 2011.) Participants were then re-evaluated every 6 

months to measure the future occurrence of MMD— defined as the inability to complete the 

400 m walk within 15 min without sitting and without the help of another person or walker. 

Use of a cane was acceptable. When MMD could not be objectively measured because of 

the inability of the participant to come to the clinic and also absence of a suitable walking 

course at the participant’s home, institution or hospital, an alternative adjudication of the 

outcome was based on objective inability to walk 4 m in <10 sec, or self-, proxy-, or medical 

record-reported inability to walk across a room. If participants met these alternative criteria, 

they would be classified as not being able to complete the 400 m walk within 15 minutes.

The main baseline measures included self-reported demographic characteristics of race and 

ethnicity reported according to National Institutes of Health (NIH) requirements, 

anthropometrics, medical and hospitalization history, cognitive function assessed with the 

Modified Mini-Mental Status Exam (Evelyn and Chui 1987), and the short physical 

performance battery (SPPB). These measures are described in detail elsewhere (Fielding et 

al. 2011; Marsh et al. 2013; Pahor et al. 2014).

2.4. Analysis design: feature extraction, selection and evaluation

The overall analytic design involved a four-pronged approach of extracting, selecting, 

evaluating and assessing the predictive value of actigraphy features. Feature extraction is a 

comprehensive approach to derive time-domain features in the temporal tri-axial 

accelerometry data. For the second step, machine learning methods were applied to select 

the features and evaluate the sensitivity and specificity to detect a low usual walking speed < 

0.80 m/sec — a marker of mobility function (Perera et al. 2015; Studenski et al. 2011). 

Lastly, selected features were evaluated for their ability to predict the occurrence of MMD 

across a period of 24-months. More analytic details of these procedures are described in the 

subsequent sections.
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In the first step, the activity count data were converted into feature vectors, where each 

vector (data point) represented a participant. Features were based on the time domain and 

were chosen from knowledge in the literature, visualization of the data and expert opinion 

from the coauthors (Ellis et al. 2014a; Ellis et al. 2014b; Ellis et al. 2014c; Kate et al. 2016). 

Frequency domain features were not calculated because the resolution did not satisfy the 

minimum rate at which a human movement signal (0.5 – 2.5 Hz) can be sampled without 

introducing errors, which is twice the highest frequency present in the signal (i.e. nyquist 

frequency). Within each daily identified wear time, bouts of activity were identified as time 

intervals, which had ≥100 activity counts per minute and <30 consecutive ≤2 activity counts 

per second. Gaps in activity where a participant was unlikely to be ambulatory were defined 

as <100 counts per minute. A total of 67 features that characterized the time-domain signal 

were extracted using custom code in Matlab®. Each feature was normalized to have a mean 

of zero and standard deviation of one. The features are described in detail in the 

supplementary table.

The next step was to select the major features associated with 400 m walking speed 

(assessed in meters/sec). Since many of the features were derived from correlated axes and 

vector magnitude, a variance inflation factor with correlation coefficient threshold of 0.9 was 

applied to reduce the number of features that possessed a high level of collinearity. We then 

conducted univariate Pearson correlations between each selected feature and 400 m walking 

speed. Next, assuming sample Xi has n different attributes Xi = {ai1, ai2, …, ain}, we chose 

those k features (k < n) which are sufficient to best explain the target Yi (walk speed). One 

straightforward solution would be examining every subset of k features, and select the best 

combination. However, there are 
n
k  possible subsets, which is impractical for traditional 

statistical approaches. We applied several well-known machine learning algorithms for 

feature selection: sequential feature selection (Pudil et al. 1994), LASSO (Tibshirani 1996), 

ridge regression (Hoerl and Kennard 1970), and elastic net (Zou and Hastie 2005). The 

general goal was to identify related features, as well as their linear combination 

( Yi = ∑j = 1
k βjaij) such that they produced the target (walk speed) to its actual value (Yi). 

The methods minimize the sum of squared errors according to the following minimization 

parameters (assuming we have M samples):

minβ ∑i = 1
M Yi − Yi 2

2 = minβ ∑i = 1
M Yi − ∑j = 1

k βjaij 2
2

Each method has strengths and limitations and has slightly different characteristics to 

minimize the sum of squared errors (RMSE). For regression-based methods, LASSO places 

a penalty on the number of features used as regressors, ridge regression adds a penalty to the 

summation of coefficients that are assigned to the features, elastic net applies a penalty to 

both the number of features used as regressors and the coefficients simultaneously. 

Sequential feature section works differently as it interactively adds features until the 

objective function, in this case RMSE, is minimized. We applied a 5-fold cross validation, 

such that four portions of the training set were used to learn a model and one test portion 

Kheirkhahan et al. Page 5

Physiol Meas. Author manuscript; available in PMC 2018 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



was used for evaluation purposes. Figure 1 includes information about the training and test 

datasets.

The predicted walk speed values of each machine learning technique were evaluated for its 

fit using root mean square error (RMSE) and R-squared values on the test sample. 

Additionally, the test sample was divided into those with walking speed <0.8 m/s as positive 

for mobility impairment and ≥0.8 m/s as negative for mobility impairment. Accuracy, 

sensitivity and specificity were calculated for each method. In order to gain an 

understanding about the importance of each feature, we ranked them based on their 

importance score. Importance score for each feature was computed as the summation of 

their assigned coefficients by linear regression weighted by the accuracy of the selected 

subset; i.e. If = Σs∈{SFS,LASSO,Ridge,Elastic} Cf,s × Accs, where If is the importance score for 

feature f, Cf,s is the coefficient assigned by linear regression and Accs is the accuracy for the 

selected subset. Features were sorted based on their importance score ranking (from highest 

to lowest) and incrementally added to the predictive model. For the sake of clarity consider 

the following example: method A selects features {f0 and f1} and method B favors {f0 and 

f2} – the features are sorted based on their coefficients. The features f1 and f2 are correlated 

(e.g., correlation > 0.5). If Cf1,A * AccA > Cf2,B * AccB then the final model will be {f0 and 

f1}; otherwise f2 would be included. This systematic stepwise process guarantees that the 

final model will include the features that were unanimously selected and include features 

contributing to better accuracy will be favored over their correlated counterparts.”

The next step in the analysis was to establish concurrent validity— ability to predict other 

outcomes— of the features. To do this, the features were used to predict the occurrence of a 

MMD outcome. For this approach nested Cox proportional hazards regression models were 

fit to evaluate the top five highest ranked actigraphy features for predicting the first 

occurrence of MMD. The approach fits nested models by sequentially adding blocks of 

variables and then comparing the relative fit of each model, one block at a time. A 

likelihood-ratio test along with the Harell’s Concordance Statistic (C-statistic) which 

measures the probability of concordance between the predicted and observed survival — a 

value of 0.50 equates to random predictions and a value of 1.0 equates to a perfectly 

discriminating model was used to evaluate the addition of each block. The blocks were 

designed to evaluate whether actigraphy features have added value to predicting MMD while 

also considering established predictors of disability in general. The blocks included: 1) age, 

gender and intervention arm (physical activity or health education), 2) body mass and height, 

3) 4-meter walking speed at baseline assessed using the SPPB test, 4) comorbidity count 

(sum of myocardial infarction, diabetes, diagnosed high blood pressure, history of cancer, 

stroke, cardiac heart failure, chronic pulmonary disease, and depression diagnosis) and 5) 

the top five actigraphy features. For comparison purposes, continuously distributed 

covariates were normalized to have a mean of zero and standard deviation of one. For Cox 

models, failure time was measured from the time of randomization; follow-up was censored 

at the last successfully completed 400 m walk test. For participants who did not have any 

outcome assessments, we assigned one hour of follow-up time, since we knew that they 

completed the 400m walk at baseline. Results were considered statistically significant at p ≤ 

0.05.
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3. Results

The main baseline characteristics of the overall analytic sample are as follows: average age 

78.7 years, women 66.5%, average BMI 30.3 kg/m2, and average SPPB score 7.5 (indicating 

a low functioning population and at risk of mobility incidents). Women had slower gait 

speed than men (mean [SD], 0.82 [0.15] m/sec vs 0.88 [0.17] m/sec; P<0.001) but similar 

body mass indices (mean [SD], 30.4 [6.3] vs 30.0 [5.5]; P=0.34). Table 1 depicts 

demographics, behavioral factors, medical conditions, and actigraphy metrics for 

participants dichotomized by gait speed defined as <0.80 and ≥0.80 m/sec. Older adults with 

slower walking speed were more likely to be women and generally less healthy—lower 

SPPB scores, higher BMI, less self-reported time spent in walking and weight training 

activities, lower 3MSE scores, and higher rates of heart attack and hypertension.

Sixty-seven features were extracted— 14 features for each axis and vector magnitude, 

amplitude proportion of each axis, one summary feature for vector magnitude, 2 step-related 

features, and 5 compound features (detailed description in the supplementary table). 

Application of the variance inflation factor reduced the number of features to 30 that are 

characterized in table 2. Univariate correlations between the 30 features and 400 meter walk 

speed are illustrated in figure 2. The average counts per second over activity periods had the 

highest positive correlation and the proportion of axis 3 counts/min to the total vector 

magnitude had the highest inverse correlation.

Table 3 shows the results of estimating accuracy between the actual and predicted values by 

each machine learning technique. Each machine learning technique performed similarly with 

Sequential Feature Selection having the least RMSE (0.07 m/sec) and LASSO with the best 

R-squared value (0.39). In terms of sensitivity and specificity, Elastic Net showed the 

highest sensitivity (71.3%) and Sequential Feature Selection had the highest specificity 

(83.6%). The five highest ranked features, according to their importance score, were: 1) 

average axis 1 counts per min during active periods, 2) standard deviation of axis 3 activity 

counts during bouts of activity, 3) number of steps per day, 4) average axis 2 activity counts 

where half of the total activity is accumulated, and 5) average duration of axis 1 bouts of 

activity. Applying the final list of top-5 features slightly improved the R-squared value 

(0.4107) and produced an accuracy of 78.8%, sensitivity of 72.4%, and specificity of 82.9% 

for classifying older adults with slow walking speed.

Over an average of 2.26 years (range: 0.01 – 3.6 years) of follow-up, 337 participants (131 

per 1000 person-years) had a MMD event with an overall cumulative event rate of 29.7%. 

Each model in the sequence of Cox proportional hazard regression models demonstrated a 

significant improvement in fit (likelihood ratio test for addition of each block, p-value < 

0.01). Figure 3 illustrates an increase in the C-statistic for each model and a final C-statistic 

of 0.70 after the five highest ranked actigraphy features were added to the model.

4. Discussion

The current study investigated a variety of actigraphy features derived on a large sample of 

older adults in free-living conditions. The main findings are that: 1) some of the most 
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common machine learning techniques provide a similar predictive capacity for estimating 

walking speed and slow walking pace from actigraphy features; 2) despite a large number of 

derived actigraphy features, a smaller subset of only five appear to be able to capture the 

same information as the full 30 for estimating walking speed and slow walking speed; and 3) 

activity count amplitude, steps per day and some new actigraphy features, not commonly 

ascertained in the signal (e.g., variation in axis 3), improved the prediction of incident MMD 

in older adults. The results add to the existing literature regarding identification of important 

actigraphy features for estimating walking ability among community-dwelling older adults. 

They also contribute new knowledge about how actigraphy features might predict the 

occurrence of mobility disability that is specific to not only the amount and intensity of free-

living physical activity, but also the variability in those movements in different anatomical 

orientations.

Several studies have sought to measure mobility in older adults using features constructed 

from accelerometer data. For example, (SankarPandi et al. 2014) extracted features such as 

the mean and standard deviation from accelerometer data collected during Time Up and Go 

(TUG) test. (Ezeugwu et al. 2015) evaluated the volume (e.g., sedentary and activity times) 

and pattern of activity and non-active (e.g., the gaps in activity) features (e.g., number of 

breaks in sedentary/activity time) to identify activity/inactivity behaviors in patients with 

multiple sclerosis. Additionally, there are a growing number of studies that exploit the raw 

signals to recognize specific physical activities (Ellis et al. 2014a; Ellis et al. 2014b; Ellis et 

al. 2014c) in free-living conditions. These results have also been extended to mobility 

impairments in patient populations such as Parkinson’s disease (Ellis et al. 2015). For 

example, Palmerini and colleagues demonstrated that frequency domain characteristics (high 

frequency power and frequency dispersion) from an accelerometer fixed to the lower back 

were associated with Parkinson’s disease severity and function (Palmerini et al. 2011). This 

study extends these concepts by deriving, selecting and evaluating actigraphy features in a 

large sample of older adults to predict the development of MMD without overt movement 

disorders.

Machine learning techniques are now commonly used to reduce the high dimensional 

actigraphy data (Garcia-Ceja et al. 2014; Gupta and Dallas 2014; Rothney et al. 2007; 

Staudenmayer et al. 2009). These techniques are useful because they are robust for sorting 

through a large number of features to identify individual and/or combinations that estimate a 

phenotype. Most research has focused on using these techniques to help recognize activity 

type and intensity. However, we took a different approach by using these techniques to 

estimate a clinically meaningful mobility phenotype of walking speed, given that it is a 

major predictor of overall health in older adults and has been consider a marker of vital 

status in older adults (Perera et al. 2015; Studenski et al. 2011). Interestingly, each analytic 

technique employed in this study yielded similar predictive capacity and generally the same 

predictive error for walking speed and classification error for mobility impairment. In that 

regard, the classification of mobility impaired older adults— or those exhibiting slow walk 

speeds— using these techniques was moderate with a sensitivity of ~0.70, a specificity of 

~0.80 and a ~76% correct classification rate. These results suggest that categorizing older 

adults into mobility impairment categories is plausible with actigraphy data collected in free-

living conditions. However, the classification accuracy was not perfect and estimates should 

Kheirkhahan et al. Page 8

Physiol Meas. Author manuscript; available in PMC 2018 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



be considered moderate for diagnosing slow walkers or those who might have mobility 

impairments.

We derived a method to rank the features that most contributed to the model fit and derived a 

parsimonious model. The following five features yielded an almost identical prediction error, 

sensitivity, specificity and classification error as the full set of features: average axis 1 counts 

per min during active periods, average length of axis 1 bout of activity, average axis 2 

activity count where half of the total activity is accumulated, standard deviation axis 3 

activity counts, and number of steps per day. Interestingly, these features were not 

universally correlated with walking speed in univariate analyses, which suggests that the 

combination of features as opposed to a specific feature is important to consider when 

choosing features and/or combinations of features.

The top five features appear to fall into fundamental categories that relate to traditional 

physical activity factors of movement amount and speed, pattern of accumulating physical 

activity, engagement in activity, and variability in movement. The average count amplitude 

in axis 2 (anterior-posterior plane) and variability of counts in axis 3 (medio-lateral plane) 

may also provide pseudo-biomechanical insights in free-living conditions that relate to gait 

characteristics. Axis 1, which captures accelerations in the vertical direction or the superior-

inferior plan, is often associated with ambulatory activity intensity (e.g., speed) (Bassett et 

al. 2014; Freedson et al. 1998; Troiano et al. 2008; Troiano et al. 2014). In fact, a previous 

study by (Sherman 2003) demonstrated a significant relationship between activity counts 

generated by a hip-worn accelerometer and walking velocity on a treadmill test (coefficients 

range from 0.47 to 0.94). Our findings show that the average counts per min derived during 

activity periods (activity with >3 minutes length and >80% of nonzero values during a wear 

bout) was correlated to walking speed to a similar extent (coefficient= 0.59). Interestingly, 

this relationship was observed in both the superior-inferior (axis 1) and medio-lateral (axis 

2) planes. What is different here is that actigraphy data were collected in free-living 

conditions and not synced to a test performed in the clinic as done in previous studies. 

Additionally, the average bout length for superior-inferior (axis 1) was one of the top five 

features in our data. This variable is highly (and negatively) correlated with the number of 

activity bouts, and can be conceptualized as the strength in activity engagements. In 

univariate comparisons, we found that walking speed was associated with both the average 

bout length and the average number of bouts per day (in opposite directions). Such finding 

suggests that mobility impaired individuals engage in more bouts, but these bouts were 

generally shorter than individuals with higher walking speeds. These findings are in line 

with Manns and coworkers who showed that older adults with mobility limitations had 

shorter bouts of activity (Manns et al. 2015). Moreover, the variability of counts in axis 3 

was a key feature for predicting walking speed. This is consistent with the literature 

demonstrating that variability in gait is associated with mobility impairments and a predictor 

of mobility-related disabilities (Brach et al. 2007). Importantly, this feature demonstrated a 

low univariate correlation and thus the combination of variability along with a proxy of 

movement speed via information from the vertical axis appears to be critical. Lastly, despite 

the rigorous processing to identify unique actigraphy features, the number of steps per day— 

one of the simplest features that is often standard output— appeared as one of the most 

important features. There is a wealth of information noting the association between number 
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of steps and mobility studied (Tudor-Locke et al. 2011; Tudor-Locke et al. 2012) and it is 

considered as one of the most important features (if not the only feature) to consider when 

investigating mobility quality (Davis et al. 2011). Our finding reinforces the features as 

critical component to predicting mobility in older adults. Despite its high correlation with 

the gait speed (~ 0.4), the accuracy of steps per day in discriminating slow walkers was no 

better than chance alone (49.4%, data not presented). Therefore, it is important to consider 

using actigraphy features in conjunction to provide an optimal fit for assessing mobility 

impairments.

A major addition of this work to the field is the transfer of knowledge from feature 

extraction and selection methods to predicting the occurrence of a MMD clinical endpoint. 

The results from the MMD analysis suggest that the top five actigraphy features significantly 

improved the prediction of MMD alongside variables consistently known for their 

association with disability in older adults. In fact, the model fit for predicting MMD was 

substantially improved after inclusion of the actigraphy features. As such, actigraphy data 

from free-living conditions may be a useful tool for generating a mobility disability risk 

profile in the future.

There are both strengths and limitations to the current work. The study included a 

comprehensive set of actigraphy features collected in a large sample of well-characterized 

older adults in free-living conditions. It also systematically evaluated these with clinically 

important endpoints. However, these strengths are balanced with some weaknesses that 

include not being able to evaluate the frequency domain features (e.g., dispersion) that are 

becoming more common with higher hardware resolution rates (Ellis et al. 2014b). 

Additionally, hip-worn actigraphy is not located at the center of mass and thus is not an ideal 

location to capture subtle impairments in ambulation (Weiss et al. 2015). Lastly, the sample 

of older adults in this study were moderate to low functioning and therefore not 

representative of the general population of older adults.

5. Conclusion

This study identified a subset of actigraphy features collected in free-living conditions that 

are moderately accurate in identifying older adults with slow walking speed— a proposed 

marker of vital status in this age group. These features capture domains related to movement 

pace and/or intensity, engagement in activity, patterns of activity, and the movement 

variability. When these actigraphy features are used in combination they significantly 

improve the prediction of mobility disability in older adults.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Eligible participant flow diagram for accelerometry analyses.
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Figure 2. 
Univariate correlation between features and walking speed (target variable). The minimal 

subset of features used for mobility assessment is bolded. AVG, average; STD, standard 

deviation; AC, activity counts; Ai, ith axis (e.g. A1= axis 1); VM, vector magnitude; NO, 

number of. The black bars were selected by machine learning techniques in Table 3 and the 

ranking algorithm described in the methods.
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Figure 3. 
Harell’s C-statistic where a value of 0.50 equates to a random chance of prediction was 

derived from post-estimations of Cox proportional hazards regression for predicting incident 

MMD (i.e., major mobility disability or the inability to walk 400 m). The results for 

sequential nested models: model 1 with covariates for age, gender and intervention arm, 

model 2 adds comorbidity count, model 3 adds 4-meter walking speed, model 4 adds body 

weight and height and model 5 adds the top five actigraphy features. All models are 

statistically significant and each sequential model represented a significant increase in 

prediction of MMD (p<0.05).
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Table 1

Qualitative characteristics for the participants by their gait speed

Characteristic

Baseline 400 meter walk 
speed < 0.8 m/s

N = 451

Baseline 400 meter walk 
speed ≥ 0.8 m/s

N = 684 P Value

Age (years) 79.6 ± 5.4 78.1 ± 5.1 < 0.01

Women 334 (74.1) 444 (61.5) < 0.01

Ethnicity/race

 Hispanic 17 (3.8) 26 (3.8) 0.99

 Caucasian 355 (78.7) 545 (79.7) 0.75

 African American 79 (17.5) 113 (16.5) 0.72

SPPB score 6.7 ± 1.6 8.0 ± 1.3 < 0.01

SPPB score <8 286 (64.4) 189 (27.6) < 0.01

400 m walking speed (m/sec) 0.68 ± 0.09 0.94 ± 0.10 < 0.01

Body mass index (kg/m2) 31.5 ± 6.9 29.5 ± 5.3 < 0.01

Self-reported minutes per week in walking/weight training 
activities

14.0 ± 29.5 20.0 ± 35.7 0.02

3MSE score (0–100 scale) 91.6 ± 5.6 92.4 ± 5.0 0.02

Conditions a

 Hypertension 346 (76.7) 460 (67.2) < 0.01

 Diabetes 131 (29.0) 178 (26.0) 0.29

 Heart attack or myocardial infraction 46 (10.2) 41 (6.0) 0.01

 Stroke 33 (7.3) 47 (6.9) 0.87

 Cancer 111 (24.6) 140 (20.5) 0.12

 Chronic pulmonary disease 75 (16.6) 103 (15.0) 0.52

Results are in a subset of individuals (451 in < 0.8 m/s gait speed and 684 in ≥ 0.8 m/s gait speed) with valid accelerometry data. Data are means 
and standard deviations or n (%);

SPPB = short physical performance battery.

Some values may slightly differ from those previously published data because of differences in analysis participants.

BMI, body mass index; 3MSE, Modified Mini-Mental Status Exam; SD, standard deviation; GS, gait speed.

a
Self-reported, physician diagnosed.

LIFE datasets version 2.1 were used for analyses
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