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Abstract

Measuring physical activity using wearable devices has become increasingly popular. Raw data 

collected from such devices is usually summarized as “activity counts”, which combine 

information of human activity with environmental vibrations. Driving is a major sedentary activity 

that artificially increases the activity counts due to various car and body vibrations that are not 

connected to human movement. Thus, it has become increasingly important to identify periods of 

driving and quantify the bias induced by driving in activity counts. To address these problems, we 

propose a Detection Algorithm of Driving via Accelerometry (DADA), designed to detect time 

periods when an individual is driving a car. DADA is based on detection of vibrations generated 

by a moving vehicle and recorded by an accelerometer. The methodological approach is based on 

short-time Fourier transform (STFT) applied to the raw accelerometry data and identifies and 

focuses on frequency vibration ranges that are specific to car driving. We test the performance of 

DADA on data collected using wrist-worn ActiGraph devices in a controlled experiment 

conducted on 24 subjects. The median area under the receiver-operating characteristic curve 

(AUC) for predicting driving periods was 0.94, indicating an excellent performance of the 

algorithm. We also quantify the size of the bias induced by driving and obtain that per unit of time 

the activity counts generated by driving are, on average, 16% of the average activity counts 

generated during walking.
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Introduction

The use of wearable accelerometry-based monitors of physical activity (PA) is becoming 

increasingly popular in large epidemiological studies. Objective PA measurements obtained 
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from accelerometers are used to complement and calibrate the widely used self-reported 

questionnaires. In fact, the transformation of questionnaires is also profound and they are 

increasingly moving to wearable platforms such as smart phones or tablets and focus on a 

time range that is short enough to obtain reliable reports. Detailed quantification of the total 

PA volume as well as fractions that are attributable to specific types of daily activities is very 

challenging and has remained an elusive goal of PA monitoring research. Wearable 

accelerometers provide objective quantification of body acceleration, which is expected to 

be a good proxy for PA in the free-living environment. Objectively measured PA was shown 

to be significantly associated with age and health outcomes [1], while the total PA volume 

and amount of sedentary time are associated with demographic covariates [2].

Driving is a common sedentary activity that plays an important role in the day-to-day 

activities. Studies have shown that drivers in the United States spend on average 46 minutes 

per day driving a car [3]. The amount of daily driving has been shown to be associated with 

health outcomes, quality of life and obesity [4]. In addition, car driving is associated with 

physical and social functioning, especially among older adults [5]. Thus, objectively 

quantifying the amount and timing of daily driving for individuals is a crucial component of 

modern PA studies. An unfortunate consequence of the nature of accelerometer data is that 

acceleration produced during car driving is much higher than acceleration during typical 

sedentary behavior. If left unaccounted for this may result in overestimation of the daily PA, 

especially for individuals who drive more and walk less. The overestimation of PA by 

Fitbit® fitness trackers has been observed and reported before (see, e.g [6]). However, at this 

point no practical solution exists for addressing this problem.

In this paper, we propose an algorithm (Detection Algorithm of Driving via Accelerometry – 

DADA) for objective recognition and quantification of car driving. Our algorithm is based 

on the frequency domain analysis of the raw accelerometry signal within a short window of 

activity and provides an extension to previously developed algorithm for detection of 

sustained harmonic walking [7]. We apply DADA to the raw accelerometry data collected 

from the ActiGraph GT3X+ accelerometers worn on the left wrist in a controlled experiment 

undertaken at Indiana University on a group of 24 adults who performed walking and 

driving activities. We report the accuracy of DADA for driving detection using the area 

under the ROC curves (AUC) as well as the sensitivity and specificity at the universal 

optimal threshold. In addition, we quantify the overestimation of the PA recorded by the 

devices during the driving period as a proportion of walking activity per unit time.

Methods

Study Population

Twenty-four adults (8 men, 16 women) participated in a study to identify walking, stair 

walking and driving from raw accelerometry data. The study included a walking trial 

(approximately 0.66 miles) followed by a driving trial (approximately 12.8 miles). The 

walking trial included walking on a level ground, up and down stairs, and up and down 

inclined paths. Immediately after the walking period, participants were accompanied to their 

vehicle, which they drove on a predefined route that included both highway and city driving. 

The walking trial lasted between 10 and 14 minutes while the driving trial lasted between 18 
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and 30 minutes, depending on traffic. Participants wore four ActiGraph GT3X+ 

accelerometers—one on the left ankle, one on the right ankle, one on the left hip, and one on 

the left wrist. In this paper, only the data acquired from the left wrist were used for 

investigation. The accelerometers measured raw acceleration along three axes at a sampling 

rate of 100Hz. All four devices were synchronized to the same external clock providing 

parallel measurement for four body locations. A human observer recorded the start times, 

while the stop times were recorded and reported by the study participants. To ensure 

accuracy of the start and stop times, drivers were also asked to hit their steering wheels 3 

times at the beginning and end of the driving trial to internally mark the raw accelerometry 

data with 3 consecutive spikes in the signal. The study was approved by the Institutional 

Review Board of the Indiana University; all participants provided written informed consent.

Driving detection algorithm - DADA

Figure 1 displays raw accelerometry data collected during four different activities: sitting 

still, standing up, walking and driving. The left panels show the raw acceleration signals, 

while the right panels their corresponding frequency spectra. The frequency spectrum is a 

standard technique in signal processing used to decompose the original signal in its 

fundamental frequencies, or vibrations. For sitting still (top plot) and standing up (top 

middle plot) the spectra do not have characteristic peaks, indicating that there is no dominant 

periodic movement of the device during these activities. For walking (middle bottom plot), 

there is an obvious group of frequencies that have a higher magnitude. As pointed out in [7], 

the range of “walking-related” frequencies is usually between 1 and 10 Hz, depending on the 

subject and the step frequency. These peaks have the highest magnitude in the range of 1 to 

3 Hz and gradually fade out at higher harmonics. “Driving-related” frequencies (bottom set 

of plots) are typically above 8 Hz, accompanied by a set of harmonics. We believe that this 

is due to car vibrations induced by mechanical movements and road imperfections. The most 

remarkable part of these plots is that the dominating walking and driving frequencies are 

well separated, at least for this subject. This provides the intuition behind the algorithm: 

identify driving periods as those periods when the dominating frequency is higher than the 

maximum frequency of movement in humans.

The idea that vibrations from a running car affect a driver is not new. Several studies 

described this phenomenon [8] [9], but the focus was on reduction of vibrations that 

decrease comfort and may cause distraction or sleepiness. Our interest focuses on assessing 

whether accelerometers worn by individuals driving a car can provide sufficient information 

to detect driving. Hypothetically, this should be possible. Indeed, for a car with a 16in wheel 

diameter moving at 30mph, the rotational speed of a wheel is about 10.5Hz. Commonly used 

wearable accelerometers can capture signals up to 100Hz or more. Therefore, according to a 

Nyquist-Shannon theorem, vibrations up to 50Hz that are transmitted from the car to the 

human body should be detectable. In real-life experiments the wheel diameter and speed are 

unknown, while speed can change continuously during the experiment. Our algorithm 

overcomes these difficulties by scanning the entire high-frequency range of the spectrum 

that cannot be associated with any known periodic human activity, such as walking or 

running.
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DADA algorithm

Let the measured signal be x(t) = {x1(t), x2(t), x3(t)}, where x1(t), x2(t), x3(t) denote the 

measurement along each of the orthogonal axis x, y and z of the wearable device at time t, 
respectively. We concentrate on the driving detection for a sensor placed on the left wrist of 

a driver. A subject may change a position of the device, which may affect the signal along 

each axis due to a change in the angle relative to earth’s gravity [10] [11] [12].

To alleviate the effect of hand movement we focus on the vector magnitude 

VM(t) = x1(t)2 + x2(t)2 + x3(t)2. This form of the signal should be invariant to rotations and 

more robust to translations. The signal is then decomposed into its various frequencies using 

Fourier transformation in short non-overlapping time windows. The automatic time-sliding 

Fourier transform is referred to as the Short-time Fourier Transform (STFT) [13]. For a 

window of size τ centered at time t the STFT is a function of the frequency f and the time t 

and is expressed as

X( f , t) = ∑
u = t − τ /2

t + τ /2
x(u)h(u) e

−t2π f 1
T (0.1)

Here h(u) is a weighting function that assigns more weight to observations that are closer to 

the middle of the interval centered at time t, and less weight to observations that are farther 

away.. We use the widely utilized Hanning window [14] defined as:

h(u) = 0.5{1 − cos[2πu/(τ − 1)]} (0.2)

For every fundamental frequency, f1, we calculate the area for a specific part of the spectrum 

corresponding to the three frequency intervals fi ± B, i ∈ [1,2,3], where f2 = 2 · f1 and f3 = 3 

· f1, which represent the harmonics of the fundamental frequency. The parameter B is the 

bandwidth and it is used to account for possible deviations from the frequency and its two 

harmonics. We then identify the frequency between fmin and fmax that maximizes the partial 

area under the spectrum, which corresponds to the frequency that maximizes the explained 

variability.

The last component of the algorithm is to calculate the ratio between the maximum partial 

area under the spectrum that corresponds to a particular frequency and area under the entire 

spectrum. If there are only driving-related peaks in the spectrum and there is no background 

noise, this ratio should be equal to 1. For non-driving-related signals, the spectrum would 

display random patterns between fmin and fmax and the ratio would be close to zero. A 

similar approach was used by Urbanek et al., 2015 [7] to identify periods of sustained 

harmonic walking by focusing on a range of fundamental frequencies between 1 and 2.4Hz.

Driving is a long-term duration activity as it rarely takes less than a few minutes. The 

periodic signal associated with wheel rotation is often combined with other signals due road 
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imperfections, driver’s hand movements, and stop-and-go motions. Such distortions can be 

of higher amplitude (intensity) than the background signal characteristic of driving and can 

occur at random times during driving. To reduce the effect of these uncontrollable factors, 

we smooth the estimated ratios. Finally, the smoothed ratios are thresholded to estimate 

driving periods.

The full DADA algorithm is presented below.

DADA Algorithm

Inputs: x(t) – tri-axial acceleration signal, τ – window size, fmin – minimum frequency, fmax – maximum frequency, B – 
bandwidth, δ – threshold.

Output: y(t) – binary driving indicator.

Step 1: Obtain vector magnitude VM(t) from the raw accelerometry signal x(t).

Step 2: Transform VM(t) to the frequency domain using STFT for all times t using the data from the time 
window [t − τ/2, t + τ/2] to obtain a frequency spectrum X(s).

Step 3: Estimate the area under the spectrum X(s).

Step 4: Compute the partial area under the spectrum for each value of f from fmin and fmax by integrating the 
spectrum over fi ± B, where j=1,2,3.

Step 5: Find the frequency f for which IX(f) = ∫s∈(f,2f,3f) X(s) is maximized.

Step 6: Compute the ratio, RX(f), of the partial area under the spectrum from Step 5 to the total area under the 
spectrum from Step 3.

Step 7: Smooth the ratio RX(f) using kernel smoothing with a bandwidth equal to 10 seconds to obtain sRX(t).

Step 8: Driving is predicted y(t) = 1 at time t when sRX(t) > δ.

Tuning parameter selection

There are a number of tuning parameters that need to be selected or estimated; namely, the 

window length (τ), the bandwidth around the fundamental driving frequency (B), the 

minimum and maximum frequencies (fmin and fmax), and the threshold (δ). Window length 

(τ) is chosen to be sensitive to the “driving-related” frequencies which can change rapidly in 

time or vanish completely when a subject is not driving. We tested window sizes between 5 

and 20 seconds, which provide good resolution for calculating the spectrum. The area of 

interest is centered at particular frequency f and covers a wider band, i.e. f ± B. The 

bandwidths tested were between 0.5 and 1.5Hz. Minimum and maximum frequencies (fmin 

and fmax) were based on the common wheel sizes and driving speeds. The frequency fmin 

was considered in the range of 8 and 12Hz and fmax in the range of 14 and 16Hz. The 

threshold parameter (δ) was estimated empirically to provide the best discrimination 

between the driving and non-driving periods.

Statistical analysis

We used receiver-operating characteristic curves (ROCs) to estimate the quality of the 

DADA algorithm. The area under the ROC curve (AUC) for each subject was estimated, and 

the optimal threshold was defined as a point at which the sum of sensitivity and specificity 

was maximized. A universal threshold was defined as the median of subject-specific 
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thresholds. Subject-specific sensitivity and specificity was then estimated based on this 

universal threshold.

The acceleration levels were quantified using the vector magnitude count (VMC) defined as 

the mean absolute deviation of the acceleration signal as,

VMC = 1
T ∑

t = 1

T
VMt − 1

T ∑
t = 1

T
VMt ,

where T denotes the total number of samples for the time period where VMC is computed 

and VMt denotes the instantaneous vector magnitude of the tri-axial acceleration signal. We 

compute VMC for 10-second overlapping intervals with 90% overlap. To visualize the 

overlap between the VMC of walking and driving periods in a commonly used scale, we 

further summarized it in 1-minute non-overlapping intervals and displayed it in a histogram.

Results

There were 24 participants in the study, 16 women and 8 men. Their average age was 41.0 

years (SD=8.7) and they had an average BMI of 25.4kg/m2 (SD=5.8). 22 out of 24 

participants were right-handed. The length of the non-driving period was on average 

31.0min (SD=5.37min) and the length of the driving period was 23.3min (SD=4.12min).

Driving vs. non-driving (ROC/AUC)

The main evaluation of the DADA algorithm was performed using the following tuning 

parameters: τ = 10s, fmin = 10Hz, fmax = 16Hz, and B = 1Hz. ROC curves were estimated 

for all 24 subjects. We present the ROC curves ranked by their AUC in Figure 2 for the 10th, 

25th, 50th, 75th and 90th percentiles. The median AUC estimated for the whole sample was 

equal to 0.940 (Q1=0.903, Q3=0.996).

The median threshold value on the smooth ratio RX(f) used to define driving was estimated 

to be 0.093 (Q1=0.073, Q3=0.123). These thresholds were obtained by maximizing the sum 

between sensitivity and specificity. The subject-specific threshold exhibited limited 

variability, which allowed us to choose the universal threshold as the median threshold. With 

the universal threshold used for all study participants, the median true positive rate 

(sensitivity) was equal to 0.948 (Q1=0.869, Q3=0.966) and the median true negative rate 

(specificity) was equal to 0.881 (Q1=0.839, Q3=0.913) indicating an excellent performance 

of the DADA algorithm.

Sensitivity analysis

We conducted a sensitivity analysis to assess the change in performance of the DADA 

approach to the choice of tuning parameters. The cutoff point selection and the 

corresponding accuracy rates are shown in Table 1. For all combinations of tuning 

parameters considered the median AUC was above 0.85 indicating relatively low sensitivity 

to the tuning parameter selection. However, optimizing the tuning parameters can result in 
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better prediction performance. For example, using the minimum frequency fmin≥10Hz, the 

window size τ=10s and the bandwidth B=1Hz, the estimated median AUC was above 0.93.

The universal threshold value depends primarily on the bandwidth B. This is because the 

numerator of the ratio RX(f), (Step 6 in the DADA Algorithm) increases with the size of the 

integration domain. The estimated sensitivity and specificity at the universal threshold is 

associated with fmin and is maximized for fmin = 10Hz or 12Hz. The window size τ has a 

smaller impact on prediction accuracy; part of this is probably due to the smoothing step of 

the algorithm.

Overestimation of PA

The information collected by accelerometers comes from a combination of vibrations 

generated by the activity of the individual and by their environment. Thus, in the absence of 

advanced algorithms that can identify car vibrations, all periods of driving will artificially 

increase the estimated human PA. To quantify this bias, we compare acceleration levels 

produced during driving and walking. We use walking as the reference because it is an 

important and recognizable activity that has been also shown to be associated with health 

outcomes [16].

Figure 3 displays histogram plots of minute-by-minute VMC corresponding to driving (blue) 

and to walking (red) for all 24 subjects in the experiment. Acceleration levels for walking 

are larger than for driving. However, an overlap between the VMCs of the two activities can 

be observed. This suggests that acceleration produced during the sedentary driving might 

reach levels corresponding to walking. Specifically, range of the walking VMC is between 

5727 and 9381, whereas the range for driving is between 5877 and 6731. Using the VMC 

cutoff of 6000, driving would be mis-classified as walking in 92.2% cases, while using a 

cutoff of 6200 it would be mis-classified in 48.8% of cases.

Figure 4 displays the density of ratios between the median driving and walking VMCs 

computed for each subject. On average, the VMC generated during driving is approximately 

16% of the VMC generated during walking. Thus, the average time reported by adults in the 

United States of 46 minutes of driving [3] produces VMC equivalent to VMC for 7 minutes 

of walking. As the average self-reported time spent walking is equal to 13 minutes per day 

for adults in the United States [17], the overestimation of the walking-equivalent PA, when 

based solely on acceleration levels can be over 50%.

Discussion

We proposed and evaluated a driving detection algorithm (DADA) based on the raw 

accelerometry data obtained from wrist-worn accelerometers. The algorithm was shown to 

be highly accurate at distinguishing between driving and non-driving periods.

Public Health impact

Detecting car driving in the large observational studies is increasingly important. Indeed, 

objective estimation car driving periods can be used to complement, validate and calibrate 

subjective self-reported questionnaires on the driving time. This is important, as it has been 
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reported [3] that car driving is one of the most common daily activities. Moreover, detecting 

car driving periods using raw accelerometry data can be used to better estimate PA, by 

reducing the extraneous environmental vibrations. Car driving, especially on highways, is a 

sedentary activity recorded by accelerometers as low-amplitude, high frequency 

accelerations. These accelerations result from a superposition of two sources: mechanical 

car vibrations transmitted through the steering system to the drivers’ hand [8] and arm 

movements related with steering the car [9]. The former source tends to dominate the 

amount of acceleration during driving and leads to overestimation of PA. In fact, even the 

manufacturers of the Fitbit fitness monitor admit that driving on a bumpy road might lead to 

overestimation of the daily step count [6]. The size of the bias induced by driving can be 

significant. We estimated that per unit of time the activity counts generated by driving are, 

on average, 16% of the average activity counts generated during walking. The daily volume 

of driving for many people in United States is much higher than walking. Average time of 

driving is 46 minutes per day [3], whereas self-reported walking is only 13 minutes per day 

[17]. Therefore, the average daily driving generates as much as 50% of the acceleration of 

the daily self-reported walking-equivalent PA. This suggests that driving can have serious 

effects on PA estimation if walking was a major activity performed.

One potential minor limitation of our approach is that we used the self-reported driving end 

times, which may be inaccurate. In the future analyses better marking of end times either 

using specific high-intensity hand movements or a pre-defined endpoint may improve the 

accuracy of estimating the driving endpoint. Another limitation is that the experiment was 

partially controlled and its performance in the free-living environment was not assessed. 

However, given our experience with walking detection in the free-living environment [7] and 

the clear separation of frequencies of the signal during driving, we expect that DADA will 

have a very good performance.

Conclusions

To the best of our knowledge, this is the first study using high frequency raw accelerometry 

data designed to identify driving activities. The basic idea is that vibrations produced by the 

rotation of the car wheel and transmitted to the wrist of the driver are of much higher 

frequency (>10Hz) than vibrations produced by other human activities. While signal 

processing approaches can be used to identify this discrepancy in frequency and thus 

identify periods of driving, summary measures, such as activity counts, will record driving 

periods as moderate intensity activity for long periods of time. The proposed algorithm, 

DADA, performs very well for a wide range of tuning parameters with AUC > 0.93.
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Abbreviations

DADA Detection Algorithm of Driving via Accelerometry

PA Physical Activity

VM Vector Magnitude

VMC Vector Magnitude Count
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Figure 1. 
Sample of the data from the wrist-worn accelerometers. Raw signals (left column) and their 

corresponding frequency spectra (right column) for various activities: sitting still (top row), 

standing up (top middle row), walking (bottom middle row) and driving (bottom row).
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Figure 2. 
ROC curves for the subjects ranked by the AUC at 10th percentile (red), 25th percentile (light 

green), 50th percentile (green), 75th percentile (blue) and 90th percentile (purple).
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Figure 3. 
Histogram of the minute-by-minute VMC corresponding to driving (blue) and to walking 

(red).
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Figure 4. 
Density of ratios between median driving and walking VMCs computed for each subject.
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