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Background: Environmental enteric dysfunction (EED), a condition characterized by small intestine inflammation
and abnormal gut permeability, is widespread in children in developing countries and a major cause of growth
failure. The pathophysiology of EED remains poorly understood.
Methods:Wemeasured serummetabolites using liquid chromatography-tandemmass spectrometry in 400 chil-
dren, aged 12–59 months, from rural Malawi. Gut permeability was assessed by the dual-sugar absorption test.
Findings: 80.7% of children had EED. Of 677 serum metabolites measured, 21 were negatively associated and 56
were positively associatedwith gut permeability, using a false discovery rate approach (q b 0.05, p b 0.0095). In-
creased gut permeability was associated with elevated acylcarnitines, deoxycarnitine, fatty acid β-oxidation in-
termediates, fatty acid ω-oxidation products, odd-chain fatty acids, trimethylamine-N-oxide, cystathionine,
and homocitrulline, and with lower citrulline, ornithine, polyphenol metabolites, hippurate, tryptophan, and
indolelactate.
Interpretation: EED is a syndrome characterized by secondary carnitine deficiency, abnormal fatty acid oxidation,
alterations in polyphenol and amino acidmetabolites, andmetabolic dysregulation of sulfur amino acids, trypto-
phan, and the urea cycle. Future studies are needed to corroborate the presence of secondary carnitine deficiency
among children with EED and to understand how these metabolic derangements may negatively affect the
growth and development of young children.
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1. Introduction

Environmental enteric dysfunction (EED), an asymptomatic condi-
tion characterized by chronic inflammation of the duodenum and jeju-
num and abnormal gut permeability, is widespread among children
under five years of age in developing countries (Trehan et al., 2016).
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EED is associated with growth failure, oral vaccine failure, impaired ab-
sorption of nutrients, and high morbidity and mortality. The pathologi-
cal changes of EED include epithelial defects of villi, villous shortening,
crypt hyperplasia, and infiltration of lymphocytes (Campbell et al.,
2003; Kelly et al., 2016). EED typically occurs among young children
in the setting of poor sanitation and hygiene, widespread fecal-oral
transmission of pathogenic bacteria, viruses, and parasites, and close
contact with animals (Watanabe and Petri, 2016). The diet of children
at risk for EED is generally of poor quality, being low in animal
source foods, essential amino acids, choline, essential fatty acids, and
micronutrients (Krebs et al., 2014; Semba et al., 2016a, 2016c;
Watanabe and Petri, 2016). Clinical trials to ameliorate EED involving
various supplements, antibiotics, anti-inflammatory agents, and im-
provement in hygiene have been disappointing (Crane et al., 2015;
Trehan et al., 2016). To date, interventions have been based upon an in-
complete understanding of the pathogenesis of EED.
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Some recent studies have aimed to gain insight into the biology and
pathogenesis of EED. This area of research includes assessment of
human host transcriptome in stool samples (Yu et al., 2015), fecal mi-
crobiota through RNA gene sequencing (Ordiz et al., 2016), and selected
plasma biomarker evaluation (Guerrant et al., 2016; Kosek et al., 2016).
Using a metabolomics approach and liquid chromatography-tandem
mass spectrometry (LC-MS/MS) to measure 139 metabolites with a
targeted platform (Biocrates, Innsbruck, Austria), we recently identified
alterations in serum phosphatidylcholines, sphingomyelins, trypto-
phan, ornithine, glutamate, taurine, and serotonin in children with
EED (Semba et al., 2016b).

Data fromour previous study suggested that secondary carnitine de-
ficiency might occur in children with EED (Semba et al., 2016b). Al-
though serum carnitine itself was not significantly associated with gut
permeability, overall in the study population, the median serum carni-
tine concentrationswere ~21 μmol/L, which are consistentwith second-
ary carnitine deficiency (Stanley, 2004). These levels are much lower
than the reference serum carnitine levels of 40–60 μmol/L described in
healthy children and adults (Stanley, 2004; Reuter and Evans, 2012).
Carnitine deficiency is classified as primary if due tomutations in the or-
ganic cation/carnitine transporter 2 (OCTN2) or secondary if due to in-
adequate intake of carnitine, decreased biosynthesis of carnitine,
genetic defects in enzymes involved in transfer of fatty acids into mito-
chondria, or defects in enzymes that are required for β-oxidation. Carni-
tine is essential for the transfer of long-chain fatty acids into the
mitochondria for β-oxidation and production of energy in the form of
adenosine triphosphate (ATP). In the carnitine shuttle, long-chain
fatty acid-CoA in the cytosol exchanges CoA for carnitine by the action
of carnitine palmitoyltransferase I at the outer mitochondrial mem-
brane. Acylcarnitine moves into the mitochondrial matrix by facilitated
diffusion through a transporter, carnitine-acylcarnitine translocase, on
the inner mitochondrial membrane. In the mitochondrial matrix, the
acyl group is transferred to mitochondrial coenzyme A by carnitine
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Fig. 1. The carnitine shuttle. Carnitine enters the cell through active transport by the high affinit
CoA in the cytosol exchanges CoA for carnitine by the action of carnitine palmitoyltransferase I
matrix by facilitated diffusion through a transporter, carnitine-acylcarnitine translocase (CACT
matrix, the acyl group is transferred to mitochondrial coenzyme A by carnitine palmitoy
transporter. Carnitine acyltransferase (CAT) removes CoA from acetyl-CoA that is formed from
and enter the blood via OCTN2.
palmitoyltransferase II. Carnitine is then free to cycle back to the cytosol
through the transporter (Fig. 1). Secondary carnitine deficiency is char-
acterized by increases in serum acylcarnitines, fatty acid intermediates
associated with blocked β-oxidation, and dicarboxylic acids produced
by ω-oxidation of fatty acids (Stanley, 2004; Reuter and Evans, 2012).

We generated a post-hoc hypothesis that EED is associatedwith sec-
ondary carnitine deficiency. To test this hypothesis, we used awider LC-
MS/MS metabolomics platform (Discovery HD4, Metabolon, Durham,
NC) to more comprehensively assess metabolites related to carnitine
deficiency. This approach also offered the opportunity to expand our
discovery into additional pathways that may be dysregulated in chil-
dren at risk of EED.

2. Methods

2.1. Study Design and Participants

The study design is cross-sectional. The study subjects consisted of
400 children, aged 12–59months, from six villages (Masika, Makhwira,
Mitondo, Mibiza, Chamba, and Mayaka) in rural southern Malawi. Chil-
dren were enrolled in the study in 2011. Children were eligible for the
study if they had no congenital or chronic disease or caretaker-reported
diarrhea, or were under treatment for acutemalnutrition. Field staff ex-
perienced in anthropometrymeasuredweight to the nearest 5 g using a
digital scale (Seca 344, Chino, CA) and height to the nearest 0.1 cmusing
a rigid height board (Seca 417). Gut integrity was assessed using the
dual sugar absorption test, as described in detail elsewhere (Weisz et
al., 2012). The urinary lactulose:mannitol (L:M) ratio, as derived from
the dual sugar absorption test, was used as the measure of gut integrity
(Denno et al., 2014). Children with an L:M ratio ≥ 0.15 were defined as
having EED (Lord and Bralley, 2008). Lactulose andmannitol weremea-
sured using high-performance liquid chromatography (Weisz et al.,
2012). Briefly, children arrived at the clinic site at 6 amwithout having
in 
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eaten any food for the day yet. Children ingested a solution of 1 g man-
nitol and 5 g lactulose completely dissolved in water while being
observed not to have any spitting or spilling. A transparent urine collec-
tion bag was then affixed with additional adhesive, and clothing re-
moved so the urine bag could be continuously observed by the clinical
staff. Immediately upon note of any urine in the collection bag, the
urine was retrieved and a clean bag applied. A complete 4 h collection
for every child was obtained, which meant that every child passed
fresh urine at least 4 h after ingesting the sugars. Urine passage was fa-
cilitated by offering water to drink about 3 h after ingestion of sugars. If
urine was spilled or sugar solutions not ingested the child was asked to
return for a repeat test in 48 h.Malawian research nurses obtainedwrit-
ten and oral informed consent from each child's caretaker before enroll-
ment in the study. Community level consent for the study also was
obtained from the village chief and local health officials. The study pro-
tocol was approved by the College ofMedicine Research Ethics Commit-
tee of theUniversity ofMalawi, theHumanResearch ProtectionOffice of
Washington University in St. Louis, and the Johns Hopkins School of
Medicine Institutional Review Board. The study conforms to the stan-
dards indicated by the Declaration of Helsinki. The methods were car-
ried out in accordance with the approved guidelines.

2.2. Measurement of Serum Metabolites

Venous blood was drawn by study nurses and doctors. Serum sam-
ples were processed, aliquoted, and snap frozen in liquid nitrogen in
cryovials within 4 h of blood drawing. Cryovials were transferred to
storage at −80 °C until time of analysis. All experimental samples
were prepared and analyzed in a masked fashion. Samples were sent
in a random order and were prepared at Metabolon, Inc. (Durham,
NC) as described elsewhere (Evans et al., 2009). The staff at Metabolon
hadno access to the studydatabase. In brief, for quality control, recovery
standards were added prior to the first step of the extraction process.
Proteins were precipitated with methanol under vigorous shaking for
2 min using a GenoGrinder 2000 (Glen Mills, Clifton, NJ) followed by
centrifugation. The resulting extract was divided into five fractions:
(i) early and (ii) late eluting compounds for analysis by ultra-high per-
formance LC-MS/MS (UPLC-MS/MS) using positive ionization, (iii) for
analysis by UPLC-MS/MS using negative ionization, (iv) for analysis
using a UPLC-MS/MS polar platform with negative ionization, and
(v) a sample reserved for backup if needed.

Three types of controls were analyzed concomitantly with the ex-
perimental samples: (i) samples generated from a pool of human plas-
ma that has been extensively characterized byMetabolon, (ii) extracted
water samples serving as process blanks, and (iii) a cocktail of standards
spiked into every analyzed sample to allow monitoring of instrument
performance. Instrument variability was determined by calculating
the median relative standard deviation (RSD) for the standards that
were added to each sample prior to injection into the mass spectrome-
ters (median RSD typically = 4–6%; n ≥ 30 standards). Overall process
variability was determined by calculating themedian RSD for all endog-
enous metabolites (i.e., non-instrument standards) present in 100% of
the pooled human plasma samples (median RSD= 10–14%; n= sever-
al hundred metabolites). Experimental samples and controls were ran-
domized across the experimental runs.

Sample extracts were analyzed using a standardized chromato-
graphic UPLC-MS/MS method (Evans et al., 2014). All columns and sol-
vents were obtained from a single manufacturer's lot for the sample
analysis of this study. For each sample, vacuum-dried samples were dis-
solved in injection solvent containing eight or more injection standards
at fixed concentrations, depending on the platform. The internal stan-
dards were used to ensure consistency of injections and chromatogra-
phy. Instruments were tuned and calibrated for mass resolution and
mass accuracy daily.

The UPLC-MS/MS platform consisted of an Acquity UPLC (Waters
Corp., Milford, MA) and a Q-Exactive (Thermo Scientific, Framingham,
MA) mass spectrometer interfaced with a heated electrospray ioniza-
tion (HESI-II) source and an Orbitrap mass analyzer operated at
35,000 mass resolution. The sample extract was dried and then
reconstituted in acidic or basic LC-compatible solvents, each of which
contained 8 or more injection standards at fixed concentrations. One
aliquot was analyzed using acidic, positive ion-optimized conditions.
Another aliquot was analyzed using basic, negative ion-optimized con-
ditions. Two independent injections were done using separate dedicat-
ed columns (Waters UPLC BEH C18–2.1 × 100 mm, 1.7 μm). Extracts
reconstituted in acidic conditions were gradient-eluted using water
and methanol containing 0.1% formic acid, while the basic extracts,
which also used water/methanol, contained 6.5 mM ammonium bicar-
bonate. A third aliquot was analyzed via negative ionization following
elution from a HILIC column (Waters UPLC BEH Amide 2.1 × 150 mm,
1.7 μm) using a gradient consisting of water and acetonitrile with
10 mM ammonium formate. The MS analysis alternated between MS
and data-dependent MS2 scans using dynamic exclusion. The scan
range was from 80 to 1000 m/z.

Metabolites were identified by an automated comparison of the
ion features in the experimental samples against a reference library
of chemical standard entries. The entries included molecular weight
(m/z), retention time, preferred adducts, in-source fragment, and asso-
ciated MS spectra. Entries have been curated by visual inspection for
quality control using software developed at Metabolon (DeHaven et
al., 2010). The identification of known metabolites is based upon com-
parison to metabolomic library entries of purified standards. Commer-
cially available purified standard compounds have been acquired and
registered into LIMS for determination of their detectable characteris-
tics. Peaks were quantified using area-under-the-curve. Raw area
counts for each metabolite in each sample were normalized to correct
for variation resulting from instrument inter-day tuning differences by
the median value for each run-day, therefore, setting the medians to
1.0 for each run. This normalization preserved the variation between
samples but allowed metabolites of widely different raw peak areas to
be compared on a similar graphical scale. Missing values were imputed
with the observed minimum after normalization.

2.3. Statistical Analysis

The distributions of serum metabolites and the L:M ratio were ex-
amined in exploratory data analyses using histograms and boxplots.
The primary analysis of this study is based upon gut permeability, as
represented by the L:M ratio as a continuous variable. Spearman corre-
lations of each metabolite with the L:M ratio were estimated with ad-
justment for age, gender, and village. A false discovery rate approach
was used to correct for multiple testing. Q-values were computed
using the bootstrap method (Storey, 2002; Storey et al., 2004;
Rachakonda et al., 2014). This analysis was carried out using the
pcor.test() function in the ppcor package in R software version 3.2.0.
No a priori power analysis was conducted for this study. The sample
size of 400 represented all the serum samples collected in six villages
in 2011. Serum metabolites in children with and without EED were
compared using Wilcoxon rank-sum test. t-tests and chi-square tests
were used to compare continuous and categorical variables, respective-
ly, between children with and without EED. Classification modeling
using eight machine-learning algorithms was used to examine the abil-
ity of the 77 metabolites that were significantly correlated with L:M
ratio to classify EED status (L:M ≥ 0.15 versus L:M b 0.15). We used
the Super Learner, an ensembling approach to machine learning,
(van der Laan et al., 2007) to fit, internally cross-validate, and combine
the results into a single classifier. Eight different classifiers were trained
on a subset of the data as described in Supplementary Appendix 1. A
weighted-average of the estimates was then computed to minimize
mean-square error. The weights themselves were estimated via leave
10% out internal cross-validation. This method has been described in
greater detail elsewhere (Semba et al., 2016b). Details of Super Learner,
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including computation of estimates, cross-validation, andmetrics to as-
sess the discrimination and calibration, have been described in detail
elsewhere (Semba et al., 2016b). Classification modeling was carried
out using the SuperLearner() and CV·SuperLearner() functions in the
Super Learner package in R software version 3.2.0.

3. Results

The demographic characteristics of the 400 children are shown in
Table 1. Three hundred twenty-three (80.7%) children had EED. Chil-
dren with EED were significantly younger, more likely to have a living
father, reside in a home without a metal roof (an indicator of lower so-
cioeconomic status), and less likely to use water from a clean source
than children without EED. There were significant differences in preva-
lence of EED among the six villages. There were no significant differ-
ences in gender, anthropometric measurements, or number of siblings
between children with and without EED.

The relationship of gut permeability, as assessed by the L:M ratio,
with serum metabolites is summarized in a volcano plot in Fig. 2.
There were 77 metabolites that were significantly associated with gut
permeability. Twenty-one metabolites were negatively associated
with gut permeability, including six metabolites related to dietary poly-
phenols, citrulline, ornithine, tryptophan, and indolelactate (Table 2).
Fifty-six metabolites were positively associated with gut permeability,
including 9 acylcarnitines, deoxycarnitine, 3 intermediates of β-oxida-
tion of fatty acids, 4 metabolites from ω-oxidation of fatty acids, 4
odd-chain fatty acids, trimethylamine-N-oxide, cystathionine, and
homocitrulline (Table 3).

The age-, sex-, and village-adjusted Spearman correlations between
gut permeability and serummetabolites are presented in Supplementa-
ry Table 1. Serotonin was positively associated with gut permeability
but was of marginal significance (p = 0.0098, q = 0.050007). Serum
metabolites in children with and without EED were compared in Sup-
plementary Table 2.

When multiple machine-learning classification algorithms were
used to assess the ability of the 77 metabolites significantly correlated
with the L:M ratio to classify EED status (EED vs. no EED), six algorithms
had positive weights: LASSO (Friedman et al., 2010), ridge regression
(Friedman et al., 2010), generalized boosted models (Friedman, 2001),
random forests (Breiman, 2001), multivariate adaptive regression
Table 1
Characteristics of the study population.

Characteristica No EEDb

(n = 77)
EEDb

(n = 323)
pc

Age, months 38.0 ± 10.2 32.9 ± 12.1 0.0007
Female, % 35 (45%) 163 (50%) 0.43
Weight-for-height Z-score 0.3 ± 1.0 0.1 ± 1.0 0.29
Height-for-age Z-score −2.5 ± 1.3 −2.3 ± 1.3 0.25
Stunted, % 52 (68%) 198 (61%) 0.31
Primary caretaker is mother, % 73 (95%) 308 (95%) 0.84
Father is alive, % 69 (70%) 315 (98%) 0.001
Siblings, n 3.7 ± 1.8 3.8 ± 1.7 0.64
Individuals that sleep in same
room as child, n

3.2 ± 1.6 3.3 ± 1.4 0.78

Home with a metal roof, % 23 (30%) 52 (16%) 0.005
Family owns bicycle, % 44 (57%) 200 (62%) 0.44
Animals sleep in house, % 34 (44%) 110 (34%) 0.10
Water from a clean source, % 64 (83%) 208 (64%) 0.002
Child uses pit latrine, % 56 (73%) 256 (79%) 0.21
Village, % Chamba 7 (9%) 38 (12%) b0.001

Makwhira 5 (6%) 22 (7%)
Masika 11 (14%) 145 (45%)
Mayaka 27 (35%) 69 (21%)
Mbiza 20 (26%) 40 (12%)
Mitondo 7 (9%) 9 (3%)

a Means (SD) or %.
b No EED (L:M b 0.15), EED (L:M ≥ 0.15).
c Students t-test for continuous variables or chi-square test for categorical variables.
splines (Friedman, 1991) implemented using the polymars() function
in R software version 3.20, and Bayes generalized linear models. A re-
ceiver operating characteristic curve (ROC) is shown in Supplementary
Appendix Fig. 1. (Supplementary Appendix Fig. 1). The Super Learner
cross-validated area under the ROC curvewas 0.710 (95% confidence in-
terval 0.643, 0.777). The final cross-validated Super Learner model was
well calibrated showing little evidence of lack of fit (Hosmer-Lemeshow
p-value = 0.91) (Supplementary Appendix Table 1). These findings
show that the 77 serum metabolites that were significantly associated
with gut permeability have a modest ability to discriminate between
children with and without EED.

4. Discussion

The present study shows that increased gut permeability is associat-
ed with elevated serum concentrations of nine acylcarnitines, three in-
termediate metabolites associated with blocked β-oxidation of fatty
acids, and four metabolites related to upregulation of ω-oxidation of
fatty acids, a serummetabolite profile that is consistent with secondary
carnitine deficiency and defective fatty acid oxidation (Stanley, 2004;
Tein, 2013). Carnitine is a conditionally essential nutrient that plays a
vital role in fatty acid metabolism and energy production. This study
shows that secondary carnitine deficiency is associated with EED.

In healthy humans consuming a normal diet, ~75% of carnitine is
from food and the remaining ~25% is synthesized by the body
(Kendler, 1986). The richest dietary sources of carnitine are animal
source foods, such as red meat, chicken, fish, and dairy products. Plant
foods only contain negligible amounts of carnitine (Demarquoy et al.,
2004). Carnitine is synthesized in the body from two essential amino
acids, lysine and methionine. Lysine provides the carbon backbone
and nitrogen atom of carnitine, while methionine provides the methyl
groups. Cofactors necessary for this synthesis includeniacin, pyridoxine,
ascorbic acid, and ferrous iron. In many parts of the developing world,
including rural Malawi, animal source foods are rarely consumed
(Dror and Allen, 2011), and lysine is a limiting essential amino acid in
themaize-based diet (Nuss and Tanumihardjo, 2011). A limitation of di-
etary lysine could theoretically increase the risk of carnitine deficiency,
however serum lysine was not significantly associated with gut perme-
ability. Experimental animalmodels show that lysine deficiency leads to
impaired carnitine synthesis and fatty acid abnormalities (Tanphaichitr
and Broquist, 1973; Khan and Bamji, 1979). In addition to its role in fatty
acid metabolism, carnitine may play an important role in normal gut
function. Enterocytes synthesize carnitine from lysine and methionine
(Shekhawat et al., 2013). Mice with loss of functional mutations in
OCTN2 show villous atrophy and inflammation in the small intestine
(Shekhawat et al., 2007; Sonne et al., 2012).

The most common causes of secondary carnitine deficiency are in-
born errors of metabolism (Onkenhout et al., 1995; Mamedov et al.,
2015) and acquired deficiency. Causes of acquired deficiency include
poor dietary intake of carnitine, impaired absorption of dietary carni-
tine, decreased endogenous synthesis of carnitine, and increased renal
losses of carnitine (Crill andHelms, 2007). Secondary carnitine deficien-
cy has been reported in children with kwashiorkor and marasmus
(Alp et al., 1999), celiac disease (Lerner et al., 1993), and lysinuric pro-
tein intolerance (Tanner et al., 2008). Secondary carnitine deficiency
also occurs in children receiving renal or peritoneal dialysis (Sgambat
and Moudgil, 2016; Naseri et al., 2016) or soy-protein-based formula
lacking carnitine (Winter et al., 1987; Olson et al., 1989).

Plasma carnitine is actively transported across the plasma mem-
brane by OCTN2. As noted previously, the carnitine shuttle is essential
to deliver long-chain fatty acids into the mitochondria for β-oxidation
and energy production. Short- and medium-chain fatty acids do not re-
quire carnitine transport into themitochondria. Carnitine is involved in
the oxidation of medium-chain fatty acids in the cytosol, under control
of acetyltransferase for short-chain acyl groups and octanoyltransferase
for medium-chain acyl groups. Carnitine also plays an important role in
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maintaining a free CoA pool in the cytosol and within mitochondria, as
shown in Fig. 1. The transport of acylcarnitines out of the mitochondria
maintains themitochondrial pool of free CoA and protectsmitochondri-
al against toxic accumulation of acyl CoA compounds that could inhibit
enzymatic activity and alter ATP production (Crill and Helms, 2007).

With secondary carnitine deficiency, acylcarnitines accumulate
within cells and the circulation. The long-chain acylcarnitines that
Table 2
Serum metabolites negatively associated with gut permeability (L:M ratio).

Metabolite Description

3-(3-hydroxyphenyl)proprionate major metabolite of caffeic acid, a
dietary polyphenol

5-bromotryptophan non-proteinogenic α-amino acid
thymol sulfate metabolite of thymol from plants,

fat-soluble
3-hydroxyhippurate dietary polyphenol
quinate dietary polyphenol
1-palmitoyl-GPG (16:0) glycerophospholipid
Tryptophan essential amino acid
Caffeic acid sulfate dietary polyphenol
Ornithine non-proteinogenic amino acid in

urea cycle
Ursodeoxycholate bile acid
Citrulline α-amino acid and key intermediate

in urea cycle
1-stearoyl-GPC (18:0) glycerophosphocholine
Alpha-tocopherol vitamin E, fat-soluble
Sorbitol/mannitol isomers; sugar
Catechol sulfate phenylsulfate
Isoeugenol sulfate phenylpropene from plants, fat-soluble
Dihydroferulic acid dietary polyphenol
Hippurate metabolite from dietary polyphenol

degradation
Indolelactate tryptophan metabolite
Palmitoyl-linoleoyl-glycerol
(16:0/18:2)

triacylglycerol

1-linoleoyl-2-linolenoyl-GPC
(18:2/18:3)

glycerophosphocholine
accumulate with impaired β-oxidation within the cell are potent inhib-
itors of OCTN2 (Stanley, 2004). In the kidney, carnitine is freely filtered
at the glomerulus, but 95% of filtered carnitine is reabsorbed by the
proximal tubule via OCTN2 and returned to the circulation (Reuter
and Evans, 2012). Carnitine is preferentially reabsorbed by OCTN2
over acylcarnitines, thus, the renal clearance of acylcarnitines may be
10–20 times higher than free carnitine (Carroll et al., 1981). As a
consequence, in secondary carnitine deficiency, elevated circulating
acylcarnitines are excreted in the urine and can contribute further to
depletion of the carnitine pool of the body.

In children with increased gut permeability in the present study, el-
evated serum levels of intermediates in the β-oxidation of fatty acids,
such as 5-dodecenoate, 3-hydroxydecanoate, and 3-hydroxylaurate
suggest that β-oxidation of fatty acids is blocked. Elevated levels of cir-
culating 5-dodecenoate have been described in children with medium-
chain acyl-CoA dehydrogenase deficiency and impaired β-oxidation
(Onkenhout et al., 1995). Children with defective β-oxidation due to
long-chain 3-hydroxyacylcoenzyme A dehydrogenase deficiency have
increased circulating 3-hydroxydecanoate concentrations (Dorland et
al., 1991). Serum 3-hydroxylaurate (3-hydroxydodecanoic acid) levels
are elevated in children with long-chain hydroxyacyl CoA dehydroge-
nase deficiency and defective β-oxidation of fatty acids (Chickos et al.,
2002).

When β-oxidation of fatty acids is blocked, there is an increase inω-
oxidation of fatty acids. ω-oxidation is normally a minor subsidiary
path in endoplasmic reticulum that provides succinyl-CoA for the
citric acid cycle and for gluconeogenesis (Miura, 2013). In the present
study, children with EED had elevated dicarboxylic acids produced by
ω-oxidation: sebacate (decanedioate), 3-hydroxysebacate, and 3-
hydroxyoctanoate. Increased urinary excretion of sebacate and other di-
carboxylic acids produced byω-oxidation has been described in infants
with inadequate carnitine intake (Olson et al., 1989). Serum 3-
methyladipate, a metabolite of the ω-oxidation pathway of phytanic
acid, a branched chain fatty acid (Wierzbicki et al., 2003), was also ele-
vated in children with EED. The abnormalities in carnitine metabolism
found in the present study are summarized in Fig. 3.
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Table 3
Serum metabolites positively associated with gut permeability (L:M ratio).

Metabolite Description

Lactose disaccharide in human milk
1-(1-enyl-palmitoyl)-2-oleoyl-glycerophosphoethanolamine (P-16:0/18:1) glycerophosphoethanolamine
4-imidazoleacetate histidine metabolite
1-(1-enyl-stearoyl)-2-oleoyl-glycerophosphoethanolamine (P-18:0/18:1) glycerophosphoethanolamine
Phenylacetylglutamate can be formed from phenylacetylglutamine
3-hydroxybutrylcarnitine acylcarnitine, C:4-OH
Caprylate (8:0) 8 carbon saturated fatty acid, in human milk
Phenylacetylglutamine formed by the conjugation of phenylacetate and glutamine
N-acetyl-beta-alanine beta amino acid
3-hydroxy-3-methylglutarate metabolite related to leucine degradation and ketogenesis
N2-N2-dimethylguanosine primary degradation product of tRNA
Homocitrulline ornithine metabolite
Acetylcarnitine acylcarnitine, C:2
7-methylguanine metabolite of DNA methylation and depurination
Octanoylcarnitine acylcarnitine, C:8
Hexanoylcarnitine acylcarnitine, C:6
5-dodecenoate (12:1n7) intermediate in β-oxidation of unsaturated fatty acids
Deoxycarnitine metabolic precursor of carnitine
4-hydroxyphenylacetate tyrosine metabolite
1-(1-enyl-palmitoyl)-2-archidonoyl-GPE (P-16:0/20:4) glycerophosphoethanolamine
4-acetamidobutanoate member of gamma amino acids and derivatives
3-hydroxydecanoate intermediate in β-oxidation of fatty acids
Adipoylcarnitine acylcarnitine, C:6-DC
Trimethylamine N-oxide oxidation product of trimethylamine
Decanoylcarnitine acylcarnitine, C:10
Caprate (10:0) 10 carbon medium chain saturated fatty acid
cis-4-decenoylcarnitine acylcarnitine, C10:1
3-hydroxyoctanoate dicarboxylic acid derived from ω-oxidation of fatty acids
4-hydroxyphenylacetylglutamine formed from conjugation of phenylacetate and glutamine
3-hydroxylaurate intermediate in β-oxidation of fatty acids
1-(1-enyl-stearoyl)-2-archidonoyl-GPE (P-18:0/20:4) glycerophosphoethanolamine
3-hydroxysebacate dicarboxylic acid derived from ω-oxidation of fatty acids
Orotidine intermediate in pyrimidine nucleotide biosynthesis
2-methylbutyrylcarnitine (C5) acylcarnitine, 2-M-C4:0
1-(1-enyl-palmitoyl)-2-linoleoyl-GPE (P-16:0/18:2) glycerophosphoethanolamine
3-methyladipate metabolite from ω-oxidation of phytanic acid
Phenylacetate fatty acid metabolite of phenylalanine
Butyrylcarnitine acylcarnitine, C:4
N-acetylalliin alanine derivative
3-hydroxyhexanoate hydroxyl fatty acid
S-adenosylhomocysteine (SAH) product of methylation reactions of S-adenosylmethionine
10-undecenoate (11:1n1) odd-chain fatty acid
cystathionine formed from transsulfuration of homocysteine
3-aminoisobutyrate formed from catabolism of thymine
Taurine derived from cysteine, major component of bile
Sebacate (decanedioate) dicarboxylic acid derived from ω-oxidation of fatty acids
Maleate dicarboxylic acid
Xanthine product of purine degradation
10-nonadecenoate (19:1n9) odd-chain fatty acid
Hexanoylglutamine α-amino acid conjugated with hexanoyl group
17-methylstearate medium chain iso-fatty acid
10-heptadecenoate (17:1n7) odd-chain fatty acid
Myristoleate (14:1n5) Ω-5 fatty acid
Vanillactate product of catecholamine degradation
Margarate (17:0) odd-chain fatty acid
Succinate intermediate in the citric acid cycle
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Children with increased gut permeability had higher serum concen-
trations of four odd-chain fatty acids. Less is known about odd-chain
fatty acids compared with even-chain fatty acids, since they represent
b1% of total fatty acid plasma concentrations in humans (Jenkins et al.,
2015). The etiology of the increase in odd-chain fatty acids in children
with EED is unclear. It has been proposed that odd-chain fatty acids
can be metabolized byα-oxidation, which would involve the activation
and subsequent hydroxylation of the α-carbon followed by removal of
the terminal carboxyl group (Jenkins et al., 2015). Since β-oxidation
may be blocked in EED, a possible mechanism for an endogenous rise
in odd-chain fatty acids may be an increase in α-oxidation.

Increased gut permeability was associated with elevated serum 3-
hydroxy-3-methylutarate, which has also been described in 3-hy-
droxy-3-methylglutaryl-coenzyme A lyase deficiency, an autosomal
recessive disease characterized by secondary carnitine deficiency,
defective β-oxidation of fatty acids, and impaired leucine catabolism
and ketogenesis (da Rosa et al., 2016; Puisac et al., 2010).
Children with increased gut permeability also had higher serum 3-
aminoisobutyrate (beta-aminoisobutyric acid, BAIBA), a non-protein
β-amino acid generated by the catabolism of valine. BAIBA is a small
moleculemyokine that inducesβ-oxidation of fatty acids in hepatocytes
(Roberts et al., 2014).Whether the elevation of BAIBA is a compensatory
response related to blocked β-oxidation in EED could be studied in the
future. Dietary carnitine can be converted to trimethylamine-N-oxide
(TMAO) by the gut microbiome (Koeth et al., 2013). Children with in-
creased gut permeability also had higher serum TMAO concentrations.

The present study supports the idea that EED is associated with ab-
normal metabolism of sulfur amino acids and upregulation of the
transsulfuration pathway towards production of cystathionine and tau-
rine (Fig. 4). Children with increased gut permeability had elevated
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serum S-adenosylhomocysteine (SAH), the immediate precursor to ho-
mocysteine, and cystathionine, a metabolite produced from the
transsulfuration of homocysteine. Bickler and colleagues hypothesized
that increased oxidative stress in EED could drive methionine metabo-
lism towards cystathionine synthesis, limiting the sulfur amino
acids from participating in protein synthesis (Bickler et al., 2011).
Methionine 
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S-adenylmethionine (SAM) 

Homocysteine 
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Cysteine 

Cysteine sulfinate 
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Fig. 4. Metabolism of sulfur amino acids. Methionine is metabolized through
transmethylation produces homocysteine. Homocysteine is remethylated through 5-
methyl tetrahydrofolate (THF) to produce methionine. During inflammation,
homocysteine undergoes transsulfuration to produce cystathione and eventually
taurine. Children with increased gut permeability had elevated serum cystathione and
taurine, suggesting an increase in the transsulfuration pathway.
Cystathionine is metabolized to taurine through intermediate metabo-
lites cysteine, cysteine, sulphinate, and hypotaurine. Children with
EED also had elevated serum taurine. Enterocytes are among the most
rapidly proliferating cells in the body, thus reduced availability of sulfur
amino acids for synthesis of proteins could potentially contribute to
failure of the intestinal barrier (Bickler et al., 2011). Increased
transsulfuration of homocysteine could potentially affect the availability
of methionine for carnitine synthesis. Methionine provides the methyl
group for carnitine synthesis via S-adenylmethionine (SAM) (Fig. 4).

The present study is suggestive that children with EED may have
altered metabolism associated with an abnormal gut microbiome, in-
cludingmetabolism of dietary polyphenols, phenylalanine, and tyrosine
(Fig. 5). Children with EED had decreased serum hippurate, 3-
hydroxyhippurate, and dietary polyphenolic compounds that are meta-
bolic intermediates in the pathway to hippurate (Lees et al., 2013),
including caffeic acid sulfate, 3-(3-hydroxyphenyl) proprionate, and
quinate. Hippurate is strongly associated with diet and the gut
microbiome (Lees et al., 2013). Increased gut permeability was also as-
sociated with lower serum levels of dihydroferulic acid, a polyphenol
found in tea and fruit (Pimpão et al., 2015). Tea is a common beverage
consumed by young children in ruralMalawi. Decreased serumcatechol
sulfate, a phenolic sulfate derived from the catabolismof polyphenols by
the gut microbiome (Pimpão et al., 2015), was also associated with in-
creased gut permeability.

Serum phenylacetylglutamine and 4-hydroxyphenylacetylglutamine,
which provide a major route of excretion of excess nitrogen from the
body, were elevated in children with EED. Phenylacetylglutamine is
formed from the conjugation of phenylacetate (from the gutmicrobiome
or host) and glutamine (mainly generated from the Krebs cycle from α-
ketoglutarate). Phenylacetate is primarily produced by the gut
microbiome by the decarboxylation of phenylalanine in unabsorbed pro-
tein residues (Seakins, 1971). Childrenwith EED also had elevated serum
phenylacetate. Elevated urinary phenylacetylglutamine has been de-
scribed in children with inflammatory bowel disease (Martin et al.,
2016). Elevated serum phenylacetylglutamine was an independent risk
factor for mortality and cardiovascular disease in nearly 500 patients
with chronic kidney disease (Poesen et al., 2016). It is unclear whether
phenylacetylglutamine has direct toxic effects or is a marker for altered
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colonic microbial metabolism and/or renal dysfunction (Poesen et al.,
2016). Elevated serum 4-hydroxyphenylacetate was found in children
with EED in the present study. 4-hydroxyphenylacetate, one of the
most abundant phenylpropanoid-derived compounds found in human
fecal samples, is derived from fermentation of tyrosine by the gut
microbiome (Russell et al., 2013).

Our previous studies (Semba et al., 2016b) showed that children
with increased gut permeability have lower circulating tryptophan con-
centrations and elevated serotonin concentrations, which was corrobo-
rated in the present study using a different metabolomics platform. A
new finding is that increased gut permeability was also associated
with low indolelactate, which is a metabolite in tryptophan catabolism
through a series of indoles. The present study also corroborates the rela-
tionship between increased gut permeability and low citrulline levels,
an observation alsomade in a study of children from Peru and Tanzania
(Kosek et al., 2016). We also showed in the previous (Semba et al.,
2016b) and present study that childrenwith increased gut permeability
had low serum ornithine, a component of the urea cycle. An adequate
supply of citrulline and ornithine is required for normal function of
the urea cycle. A new finding is that children with increased gut
permeability had elevated homocitrulline levels. In the absence of orni-
thine from the urea cycle, mitochondrial carbamoyl phosphate in-
creases and can generate homocitrulline from lysine via ornithine
transcarbamylase.

Using the Metabolon platform in the present study, we were unable
to corroborate some findings thatwere significant in the previous study
that used the Biocrates metabolomics platform, such as a positive asso-
ciation between serum glutamate and gut permeability. In addition, al-
though the present study showed that carnitine and nine acylcarnitines
were positively associated with gut permeability, the previous study
using the Biocrates platform did not show a significant association
between carnitine and acylcarnitines with gut permeability. The
Biocrates p180 kit has a semi-quantitative method that measures 39
specific acylcarnitines, however, in our study only seven acylcarnitines
were above the limit of detection, based on our settings of only using
metabolites that were detected in N80% of the sample population
(Semba et al., 2016b). This underscores the importance of carrying out
LC-MS/MS assays that provide absolute quantification specifically for
carnitine and acylcarnitines in the future (Giesbertz et al., 2015,
Minkler et al., 2015).

The low serummannitol/sorbitol (these two sugars are isomers that
cannot be distinguished in the MS assay) concentrations and elevated
serum lactose levels provide corroborative evidence for reduced small
intestinal surface area and increased gut permeability, respectively, in
children with EED. Mannitol and sorbitol are monosaccharides that
readily cross the intact gut barrier. Serum mannitol concentrations are
reduced proportional to the intestinal surface (Sigalet et al., 2000). Lac-
tose is a disaccharide that, like lactulose, does not cross a normal intact
intestinal barrier. Serum lactose was positively correlated with gut per-
meability. EED is associated with malabsorption of fats. In the present
study, low serum concentrations of three fat-soluble substances, α-to-
copherol (vitamin E), thymol (a monoterpene phenol found in oils
from plants), and isoeugenol sulfate (a substance from plants), are con-
sistent with fat malabsorption in EED.

This study is limited in that the metabolomic abnormalities de-
scribed in children inMalawi may not be generalizable to other popula-
tions due to differences in diet, environment, socioeconomic factors,
and other variables. TheMetabolon HD4 platform provides wide cover-
age of many metabolic pathways, but the serum metabolite measure-
ments are semi-quantitative. This discovery platform can foster the
development of targeted LC-MS/MS assays that provide absolute quan-
tification using deuterated or stable isotope-labeled standards. Such
targeted assays could be used for absolute quantification of specific me-
tabolites such as acylcarnitines and dicarboxylic acids in the future. Al-
though the present study shows abnormalities in metabolites that are
known to be associatedwith altered gutmicroflora, the gutmicrobiome
was not assessed in the present study. However, a previous studies
show that EED is associated with alterations in the gut microbiome
(Yu et al., 2015; Ordiz et al., 2016). Another limitation is that EED re-
mains a poorly defined disease state that is ideally assessed by biopsy
of the small intestine and endoscopy. The dual sugar absorption test is
commonly used for diagnosis but has potential for misclassification
(Denno et al., 2014). Future studies are needed in children with EED
to examine the relationship between serum metabolites and the gut
microbiome and between serum metabolites and vaccine failure. Also,
studies using a longitudinal design could examine the relationship be-
tween serum metabolites and growth faltering. The strengths of this
study are the large sample size, the use of a highly advanced metabolo-
mics platform, and a community-based study design in a setting where
EED is a major cause of morbidity.

The present study suggests that secondary carnitine deficiency could
be widespread among children in developing countries where intake of
animal source foods is low and lysine is a limiting essential amino acid
in the diet. There are millions of children in developing countries
where EED is common who subsist on maize, cassava, sorghum, or
rice, and have poor intake of meat, eggs, and dairy products. Secondary
carnitine deficiency was associated with increased gut permeability in
this epidemiological study. This cross-sectional association does not
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show causality or definitive proof that EED is related to carnitine. Con-
trolled studies of carnitine supplementation and stable isotope studies
will be needed in the future to provide stronger evidence for a role of
carnitine among children with EED in developing countries.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ebiom.2017.01.026.
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