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Infection of respiratory mucosa with viral pathogens triggers complex immunologic events in the affected host.
We sought to characterize this response through proteomic analysis of nasopharyngeal lavage in human subjects
experimentally challengedwith influenza A/H3N2 or human rhinovirus, and to develop targeted assays measur-
ing peptides involved in this host response allowing classification of acute respiratory virus infection. Unbiased
proteomic discovery analysis identified 3285 peptides corresponding to 438 unique proteins, and revealed that
infection with H3N2 induces significant alterations in protein expression. These include proteins involved in
acute inflammatory response, innate immune response, and the complement cascade. These data provide in-
sights into the nature of the biological response to viral infection of the upper respiratory tract, and the proteins
that are dysregulated by viral infection form thebasis of signature that accurately classifies the infected state. Ver-
ification of this signature using targeted mass spectrometry in independent cohorts of subjects challenged with
influenza or rhinovirus demonstrates that it performswith high accuracy (0.8623 AUROC, 75% TPR, 97.46% TNR).
With further development as a clinical diagnostic, this signaturemay have utility in rapid screening for emerging
infections, avoidance of inappropriate antibacterial therapy, andmore rapid implementation of appropriate ther-
apeutic and public health strategies.
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1. Introduction

Acute respiratory viral (ARV) infections are among the most
common reasons for patient visits in primary and acute care set-
tings (Hong et al., 2004; Johnstone et al., 2008). Many viruses
cause such acute respiratory illness including human rhinovirus
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(HRV), respiratory syncytial virus (RSV) and influenza. These virus-
es can be associated with a range of clinical severity from asymp-
tomatic to mild, self-limited illness to respiratory failure and
death. Influenza alone causes 25 to 50 million infections annually
in the USA, resulting in several hundred thousand hospitalizations
and 20–40,000 deaths (Thompson et al., 2010).

Despite viral etiologies driving most cases of acute respiratory
infection, definitive diagnostic tools for these syndromes are lack-
ing. Even highly sensitive pathogen-specific tests such as PCR are
dependent upon proper sampling technique and inclusion of
virus-type-specific reagents and processing methods. Moreover, de-
tection of a specific microbe in a clinical sample does not necessar-
ily indicate the cause of the acute clinical syndrome. For example, it
has been reported that HRV has been detected in up to 44% of
asymptomatic individuals (Byington et al., 2015; Johnston et al.,
1993). Therefore, better tools that help providers define the etiology
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Description of experimental ARV challenge cohorts. Four experimental HRV challenge co-
horts (two influenza A/H3N2 and two HRV) are described, including adjudicated pheno-
type summary data for each. Individuals with discordanta symptom and shedding labels,
i.e. symptomatic non-shedders, or asymptomatic shedders, are shown. Sx = symptomat-
ic; Asx= asymptomatic; mean Sx and Asx time T represents the average time of maximal
self-reported symptoms among subject included in NPL analysis.

Cohort H3N2 #1 H3N2 #2 HRV #1 HRV #2

Subjects included in challenge 17 21 20 30
Subjects included in NPL analysis 15 21 20 24
Symptomatic 9 13 12 15
Shedding positive 10 10 12 15
Number discordanta 1 7 4 9
Mean Sx time T (in hrs) 69 68 66 76
Corresponding Asx time T (in hrs) 69.5 71 72 72

a Individuals with discordant symptom and shedding labels, i.e. symptomatic non-
shedders, or asymptomatic shedders. NPL = Nasopharyngeal lavage. Sx = Symptomatic.
Asx = Asymptomatic. Time T represents the time of maximal symptoms.
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of a suspected infectious syndrome in a safe, rapid, accurate, and
cost-effective manner are of paramount importance for both indi-
vidual and public health as recently noted by the Presidential Advi-
sory Council on Combating Antibiotic-Resistant Bacteria (House,
2014), and others (O'Neill, 2015; Organization, 2015). A comple-
mentary diagnostic strategy to pathogen detection could focus on
utilizing the varied (but pathogen-class specific) host-response to
infection (Ramilo and Mejias, 2009; Zaas et al., 2014). This approach
discriminates between infection and colonization. It is pathogen-ag-
nostic and therefore circumvents another limitation of pathogen de-
tection assays, which due to technical limitations are only capable
of detecting a limited subset of microorganisms. Furthermore, cate-
gorizing infection based on host response provides additional in-
sights into the mechanisms of infection and disease response, and
may offer new targets, pathways, or strategies for therapeutic
intervention.

We recently identified gene expression patterns in peripheral
whole blood capable of differentiating (Zaas et al., 2009; Woods et
al., 2013; McClain et al., 2016; Tsalik et al., 2016; Huang et al.,
2011) individuals with symptomatic infection due to influenza
H3N2, HRV, or RSV from uninfected individuals with N90% accuracy.
Moreover, this ARV signature was validated in an independent pop-
ulation of patients with influenza A infection, demonstrating an
ability to distinguish from bacterial respiratory infections (93% ac-
curacy) and healthy controls (100% accuracy) (Zaas et al., 2009).
Thus, host derived biomarkers are capable of making these types
of distinction. However, considering the technical challenges inher-
ent in developing peripheral blood host gene expression classifiers
as a diagnostic tool – including semi-invasive venipuncture, RNA in-
stability, processing complexity, relatively high cost of RNA profil-
ing, and time to result – we sought to extend this host response
paradigm for ARV diagnosis to an alternative and potentially more
suitable sample matrix and analyte class.

Upon contact with the respiratory epithelium, respiratory virus-
es incite activation of type I interferons (IFNs) and pro-inflammato-
ry cytokines, orchestrate proliferation of inflammatory cells and the
innate immune response, and regulate induction of adaptive immu-
nity (Yoneyama and Fujita, 2010; Koyama et al., 2008; Bhoj et al.,
2008). Based on the prominent role of the nasopharyngeal epitheli-
um in mediating ARV infections, we hypothesized that nasopharyn-
geal lavage (NPL) would reflect the in situ host response and serve
as a potential target for diagnostic development. Furthermore, the
NPL protein fraction represents an accessible sample matrix, provid-
ing a highly tractable diagnostic analyte class. Multiple reaction
monitoring (MRM), a quantitative mass spectrometry (MS) plat-
form for facile development of multiplexed, quantitative assays for
measuring specific protein levels in biologic fluids and is routinely
used for biomarker verification in clinical cohorts (Kiyonami et al.,
2011; Gerszten et al., 2010; Boja and Rodriguez, 2011). In addition
to being customizable for nearly any target protein, MRM assays
provide a more specific quantitation of individual proteins and pro-
tein isoforms by targeting multiple unique peptides per protein tar-
get. Combined with internal stable-isotope labeled (SIL) peptide
standards, these assays match or exceed the quantitative precision
of ELISA assays with low femtomole limits of quantitation and ana-
lytical precision coefficient of variation b 10% across clinically sized
cohorts (Addona et al., 2009; Aebersold et al., 2013).

Using human viral challenge cohorts for influenza A/H3N2 and
HRV, we have discovered and independently verified multiple NPL
protein biomarkers capable of classifying human influenza A and
HRV infection from uninfected individuals. This work reinforces
the important concept that host response to infection, particularly
in the NPL proteome, serves as a potential basis for diagnostic
testing. It also sheds light on the complex interactions of host and
pathogen in two of the most common infectious diseases in
humans.
2. Materials and Methods

2.1. Study Design

All pathogen exposures were approved by the relevant Institutional
Review Boards and conducted according to the Declaration of Helsinki.
All volunteers provided informed consent. The objective of these exper-
imental challenge studies was to generate clinico-molecular classifiers
of ARV infection through the development and characterization of
high-density sample and data sets across the course of respiratory
virus exposure, infection, and resolution. A description of methods
used in each challenge study can be found in Supplementary materials
and have been described previously (Liu et al., 2016; McClain et al.,
2016; Woods et al., 2013; Zaas et al., 2009). Briefly, healthy volunteers
underwent extensive pre-enrollment health screening and were ex-
cluded for positive baseline antibody titers of the strain of virus used
in each challenge (Influenza AH3N2A/Wisconsin/67/2005 orHRV sero-
type 39). Following 24–48 h in quarantine, we instilled viral inoculum
into bilateral nares of subjects using standard methods. At
predetermined intervals, biological samples and clinical and symptom
data were collected. NPL sampling was performed daily for each partic-
ipant. The H3N2 #2 cohort included an early (36 h post-inoculation)
oseltamivir treatment arm,while HRV #2 included a blinded “sham” in-
oculation (saline only) control group. NPL analyses included baseline
and time T samples from all individuals in each challenge study with
complete and unambiguous symptomatology and microbiology data,
and available NPL samples. Sample phenotype labels were blinded for
MRM analysis, but were assayed in a manner to ensure that samples
from an individual, and from within a challenge study, would be proc-
essed in same batch and assayed in close temporal proximity, to mini-
mize batch effects between distinct phenotypes.

2.2. Case Definitions

Self-reported symptoms were recorded at predetermined intervals
prior to inoculation and at least twice daily throughout the time-course
of infection and resolution as reported previously (Zaas et al., 2009;
Jackson et al., 1958) and described in Supplementary materials. This
modified Jackson score requires subjects to rank 8 symptoms of upper
respiratory infection (headache, sore throat, rhinorrhea, rhinitis, sneez-
ing, coughing, myalgia, malaise) on a standardized scale of 0 (no symp-
toms) to 3 (high symptoms). Symptom scores were tabulated for each
study participant to assign symptom status as symptomatic or asymp-
tomatic (Supplementary Table S2A). For each symptomatic subject,
time T was identified as time of maximal symptoms. The average time
T was then defined for that cohort, which served as the time chosen
for asymptomatic subjects (Table 1). Participants were tested for virus
shedding based on quantitative culture assays as described previously
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(Zaas et al., 2009) and outlined in Supplementary Table S2B. For the
purpose of the current analysis, we differentiated between “symptom-
atic” and “shedding”. A symptomatic subject shedding viruswas labeled
as “infected”. Asymptomatic non-shedders were “uninfected”. Discor-
dance between symptom and shedding status were reconciled by mea-
suring a previously published peripheral blood gene expression score,
as described in Supplementarymaterials. This tiebreakerwas a gene ex-
pression analysis (GEA) representing the host peripheral blood re-
sponse to viral infection (Supplementary Table S2C) (unpublished
data; N. Arzouni, T. Burke, M. McClain, A. Hero). GEA was only applied
as a tiebreaker and not to subjects where the symptom and shedding
status agreed.

2.3. Sample Collections

Sample collections for subjects in H3N2 cohort #1 and HRV cohort
#1 have been described previously (Zaas et al., 2009). Samples for
H3N2 cohort #2 and HRV cohort #2 were collected, processed, and an-
alyzed similarly. Briefly, biological samples were collected prior to inoc-
ulation (baseline) and at predetermined intervals throughout the
course of infection and resolution. Nasopharyngeal lavage procedures
were performed using sterile 0.9% saline solution (5 ml into each
nares), as described in Supplementary Materials, prior to inoculation
and at 24-hour intervals post-inoculation and stored in aliquots at
−80 °C. This study focused on comparison of pre-inoculation (baseline)
samples with samples taken at or shortly following time T.

2.4. Unbiased 2D-LC-MS/MS

NPL samples were processed for proteomic analyses as described in
Supplementary materials. For the pooled 2D-LC-MS/MS discovery anal-
ysis, four sample pools were created representing the four groups in
H3N2 #1 challenge - Uninf-BL (n = 4), Uninf-T (n = 6), Inf\\BL (n =
6), and Inf-T (n= 8) - with equal protein mass (2 μg) from each partic-
ipant. Normalized pooled samples (2D-LC-MS/MS) and individual par-
ticipant samples (MRM) were reduced, alkylated, and digested with
trypsin as described in Supplementary materials. Prior to analysis, all
samples were spiked with ADH1_YEAST digest (Massprep standard,
Waters Corporation) as an internal technical standard. Unbiased prote-
omic discovery analysis was performed using Nano-scale Capillary
UPLC-MS/MS as described in Supplementary Materials. Briefly, quanti-
tative 10-fraction 2D-LC-MS/MS was performed on duplicate injections
for each sample pool, providing accurate mass and intensity (abun-
dance) acquisitions with qualitative identification of the resulting pep-
tide fragments via searching against a SwissProt_Human (www.
uniprot.org) database that also contained a reversed-sequence “decoy”
database for false positive rate determination. Analytical reproducibility
of the label-free 2D-LC-MS/MS method was assessed by calculating the
variation in measured abundance of the spiked ADH1_YEAST standard,
demonstrating a coefficient of variation of 10.6% across all eight injec-
tions. For quantitative processing, peptide quantities across all ten 2D-
LC fractions were summed and the dataset was intensity-scaled to the
robust mean (excluding highest and lowest 10% of detected features)
across all quantitative acquisitions. The final quantitative dataset for
NPL was based on 3285 peptides and contained 438 unique proteins.

2.5. Targeted MRM

Following the selection of 25 candidate protein targets from the un-
biased discovery data, all individual samples were subjected to a
targeted MRM assay as detailed in Supplementary materials. MRM
assay development and transition selection was performed within the
open-access Skyline (MacCoss Laboratory, Univ of Washington) soft-
ware. Initially, up to five unique peptides were selected from each can-
didate protein based on average precursor ion intensity. Five transitions
for each precursor ion were selected based on 1) qualitative DDA
discovery MS/MS data, 2) other discovery datasets for which the same
peptide sequence was identified or 3) from the PeptideAtlas (www.
PeptideAtlas.org) public repository. Following deployment of the initial
MRMassay on a healthy human control NPL pool, theMRMmethodwas
optimized to choose three transitions from the two most robust pep-
tides per protein.

Custom SIL peptides were ordered for each candidate peptide to be
assayed, and were spiked into each individual digested NPL participant
sample at one of four ratios relative to endogenous peptide as described
in SupplementaryMaterials. Each of the four patient cohorts (twoH3N2
and twoHRV)was run as individual run blocks and sampleswithin a co-
hort were randomized in injection order across the cohort. Single MRM
assays were performed on spiked NPL samples with a target quantity of
up to 1 μg on-column. Four samples (3 from H3N2 #1 and 1 from H3N2
#2)were prepared andMRMquantification was attempted, but did not
have sufficient proteinmaterial to generate robust quantitative data and
therefore were excluded from subsequent analyses. To assess analytical
variation, an equal portion of each patient's SIL spiked NPL sample was
used to generate a QC pool, which was run approximately every 12 h
across the entire cohort. In addition, all samples were spiked with five
SIL peptides from yeast_ADH as an internal technical control. MRM
assay reproducibility metrics are shown in Supplementary Fig. S1.

2.6. Data Processing

We examined 51 human peptide analytes (plus 5 yeast ADH) from
26 different human proteins. Eighty subjects from the four viral chal-
lenge studies were assayed although four subjects had insufficient NPL
material at one time point resulting in 156 samples. Four peptides
with N2 missing values were excluded from analysis. Missing values
and zeroes (11 sample-analytes) were imputed with half the observed
minimum value of a given peptide, and expression levels from the re-
maining 47 peptides were log transformed and carried forward for fur-
ther analysis. Simple batch (study) correction was performed by
removing study-wise mean values from each peptide. Final analysis in-
cluded 47 human peptides measured in 156 samples.

2.7. Statistical Analysis

Univariate testing was performed using two-sided t-tests with
Benjamini-Hochberg FDR corrected p-values. For classification we
used sparse logistic regression, in particular a Least Absolute Shrinkage
and Selection Operator (LASSO) generalized linearmodelwith binomial
likelihood (Friedman et al., 2010). Performance metrics and model pa-
rameters were obtained via nested leave-one-out cross-validation
(LOOCV). As classification performance metrics we consider area
under receiver operating curve (AUROC) (Fawcett, 2006), true positive
rate (TPR), and true negative rate (TNR). A 17 protein (30 peptide) re-
laxed classifier (α= 0.1 rather than 1.0) was subjected to pathway as-
sociation analysis using DAVID 6.7 Functional Annotation Tool (Huang
da et al., 2009) using UniProt accession identifiers and human
background.

The datasets generated and analyzed during the current study are
available from the corresponding author on reasonable request. Compu-
tational scripts were written in MATLAB using the GLmnet toolbox
(web.stanford.edu/~hastie/glmnet_matlab/) and can be accessed at
https://bitbucket.org/rhenao/npl_ebm.

3. Results

3.1. Influenza A/H3N2 and Human Rhinovirus Challenge Cohorts

Four independent viral challenge studieswere conducted (Table 1) -
two challengeswith influenza A/H3N2 and twowith HRV, andwere de-
scribed previously (McClain et al., 2016; Woods et al., 2013; Zaas et al.,
2009). Clinical and self-reported symptom data, along with

http://www.uniprot.org
http://www.uniprot.org
http://www.PeptideAtlas.org
http://www.PeptideAtlas.org
http://web.stanford.edu/~hastie/glmnet_matlab/
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corresponding samples, were collected multiple times per day across
the course of exposure, infection, and resolution. For each challenge par-
ticipant, standardized algorithms were applied to assign phenotype la-
bels describing symptomatic, shedding, and “infected” status
(Supplementary Tables S2A, S2B, S2C, respectively) across the time-
course. Since symptom and shedding statuswere not always congruent,
we required that both be present to define a patient as “infected”. When
both were absent, that subject was labeled “uninfected”. When discor-
dant, we applied a tiebreaker based on gene expression analysis (GEA)
representing the host peripheral blood response to viral infection (Sup-
plementary Table S2C) (unpublished data; N. Arzouni, T. Burke, M.
McClain, A. Hero). Of the 80 challenge participants included in this anal-
ysis, just over half (42/80) of the participants were adjudicated as be-
coming infected (H3N2 #1: 9 of 15 infected; H3N2 #2: 10 of 21; HRV
#1: 10 of 20; and HRV #2: 13 of 24).

3.2. Proteomics Discovery and Verification Strategy

An overview of the proteomic discovery and candidate biomarker
verification strategy is depicted in Fig. 1. Despite being a readily accessi-
ble matrix, one technical challenge of studying NPL is the variability in
protein yield from subject to subject. To overcome this limitation, we
utilized a two-phase biomarker discovery strategy: The first phase
used pooled NPL samples from a single H3N2 challenge for in-depth
MS-based discovery proteomics to assist in identification and prioritiza-
tion of candidate biomarkers. In the second phase, targeted assays were
developed for these candidates using the more sensitive and quantita-
tively reproducible MRM approach. Verification of the utility of the
markers was then performed in the original and three independent
challenge cohorts using targeted MRM quantitation.

3.3. Identification of Candidate Protein Biomarkers Using Pooled NPL from
H3N2 Challenge Study

Discovery proteomics was performed on the H3N2 #1 challenge co-
hort using open-platform, 2-dimensional liquid chromatography, tan-
dem MS (2D-LC-MS/MS) analysis of four sets of pooled NPL samples
(uninfected and infected individuals at baseline and time of maximal
symptoms, time T) using equal protein mass per participant sample.
Fig. 1. Study design and experimental workflow. A two-phased strategy was employed to ide
collected from participants in four experimental ARV challenge cohorts. For phase 1 discov
unbiased 2D-LC-MS/MS. The numbers of subject (N) with samples included in each pool are
time of maximal symptoms). For phase 2, the original and three additional independent chall
80 individuals and 156 total samples were used in the derivation of an NPL ARV classifier, and
Across the four unique NPL sample pools, a total of 3285 peptides corre-
sponding to 438 unique proteins were identified at a 1.0% peptide-level
false discovery rate (FDR).

We next investigated the variable expression of NPL proteins in in-
fected and uninfected viral challenge pooled samples. Three criteria
were used to prioritize suitable peptides for subsequent MRM quantifi-
cation from the entire collection of 438 identified NPL proteins (Supple-
mentary Table S3). First, we sought a minimum two-fold change in
expression between baseline and time T in the infected pool in at least
2 peptides per protein; this criterion was used to classify proteins that
would increase or decrease as a function of infectionwithin the same in-
dividuals over time. Levels of 107 proteins increased at least two-fold,
while 61 proteins decreased at least two-fold from baseline to time T.
The second criterionwas a greater than two-fold difference between in-
fected and time-matched uninfected subjects; this criteriawas to enable
specificity of the proteins by comparing test and control subjects at a
time where symptoms are present. This included 36 proteins with
higher expression and 33 proteins with lower expression. The third cri-
terion excluded proteins that might reflect general nasal trauma stem-
ming from repeated collections. To address this, we calculated the
expression change between the time ofmaximal symptoms for infected
subjects (Inf-T) relative to similar times for uninfected subjects (Uninf-
T), and prioritized candidates with unique response to infection at time
T. Additionally, four proteins met 2 of 3 criteria and also had a reported
association with infection (IC1) (Zaas et al., 2009) and inflammation
(APOA1, APOA2, and APOA4) (Pirillo et al., 2015) and were included
in the verification phase. Based on these criteria, 25 proteins were se-
lected for subsequent MRM assay development - 13 had increased and
12 had decreased expression in infected participants.

3.4. MRM Quantification of Candidate Biomarkers in Individual NPL
Samples

MRM is a quantitative LC-MS/MS method utilizing synthetic, SIL
peptides as internal standards, and provides absolute specificity for
the target analyte and relative abundance measurements (Kiyonami et
al., 2011; Addona et al., 2009). A total of 51 unique peptideMRM assays
were designed to target two unique peptides for each of the 25 priori-
tized candidate biomarker proteins, plus human serum albumin and
ntify and characterize candidate protein biomarkers of ARV infection from NPL samples
ery analysis, four NPL pools were prepared from H3N2 #1 cohort and analyzed using
shown (Uninf = uninfected individuals; Inf = infected individuals; BL = baseline; T =
enge cohorts were assayed by targeted MRM. Quantitative peptide expression data from
classification performance was assessed in independent challenge cohorts using LOOCV.
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yeast alcohol dehydrogenase as a spiked exogenous control. Two pro-
teins yielded only a single peptide that was suitable for an MRM assay
– Statherin (only one viable SIL peptide could be synthesized) and
Filaggrin (one of two SIL peptides was insoluble). A third protein,
Calcyphosin, yielded a third suitable peptide assay from the publicly
available PeptideAtlas database.

Following development, MRM assays were performed on 156 indi-
vidual NPL samples from 80 subjects across four viral challenge study
cohorts. This included the original influenza H3N2 cohort (H3N2 #1),
a second H3N2 cohort (H3N2 #2), and two HRV challenge cohorts
(HRV #1 and #2). From the original set of 51 human peptide assays de-
signed, 47 peptides representing 26 proteins were successfully
measured.
Fig. 2. Expression levels of candidate protein biomarkers asmeasured by unbiased LC/LC-MS/M
challenge cohort were measured by (A) LC/LC-MS/MS unbiased discoverymethods in sample p
analysis of unique peptides (peptide sequence is shown above each plot) from individual part
(endogenous “light” peptide to spiked SIL “heavy” peptide). Box-and-whisker plots for ea
representing 99% data coverage. Colored circles represent Uninf-BL (blue), Uninf-T (red), Inf-B
For the H3N2 #1 cohort, we observed that both the direction and
magnitude of change in protein expression was consistent between
the initial pooled discovery measurements (Fig. 2A) and the targeted
MRM peptide measurements (Fig. 2B). This was expected, since the
pooled sample is the biological average of all samples included in the
pool. For example, retinoic acid receptor responder protein TIG1 was
measured across three unique peptides in the pooled discovery data
set, with an average fold change from uninfected to infected time T of
3.3-fold. TargetedMRMassays developed for two TIG1 peptides demon-
strated average increased expression of 2.3- and 2.0-fold when assayed
in individual NPL samples (Table 2). Similarly, two complement factor B
(CFAB) peptides displayed 2.0- and 2.0-fold increased expression when
assayed in individual H3N2#1 samples byMRM, compared to a 3.6-fold
S and targetedMRM. Four representative proteins (CFAB, TIG1, TBA1B, STATH) inH3N2 #1
ools (duplicate measures of multi-peptide meta-protein is shown), and (B) targetedMRM
icipant samples from the same H3N2 #1 cohort. MRM data are expressed as relative ratio
ch group indicate intra-quartile range (box) with upper and lower (whisker) values
L (yellow), and Inf-T (purple).



Table 2
Candidate biomarker protein relative expression ratios. Rows represents the 26 host NPL proteins for which MRM assays were developed. UniProt gene symbol and protein names are
shown for each candidate protein, with number of peptides measured for both unbiased pool and targeted MRM analyses. Unbiased pool ratios are shown for selection criteria 1, 2,
and 3, as described in Supplementary Table S3. Fold expression changes from BL to T for infected individuals, as measured by peptide-specific MRM assay, across all four ARV challenge
studies are shown with two-sided t-test Benjamini-Hochberg FDR-adjusted p-values (in parentheses) for each peptide, respectively.

UniProt gene symbol/protein name Unbiased pool peptides Unbiased (pool)
H3N2 #1

Targeted MRM (individual)

Criteriona Targeted MRM peptides H3N2 #1/2 and HRV #1/2
Fold change [T/BL]Inf (FDR)b

Notes

1 2 3

CFAB|Complement factor B 34 3.6 2.1 1.6 2 2.0, 2.0 (1.8e−4, 2.2e−4)
IC1|Plasma protease C1 inhibitor 8 6.4 1.8 1.0 2 1.3, 1.8 (0.089, 3.9e−4) c

A1AT|Alpha-1-antitrypsin 100 5.1 2.1 1.3 2 1.7, 1.7 (7.8e−4, 5.0e−4)
A1AG1|Alpha-1-acid glycoprotein 1 19 4.1 2.6 1.1 2 1.8, 1.8 (3.9e−4, 3.9e−3)
ALB|Albumin 805 2.4 1.4 1.0 2 1.5, 1.6 (7.8e−4, 7.8e−4) d

TIG1|Retinoic acid receptor responder prot 1 3 3.3 4.2 5.7 2 2.3, 2.0 (6.2e−4)
LCN15|Lipocalin-15 6 −2.5 −3.7 −2.9 2 −3.2, −3.3 (1.1e−3, 1.1e−3)
TBA1B|Tubulin alpha-1B chain 3 2.8 2.6 2.2 2 1.8, 1.9 (1.0e−3, 8.6e−4)
CYTA|Cystatin-A 5 −2.6 −2.8 −2.4 2 −3.5, −2.8 (8.6e−4, 6.7e−4)
APOA1|Apolipoprotein A-I 57 5.1 −1.3 −1.8 2 2.1 (1.2e−3) c

ANGT|Angiotensinogen 6 4.9 2.3 1.5 2 1.4, 1.7 (0.018, 8.4e−3)
SPR1A|Cornifin-A 2 −2.7 −2.0 −1.2 2 −2.2, −1.8 (9.0e−3, 3.9e−3)
CASPE|Caspase-14 10 −3.8 −2.1 −2.2 2 −3.1, −2.7 (6.7e−4, 1.0e−3)
APOA4|Apolipoprotein A-IV 7 11.4 1.1 1.0 2 2.2, 2.0 (1.3e−3, 1.4e−3) c

AMY1|Alpha-amylase 1 7 −2.4 −2.9 −1.7 2 −2.1 (2.9e−3)
VMO1|Vitelline membrane outer layer prot 1 3 −2.0 −2.9 −1.4 2 −2.2, −2.6 (0.016, 8.7e−3)
ANXA2|Annexin A2 8 −2.0 −2.0 −1.6 2 −1.5, −1.6 (5.7e−3, 4.7e−3)
CAYP1|Calcyphosin 4 7.5 2.5 2.1 3 2.6, 2.7, 2.4 (2.9e−3, 1.6e−3, 2.4e−3)
GGCT|Gamma-glutamylcyclotransferase 2 −4.6 −2.0 −1.7 2 −1.7, −2.1 (0.029, 9.9e−4)
DCD|Dermcidin 3 −7.4 −2.5 −4.3 2 −2.3, −2.2 (6.4e−3, 6.4e−3)
SPRR3|Small proline-rich protein 3 2 2.4 2.1 1.2 2 −1.6, −1.9 (0.023, 7.8e−3)
APOA2|Apolipoprotein A-I 9 8.7 1.3 1.3 2 1.7, 1.5 (0.016, 0.07) c

STATH|Statherin 2 112.6 17.5 140.0 1 5.4 (1.0e−3)
PROL4|Proline-rich protein 4 66 −2.6 −2.0 −2.3 2 −1.1 (0.802)
GSTA2|Glutathione S-transferase A2 3 9.1 4.2 1.6 2 1.0 (0.902)
FILA|Filaggrin 2 −7.3 −3.8 −3.9 1 −1.6 (0.061)

a Fold change in pooled analysis for each of 3 prioritization criteria.
b Average fold change per peptide across all cohorts (p-values adjusted for false discovery rate).
c Included due to potential biological significance.
d Included as potential endogenous control.
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increase for the summed 24-peptide CFAB protein composite assayed in
the pooledH3N2#1 discovery dataset. Also as expected, the pooled dis-
covery dataset shows much more narrow standard deviation (Fig. 2A),
as this deviation is due only to technical variability, whereas the vari-
ability in the targeted MRM experiment of all individuals (Fig. 2B) is
able to discern the actual biological variation. These combined results
provided confidence that the pooled-sample 2D-LC-MS/MS phase 1 dis-
covery strategy gives a good measure of the average protein expression
level in situationswhere thematrix of interest is extremely sample-lim-
ited, and that the phase 2 targeted MRM assays reproduce protein ex-
pression changes candidates selected using the pooled data, while also
providing biological variance with higher sensitivity.

3.5. Independent Verification in Additional Viral Challenge Cohorts

We then sought to independently verify candidate peptide expres-
sion changes in individual participant samples from a second H3N2
challenge cohort, aswell as two additional challenge studies using a sec-
ond common ARV, human rhinovirus. Individual participant NPL sam-
ples from the 3 additional cohorts were processed and measured
using the same panel of experimental and control peptide MRM assays
derived from theH3N2#1 cohort. In a combined analysis across the four
independent ARV cohorts, we found that median sample-wise peptide
expression intensity was relatively constant across all samples regard-
less of infection status, though 26 of 47 peptide analytes measured to
be differentially expressed (Benjamini-Hochberg FDR b 0.05) at the
time of maximal symptoms in the infected H3N2 subjects. Likewise,
30 peptide analytes were differentially expressed (Benjamini-Hochberg
FDR b 0.05) in the HRV subjects at time T, with 16 peptides overlapping
between the two H3N2 and two HRV cohorts. The direction andmagni-
tude of change for all 40 peptide analytes (10 H3N2 only, 14 HRV only,
16 in both) that were significantly differentially expressed in either the
H3N2 or HRV cohorts are highly correlated (r = 0.871) between viral
groups (Fig. 3), indicating that these analytes are likely not virus type-
specific or useful in differentiating between H3N2 andHRV. This finding
provided a basis for investigating the utility of these protein assays in a
multi-analyte classification model of ARV infection.

3.6. Classification Model of ARV Infection

To build an NPL protein classifier that distinguishes infected from
uninfected subjects we utilized LASSO sparse logistic regression
(Friedman et al., 2010) to build a list of potential logistic regression
models. The classifierwas trained to discriminate samples from infected
individuals at time T (Inf-T) from paired baselinemeasures (Inf-BL) and
from uninfected individuals at time T (Uninf-T). Fig. 4A shows the per-
formance of a NPL classification model that selected 10 peptides (9
unique proteins), in the four independent challenge cohorts, including
discordant individuals adjudicated using GEA status as a tiebreaker.
For this analysis we ignored the paired nature of samples in the training
and classification tasks in order to better estimate the accuracies in a sit-
uation in which baseline samples are not available. Overall classifier
performance (Fig. 4B) in LOOCV yielded an AUROC of 0.8623 (95% CI:
0.7538–0.9315, bootstrapped 10 K samples) with a 75% TPR and
97.46% TNR. Baseline samples from the asymptomatic cohort were
withheld from model training since this was not a phenotype the
model was trying to identify. However, they represent a cohort of
asymptomatic individuals available for validation. Applying the model



Fig. 3. Correlation of the peptide expression changes for all four H3N2 and HRV cohorts (r = 0.871). Graph shows peptides with significant expression changes (Benjamini-Hochberg
FDR b 0.05) in H3N2 (red circle, 10 peptides), HRV (yellow circle, 14 peptides), both H3N2 and HRV (blue circle, 16 peptides), or neither cohort (purple circle) as measured by MRM.
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to these 37 samples revealed only one misclassification error (2.7%).
LOOCV confusion matrix and identities of the 10 peptide classifier
with weights are shown in Table 3A and B, respectively. We also
Fig. 4. Performance of a 10-peptide classificationmodel in independent ARV cohorts. Themode
(x-axis) for individual participant samples from 4 cohorts, with threshold for positive classificat
(right). Solid red line = infected; dashed blue line= uninfected; dashed green line = uninfect
disagrees with phenotype label. (B) Receiver operating curve for LOOCVwith the 10 peptide (9
0.8623 AUROC, 75% TPR, 97.46% TNR, with the confusion matrix and peptide weights shown in
performed analyses separately on infection status of individuals inde-
pendently of the GEA status (i.e., including only symptomatic shedders
and asymptomatic shedders) with no surprisingly increased
l was fit to discriminate Inf-T from Inf-BL and Uninf-T. (A) Probability of positive is plotted
ion set at N0.5. Lines connect paired samples from individuals at baseline (left) and time T
ed sham inoculation; open circles = classifier agrees with phenotype label; X = classifier
unique proteins) classifier. The optimal threshold on the curve (open red circle) produces
Table 3A and B, respectively.



Table 3
10-peptide classification model performance. (A) Classifier performance on individual
samples from all four ARV cohorts as represented by LOOCV confusion matrix, with (B)
identity and contribution (weight) for 10 peptides, with amino acid sequence in one-letter
notation. Average peptide length is 11.8 amino acids, with range between 8 and 30 resi-
dues. Negative weight values indicate down-regulation upon infection.

A: 10-peptide classification model performance on ARV challenge cohorts
Actual/predicted Othersa Inf at T

Othersa 77 2
Inf at T 10 30
aInf-BL and Uninf-T; Confusion matrix based on LOOCV using 10 peptide (9
protein) classification model.

B: Identity and contribution of peptides in classification model

Weighta Gene symbol Peptide sequence

0.927 A1AG1 EQLGEFYEALDCLR
0.850 TIG1 VLAEVQEGR
−0.266 ANXA2 TNQELQEINR
−0.260 LCN15 VPALGYLDVR
0.249 ANGT ADSQAQLLLSTVVGVFTAPGLHLK
0.228 CFAB EAGIPEFYDYDVALIK
0.198 TBA1B IHFPLATYAPVISAEK
0.154 CAYP1 EAVIAAAFAK
0.126 STAT FGYGYGPYQPVPEQPLYPQPYQPQYQQYTF
0.081 CFAB YGLVTYATYPK
aPeptide weight contribution to classification model (negative value indicates
down-regulated upon infection).
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classification performance, 0.8821 LOOCV-AUC (vs. 0.8623), and on all
individuals using shedding as outcome (ignoring symptoms) with
0.8610 LOOCV-AUC.
3.7. Symptomatic but Uninfected Sham Controls

The experimental design of the HRV #2 challenge included a “sham”
inoculation control group (Fig. 4A, panel HRV #2 in green), with several
participants receiving intranasal inoculation of salinewithoutHRV. Four
of the seven sham controls reported symptoms sufficient to be classified
as symptomatic, despite receiving no HRV inoculum and showing no
microbiological evidence of infection. All four subjects were classified
as negative byNPLMRM analysis, consistentwith absence of HRV shed-
ding and no observed GEA host response in the bloodmRNA ARV infec-
tion pathway (Huang et al., 2011; Woods et al., 2013; McClain et al.,
2016) for these subjects.
3.8. Pathway Analysis

Since the classifier tested in Fig. 4 includes only 9 unique proteins,
we repeated the analysis using amore relaxed variable selection param-
eter to better describe the biological pathways involved (LASSO regular-
ization parameter, α = 0.1 rather than 1.0). The new classifier has
nearly identical performance (0.8765 AUROC, 75% TPR, and 97.46
TNR) but selected 30 of 47 peptides (17 uniqueproteins). Pathway asso-
ciation analysis was performed using DAVID 6.7 Functional Annotation
Tool (Huang da et al., 2009) using the 17 proteins selected by this ex-
panded classifier as being informative in differentiating infected from
uninfected individuals (results in Supplementary Table S5). Significant
annotation clusters were primarily driven by 5 proteins (A1AG1, CFAB,
A1AT, IC1, and APOA4), and were associated with Gene Ontology (GO)
biological process terms acute inflammatory response (GO:0002526;
p = 1.6e-4), innate immune response (GO:0045087; p = 9.9e-3), in-
flammatory response (GO:0006954; p=5.0e-3), and defense response
(GO:0006952; p = 3.9e-3). Similar results were seen when expanding
the query to include all 26 protein candidates used in the phase 2
MRM analyses.
4. Discussion

We conducted unbiased and targeted protein analyses on human
NPL samples collected from four independent ARV challenge cohorts
(two influenza AH3N2, twoHRV) to define host protein expression pat-
terns characteristic of response to viral respiratory infection. The results
demonstrate that robust changes in secreted proteins occur in the NPL
of infected individuals, and that a subset of proteins is capable of accu-
rately classifying the infected state of the individual.

Despite changes to the assay approach andmethods in transitioning
frompooled phase 1 discoverywith unbiased 2D-LC-MS/MSproteomics
to individual measurements in phase 2 discovery with MRM, we ob-
served good reproduction of both the direction and magnitude of pep-
tide expression measurements between the methods. This provides
confidence in the specificity and quantitative performance of both
methods. Importantly, this approach enabled accurate selection of can-
didate biomarkers in a pooledphase 1 discoverywhere sample amounts
were severely limited on individual samples, and precluded the ability
to analyze all samples using unbiased 2D-LC-MS/MS. Though some bio-
marker candidate attritionwas expected because the biological variance
is not available from the pooled data,with appropriate strategic filtering
of the candidates we were able to have a high success rate for statistical
validation between phase 1 (pooled discovery) and phase 2 (individual
MRM measurements).

Investigations by our group and others have shown differential ex-
pression of host genes at the RNA level in peripheral blood in response
to ARV infections (Ramilo et al., 2007; Zaas et al., 2009; Woods et al.,
2013; Zaas et al., 2013), with heavy representation of genes in the
IFN-signaling canonical pathway and innate immune response signal-
ing. Analysis of differentially expressedNPL proteins in infected individ-
uals demonstrates involvement in several biological pathways critical to
mounting a host defense to virus infection, including innate immune re-
sponses, acute inflammatory responses, and defense response path-
ways. The inclusion of three members of the complement system
(CFAB, A1AT, and IC1) is particularly consistent with an innate immune
response, as the complement system enhances the ability of antibodies
and phagocytic cells to clear pathogens from the infected site (Ricklin et
al., 2010). Despite the apparently related pathways involved, there does
not appear to be extensive overlap between the differentially expressed
nasal proteins identified in our H3N2 #1 challenge study, and the previ-
ous peripheral blood RNA signatures of ARV infection characterized in
the same challenge cohort (Zaas et al., 2009). One gene product that is
increased at both the NPL peptide and peripheral blood RNA level
upon influenza infection (Cameron et al., 2008; Cameron et al., 2007;
Zaas et al., 2009) is IC1 (SERPING1 gene). IC1 (also called C1-inhibitor)
is a peptidase inhibitor belonging to the serpin superfamily and has an
important role in innate immunity through modulation of the classical
pathway of complement activation (Gaboriaud et al., 2004). As the com-
plement system has the potential to be damaging to host tissues, com-
plement control proteins must tightly regulate activation. IC1 binds to
complement protein C1 to inhibit activation of the classical complement
pathway, and thus its discovery fits well with our understanding of the
biology of these diseases.

Notably absent from this NPL protein analysis are proinflammatory
cytokine and chemokine gene products which have previously been
shown to be strong contributors to the host response both in peripheral
blood and near the site of ARV infection (Kimura et al., 2013). Oshansky
and colleagues assayed nasal lavage samples from a cohort of healthy
and naturally-infected influenza patients using a multiplex cytokine
and chemokine assay panel, reporting correlation of inflammatory cyto-
kines MCP-3 and IFN-α2 with disease progression (Oshansky et al.,
2014). An aptamer-based detection method was subsequently used to
screen the same cohort and generate quantitative measures of over
1000 protein analytes from nasal lavage, showing differential expres-
sion of 162 proteins including cytokines associated with immune re-
sponse to infection (Marion et al., 2016). We did not identify
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inflammatory cytokines to be differentially expressed in our pooledNPL
analysis. It is possible that cytokine proteins in NPL samples are
expressed at levels below the detection limits of LC/MS-basedmethods,
and that coupling targeted methods capable of detecting and quantify-
ing cytokines directly may provide enhanced datasets for biomarker
discovery.

The inclusion of “sham” infected participants in the HRV #2 cohort
provided an important opportunity to assess the accuracy of standard
clinical symptom assessments in the diagnosis of ARV infection. The
clinical definition of symptomatic, even when applying standardized
symptom scoring and algorithms, includes elements of subjectivity
and thus may be imperfect in describing such infections. The finding
that, despite the apparent presence of symptoms of infection, MRM
analysis classified all seven individuals as uninfected suggests that this
NPL biomarker assay has a lower false positive rate in diagnosing HRV
infection than standard symptom status measures.

Experimental challenge studies provide an excellent model for
studying ARV infection and illness, with pre-screened volunteers,
known time of exposure, standardized pathogen exposure, and exten-
sive sampling and data collection through the course of illness. Howev-
er, experimental challenges do not perfectly replicate natural ARV
infection and illness in humans. Volunteers in these studies are young
and healthy, and represent a relatively homogenous population. In con-
trast, patients presenting to clinical care are demographically heteroge-
neous, have a variety of comorbidities, present at various times in the
course of their illness, and contain a far greater breadth of potential
pathogens beyond the two studied here. As such, additional validation
should be performed in amore diverse population, such as patients pre-
senting to clinical carewith community-onset disease.While the gener-
alizability of this study's findings will require additional validation, the
high TNR of 97.46% suggests this assay may provide value in ruling out
ARV infection.

Categorizing infection based upon host response represents an
emerging strategy with great potential for complementing current
pathogen-based diagnostics, as well as providing additional insights
into the pathobiology of infection. The results presented in this study
provide evidence that a protein-based host response to ARV infection
can be detected in the nasopharyngeal space, and that this response in-
volves perturbation of pathways involved in acute inflammation and in-
nate immune response. Further, this work demonstrates that targeted
assaysmeasuring peptides involved in this response allow classification
of ARV infectionwith a high degree of accuracy. Validation of thesefind-
ings across independent experimentally infected Influenza A and
human rhinovirus cohorts suggests a robust and generalized response
to viral infection. With further development as a clinical diagnostic,
this signature may have utility in rapid screening for emerging infec-
tions, avoidance of inappropriate antimicrobial therapy, and more
rapid implementation of appropriate therapeutic and public health
strategies. Nonetheless, as with other validated biomarkers, additional
validation in community-based cohorts will be important to demon-
strate the potential utility of such an assay in its clinical applications.
Furthermore, testing this approach across a larger series of upper respi-
ratory viruses will be important to understand its full potential utility
and limitations. An assay that combines host protein biomarkers with
nasal viral antigen detectionmay be quite valuable in clinical care to op-
timize therapeutic decision making. And whilst a positive result from
such an assay may avoid the use of inappropriate microbial therapy, it
will likely require vigilance on the part of the clinician to exclude bacte-
rial co-infection when clinically indicated.

Our previous demonstration of thepotential for host response-based
pre-symptomatic detection of H3N2 infection using blood RNA expres-
sion (McClain et al., 2016) raises the intriguing possibility that an NPL
protein host response assaymight be useful in early detection of ARV in-
fection, and should be evaluated. The availability of a proteomic ‘signa-
ture’ that accurately classifies ARV infection and might be migrated to
simple and inexpensive antibody-based tests that are routinely used
in both clinical laboratory and over-the-counter diagnostic applications
represents an important advance, andmay one day yield a ARV host re-
sponse test that is safe, simple, rapid, inexpensive, and accurate.
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