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Abstract
There is currently a pressing need for alternative the
rapies to liver transplantation. The number of patients 
waiting for a liver transplant is substantially higher than 
the number of transplantable donor livers, resulting in 
a long waiting time and a high waiting list mortality. 
An extracorporeal liver support system is one possible 
approach to overcome this problem. However, the 
ideal cell source for developing bioartificial liver (BAL) 
support systems has yet to be determined. Recent 
advancements in stem cell technology allow researchers 
to generate highly functional hepatocytelike cells 
from human pluripotent stem cells (hPSCs). In this 
minireview, we summarize previous clinical trials with 
different BAL systems, and discuss advantages of and 
potential obstacles to utilizing hPSCderived hepatic cells 
in clinicalscale BAL systems.
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Core tip: The current lack of transplantable donor 
livers in the world has led to the development of 
extracorporeal liver support systems as one possible 
approach to overcome this problem. Bioartificial liver 
(BAL) support systems require a cell source to replicate 
human liver function, yet the ideal cell source for this 
purpose has yet to be determined. Highlyfunctional 
hepatocytelike cells have recently been generated from 
human pluripotent stem cells, which show promise as 
a potential cell source in BAL support systems for the 
treatment of liver failure in the future.
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INTRODUCTION
Needs for bioartificial liver systems in clinical practice
Liver disease is one of the most prevalent medical 
conditions in the world today, affecting hundreds 
of millions of people worldwide[1-3]. Many of these 
diseases, such as end-stage liver diseases and 
some inherited liver diseases, can only be treated 
successfully with a liver transplant[4]. Although 11606 
patients were added to the liver transplant waiting 
list in the year 2015, only 7127 patients received a 
liver transplant in that same year[4]. This discrepancy 
demonstrates the profound shortage of transplantable 
donor livers. This shortage of livers resulted in a high 
waiting list mortality, with 1423 patients dying in 
2015 while waiting for a transplant[4]. Therefore, it is 
imperative that new therapies are developed to provide 
an alternative to liver transplantation.

Extracorporeal liver support systems were de-
veloped with the aim of stabilizing a patient long 
enough for his or her own liver to regenerate or for 
physicians to procure a transplantable liver. Early 
support systems functioned to supplement liver 
function by removing toxins from the blood through 
non-biological hemofiltration[5]. These non-biological 
type extracorporeal liver support systems have been 
clinically established and are widely used in countries 
where liver transplantation is limited[5]. However, it 
became apparent that non-biological hemofiltration 
devices were incapable of adequately replicating liver 
function[5]. In order to overcome the limitations of non-
biological devices, live cells that possess liver function 
were incorporated into the development of bioartificial 
liver support (BAL) systems[5]. There are several types 
of BAL systems that have been proposed which differ 
in their cell housing mechanism, including hollow fiber-
based[6-10], multilayer membrane-based[11], sponge/
scaffold-based[12-14], and floating/encapsulated-based 
systems[15] (Figure 1). Although most of these housing 
mechanisms have successfully cultured cells on the 
small experimental scale, hollow fiber-based BAL 
systems are widely used in clinical trials.

SOURCES OF HEPATOCYTES FOR BAL 
SYSTEMS
Several types of cells may be selected for use in a 
BAL system. These include primary hepatocytes 
isolated from human livers, human hepatoblastoma 

cell lines, and primary animal hepatocytes[16]. Human 
primary hepatocytes are ideal for the BAL system[16]. 
However, the low availability and inconsistent quality 
of primary human hepatocytes prevent their use in 
clinics[16]. Although human hepatic cancer cell lines 
and animal liver cells are readily available, they 
are less metabolically active than primary human 
hepatocytes[17]. In addition, the risk of zoonoses 
precludes the use of animal cells. For example, it has 
been shown that porcine endogenous retroviruses are 
capable of infecting human cells in vitro[18].

Recent advancements in stem cell research have 
demonstrated that hepatocyte-like cells can be 
derived from human pluripotent stem cells (hPSCs)[19]. 
hPSCs can be generated from a patient’s own cells 
by introducing several transcription factors[20]. They 
are capable of differentiating into cells from all three 
germ layers, including neural cells[21-23], osteogenic 
cells[24], cardiac cells[25] , adipogenic cells[26], pancreatic 
cells[27,28], vascular cells[29], hematopoietic cells[30], 
endothelial cells[30], and hepatocytes[31,32]. hPSC-derived 
hepatic cells have been shown to express hepatocyte 
marker genes and proteins[33]. They also demonstrate 
hepatic functions including albumin secretion, urea 
synthesis, cytochrome P450 enzyme induction[31], and 
glycogen storage[34].

hPSC-derived hepatic cells possess minimal risk 
when used in a BAL system, but are unsuitable for 
other applications due to their risk of tumorigenicity. 
The genetic instability of hPSCs results in an underlying 
uncertainty of transplanting large quantities of hPSC-
derived hepatic cells directly into a patient[35]. On the 
other hand, the risk of tumorigenicity is minimized in 
a BAL system, as the hPSC-derived hepatic cells would 
be isolated from the patient’s blood stream by multiple 
layers of filter membranes (Figure 2). Therefore, while 
hPSC-derived hepatic cells may not be ideal for cell 
transplantation, they are viable candidates for a BAL 
system.

SUCCESSES AND CHALLENGES OF 
DEVELOPING CLINICAL BAL SYSTEMS 
Several BALs have been evaluated in clinical trials, 
as previously explored in van de Kerkhove et al[13,14] 
(Table 1)[6-10,13,14]. The Extracorporeal Liver Assist 
Device (ELAD) utilizes the human hepatoblastoma cell 
line HepG2/C3A (100 g) in hollow fiber-based dialysis 
cartridges. A phase III trial treated 96 patients with 
alcohol-induced liver decompensation. In subjects 
age < 50 years, creatinine < 1.3 mg/dL, bilirubin ≥ 
16 and international normalized ratio (INR) ≤ 2.5, 
the 91-d survival rates were 93.9% for ELAD-treated 
subjects and 68.4% for control subjects (P = 0.006)[10]. 
A second BAL design, the Modular Extracorporeal 
Liver Support (MELS) system, consists of interwoven 
hollow fiber membranes, creating a three-dimensional 
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hPSC-derived hepatic cells. If successful, these readily 
available and highly functional extracorporeal liver 
support systems will be a feasible alternative for the 
treatment of liver failure in the near future.

hPSC-derived hepatic cells will be the ideal cell source 
to develop clinical-grade bioartificial devices. Further 
clinical translational studies will be required to overcome 
the obstacles to developing large-scale BAL devices with 

Figure 2  Bioartificial liver system with human pluripotent stem cells-derived hepatic cells using double filtration plasmapheresis. In a bioartificial liver (BAL) 
system, patient plasma is first separated from whole blood by double filtration plasmapheresis (DFPP). Plasma then perfuses a bioartificial device using hydrophilic 
hollow fibers. The human pluripotent stem cells (hPSCs)-derived hepatic cells are inoculated at the outside of the hollow fibers. The detoxified patient plasma is 
filtered once more before returning to the patient’s blood stream. The hollow fiber membranes and safety filter provide two layers of separation between the patient’s 
blood stream and the hPSC-derived hepatic cells.

DFPP
Air trap

BAL (hollow fiber separation)

Monitor

Reservoir

Safety filter

Waste

Blood circulation                                     Plasma circulation

Sakiyama R et  al. Bioartificial liver with human iPS

Figure 1  Artificial liver device designs.

Type Pros Cons

Hollow fiber (tubular) Simple structure, divertible from dialyzer, minimal shear 
stress, immunoisolation 

Uneven gasliquid mass transfer, no intrinsic oxygen supply

Hollow fiber (interwoven) Ease of scaleup, efficient and uniform mass transport, 
minimal shear stress, immunoisolation, good oxygen and 

nutrient supply

Complex structure

Multilayer membrane Uniform cell distribution and microenvironment Limitations to scaleup, cells exposed to direct shear stress, low 
surface areatovolume ratio, no intrinsic oxygen supply

Sponge/scaffolds Ease of scaleup, minimal barrier to nutrient/metabolite 
transport

Nonuniform cell distribution, cells exposed to shear stress, no 
intrinsic oxygen supply

Floating/encapsulated Ease of scaleup, uniform microenvironment Poor cell stability, barrier to nutrient/metabolite transport due 
to encapsulation, degradation of microcapsules over time, no 

intrinsic oxygen supply
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