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Introduction

New plant breeding techniques (NPBT) encompass a set 
of diverse techniques and concepts that all aim to improve 
efficiency and/or precision of plant breeding. Most make 
use of transgenic plant lines at some point in the breed-
ing process, but the final product generally contains only 
small mutations and in specific cased no modifications at 
all, and is often indistinguishable from the conventional 
breeding products (Lusser et al. 2012; Schaart et al. 2016). 
One of the most promising among these, genome editing 
(also called gene editing or gene targeting) with the help 
of a programmable nuclease (SDN: Site-directed nuclease, 
or SSN: sequence-specific nuclease), recently has led to a 
deluge of creative applications with the introduction of the 
CRISPR-Cas9 system. While the thorough review of NPBT 
by Lusser et al. (2012) not yet mentioned CRISPR-Cas, 4 
years later a search using CRISPR and plants as keywords 
provided 246 publications in Web of Science (on 31-10-
2016). Similarly to zinc finger nucleases (ZFN) and TAL-
ENs, CRISPR-Cas is able to make a double-strand break 
(DSB) at a precisely specified location in the genome, but it 
is much more versatile and easy to use, because the speci-
ficity of the target sequence is achieved by a separate guide 
RNA (gRNA) that can be easily designed and readily syn-
thesised rather than by the protein structure itself (ZFN, 
TALEN). The use in plants has recently been reviewed 
by Luo et  al. (2016), Paul and Qi (2016), Hilscher et  al. 
(2016), and Rani et al. (2016).

At an early stage of the development of genome editing, 
three types of uses based on the DSB repair mechanism 
have been distinguished for regulatory purposes (Lusser 
et  al. 2011). In SDN-1, the DSB is repaired by the non-
homologous end joining (NHEJ) DNA repair machinery of 
the cell, during which small mistakes may be introduced, 
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mostly consisting of small indels. Plants with such mistakes 
can be identified by screening. Indels in genes frequently 
lead to gene knockout as a result of reading frame shifts 
causing premature translational stops. In SDN-2, an oli-
gonucleotide is provided to assist in the repair of the DSB 
that is identical to the sequence in which the DSB is made, 
except that a desired mutation is included. Some plants may 
use this oligo in an alternative cellular repair mechanism, 
homology-directed repair (HDR). This may lead to a higher 
frequency of plants with the desired change, e.g., a single 
amino-acid substitution. In SDN-3, the DSB is repaired in 
the same way, but the repair template is a longer sequence 
that may include a complete gene or a promoter. This will 
lead to the insertion of native or foreign sequences at a 
precisely specified location in the genome. SDN-3 is thus 
similar to genetic transformation and it generally results 
in transgenic plants, but they are produced with improved 
precision as the inserted sequence is targeted to a specific 
site in the genome, or exchanged with existing sequences 
at that site, e.g., in promoter swaps. Thus, SDN-3 holds 
much promise for diverse applications, including stacking 
desirable (transgenic) traits, so that they are passed on to 
progeny as a single block during breeding, which is desir-
able for efficient introgression into diverse elite materi-
als (Kumar et  al. 2016). HDR is still a relatively difficult 
to control mechanism. An alternative technique is called 
ODM (oligo-directed mutagenesis). It may produce results 
similar to SDN-2 but does not employ a nuclease to make a 
DSB. Combinations of both, improving efficiency, are also 
explored (Sauer et al. 2016).

Although SDN-1 is precise only in the targeted site and 
not in the resulting type of mutation, it appears presently to 
be the most frequently implemented, and is, therefore, the 
subject of this review. We first discuss improvements and 
new variants of SDN-1, in particular employing CRISPR-
Cas, and subsequently explore the possibilities of targeted 
deletions that eliminate the function or part of the function 
of a gene, as an approach to generate novel traits useful 
for improvement of agricultural sustainability. We com-
pare them with examples of deletions that resulted in novel 
functionality as known from crop domestication and clas-
sical mutation breeding. Finally, we touch upon regulatory 
and IP issues around the plants produced, as well as access 
and benefit sharing.

Improvements and new variants of the technology

Off‑target effects

CRISPR-Cas genome editing has been reported to be 
accompanied by off-target effects, i.e., mutations arising 
from repairing DSBs induced elsewhere in the genome 

than the targeted sequence. Several research groups have 
made changes to the Cas protein and/or gRNA design to 
enhance the sequence target specificity (Kleinstiver et  al. 
2016; Slaymaker et al. 2016; Doench et al. 2016). In addi-
tion, alternative endonucleases (e.g. Cpf1) could increase 
specificity (e.g., Ran et al. 2015; Kim et al. 2016a). Schiml 
et al. (2014) turned Cas9 into a nickase, so that two adja-
cent gRNAs were required to make a DSB with sticky ends. 
This improved the specificity, alone and in combination 
with using truncated gRNAs (Fu et al. 2014). Tolerance for 
mismatches in the gRNA (actually off-target effects) may 
also be used to specifically target related genes from gene 
families (Endo et al. 2015).

Various methods for genome-wide detection of off-
target mutations have been developed, including BLESS 
(Crosetto et al. 2013), GUIDE-seq (Tsai et al. 2015), Dige-
nome-seq (Kim et al. 2015, 2016b), and END-seq (Canela 
et al. 2016). For the few plant species assessed so far, lit-
tle off-target effects appear to occur using CRISPR-Cas, 
but this would need to be studied in more species (Peterson 
et al. 2016). For example, off-target effects could be limited 
using an optimal molar ratio of Cas9 to gRNAs by Woo 
et al. (2015), while Peterson et al. (2016) did not detect any 
in a multiplex approach by re-sequencing in Arabidopsis, 
including in computationally predicted sites.

Off-target mutations are considered a problem in, e.g., 
applications in humans, but they are less likely to pose a 
problem in plant breeding, as usually multiple plants are 
produced that are subsequently screened and selected. In 
many cases, there are multiple generations between the 
genome editing step and the variety produced, in which off-
target mutations are selected against and in seed-propagated 
crops, segregate out. In addition, the frequency of off-target 
mutations made across the genome will be much lower 
than in classical mutagenesis. The type and frequency of 
mutations in classical mutagenesis depend on the method 
(chemical or ionizing radiation) used, type and concentra-
tion of chemical or type of radiation, and the duration of 
the treatment, which are generally adjusted case by case 
(Suprasanna et al. 2015). Polyploid crops, in general, toler-
ate a higher frequency than diploid crops (Uauy et al. 2009; 
Shu et al. 2011; Oladosu et al. 2016). A frequency of one 
mutation induced every 78 kb (what Tsuda et al. 2015 used 
in soybean) would in soybean or tomato mean that classi-
cal mutagenesis may introduce for every desired mutation 
more than 10,000 other mutations.

Delivery

Commonly plants are transformed using Agrobacterium or 
biolistic systems to introduce the Cas9- and gRNAs-encod-
ing DNA stably into the plant genome. This may work best 
in tissue culture systems, as exemplified by the high success 
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rate in rice (Paul and Qi 2016). When using floral dip, ger-
mline editing was shown to be improved in Arabidopsis 
by driving the expression of Cas9 with promoters specific 
for egg cells (Wang et al. 2015) or for actively dividing tis-
sues, such as meristems and embryo sacs (Hyun et al. 2015; 
Yan et al. 2015). Alternatively, viral vectors for gRNA (Ali 
et al. 2015; Yin et al. 2015) may improve efficiency.

Clasen et al. (2016) used a temporary expression system, 
i.e., a TALEN transcribed from plasmids introduced into 
potato protoplasts. Regenerated plants with mutations were 
checked for the absence of plasmid sequence insertions in 
their genome. Woo et al. (2015) transfected protoplasts of 
Arabidopsis thaliana, tobacco, lettuce, and rice with ribo-
nucleoprotein complexes containing Cas9 nuclease pro-
tein and appropriate gRNAs and obtained genome-edited 
regenerated plants. They called their approach “DNA 
free genome editing”. It has also been used in the unicel-
lular green alga Chlamydomonas reinhardtii (Baek et  al. 
2016) and it was also shown to work in Petunia hybrida 
protoplasts (Subburaj et  al. 2016). The approach requires 
protocols for protoplasting and plant regeneration from 
protoplasts, which are not available for many crops, or, if 
existing, not for all varieties within a crop. The desire to 
use genome editing in research and in plant breeding urges 
for a surge of activity into transformation, protoplasting, 
and regeneration protocols for crops and model species that 
up to now have remained recalcitrant, such as wheat (Alt-
peter et al. 2016).

Multiplexing

CRISPR-Cas9 is particularly suitable to multiplexing 
because of the versatility of the gRNAs, but also TALENs 
have been multiplexed: four Nicotiana benthamiana genes 
involved in glycosylation were knocked out simultaneously 
using TALENs for the benefit of biopharmaceutical produc-
tion of glycoproteins devoid of plant-specific residues (Li 
et al. 2016). Peterson et al. (2016) targeted 14 loci simul-
taneously in A. thaliana with CRISPR-Cas using stacked 
gRNA expression arrays (Peterson et  al. 2016). Steinert 
et al. (2015) simultaneously used two alternative modified 
Cas proteins, and each was directed by its own gRNA.

Larger deletions

Using two gRNAs targeted to sites at some distance 
from each other on the same chromosome, larger dele-
tions become possible based on annealing the distant sites 
through NHEJ. In this way, Zhou et al. (2014) managed to 
delete a cluster of up to 10 loci in the terpenoid synthesis 
pathway in rice. Deleting clusters of related genes is useful, 
e.g., for the removal of alpha- or gamma-gliadins, which 
are organized in gene repeats on different chromosomes, 

while trying to produce wheat that is safe for people with 
celiac disease (Jouanin et al., in preparation).

Generation of new traits for crop improvement 
through deletions

‘Classical’ genetic modification was developed to introduce 
genes into plants to obtain a gain of function, although it 
soon was also used to silence endogenous genes, e.g., 
using RNAi. The reason for this is that the loss of a gene 
or gene function may also result in a new plant phenotype 
that is useful for man. During crop domestication, many 
traits have been selected for that are inherited as reces-
sive, so mostly loss-of-function (Lu et  al. 2006; Hancock 
2012; Martínez-Ainsworth and Tenaillon 2016). They 
often comprised knockouts of genes. Examples include 
loss of seed shattering, loss of seed dormancy, reduction of 
shoots improving the harvest index, reduction of chemical 
and physical defences, and loss of photoperiodicity and/or 
the vernalisation requirement (Nakamichi 2015). Similar 
mutations have been selected for independently in different 
crops (e.g., Cheng et al. 2016).

Since the 1930s, (knockout) mutagenesis has been used 
to generate new traits, boosted by increased knowledge on 
the effects of various sources of radiation (which mostly 
induce deletions) and chemical mutagens (for example, 
EMS induces C > T mutations). This had led to the devel-
opment of more than 3000 crop varieties, and it is still 
popular, for instance, for generating new flower colours 
in ornamentals (it is a standard procedure in Chrysanthe-
mum). Interestingly, mutation breeding also produces, at 
useable frequencies, gain of function traits, such as new 
disease resistances (Oladosu et  al. 2015). Resistance to 
biotic and abiotic stresses is an important goal of breeding 
new varieties, as one of the elements to feed the world in a 
sustainable way.

The SDN-1 systems make it also easier to deal with 
the recessive nature of the mutations, which in classical 
mutagenesis generally means that mutations do not show a 
phenotype in the mutants themselves, only in their progeny. 
SDN-1 can mutate all alleles of the targeted locus simul-
taneously, which is a particularly significant improvement 
in mutating polyploids. Examples are deletions in the three 
homoeologues (six alleles) of MLO for powdery mildew 
resistance in hexaploid wheat using TALENs by Wang 
et al. (2014) and the four copies of GBSS for altering starch 
composition in tetraploid potato by Andersson et al. (2016).

Disease resistance

Increasing pathogen resistance in crops is an important way 
to improve agricultural sustainability. Resistance may be 
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generated by deleting plant genes that are used (‘hijacked’) 
by pathogens and on which the pathogens depend for 
growth and development (Pavan et  al. 2010). These are 
called S genes (for Susceptibility, in contrast to dominant 
R genes which confer Resistance through recognition of the 
pathogen). The classical example is mlo, a recessive mutant 
which has been effective for mildew resistance in barley for 
over 30 years (reviewed by Acevedo-Garcia et al. 2014).

Knocking out S genes generated disease resistance in 
multiple crop species, but this may be accompanied by 
poor plant performance. Precisely targeted deletions using 
SDN-1 can make it possible to generate specific patho-
gen resistance without fitness costs for the plant. Using 
TALENs, Li et al. (2012) were able to identify and delete 
a small part of the rice SWEET14 promoter that was tar-
geted by an effector protein secreted by the causal agent 
of Bacterial Leaf Blight, Xanthomonas oryzae pv. oryzae 
(Xoo), apparently without affecting adequate expression of 
the gene by the plant itself. Thus, a rice line was generated 
that was resistant to Xoo strains that use this effector. Later 
on, also CRISPR-Cas9 was implemented for mutating 
SWEET-type S genes (Zhou et al. 2014). S genes have been 
identified in a range of species, including Arabidopsis, rice, 
soybean, and potato and tomato (Sun et al. 2016a, 2016b; 
Zheng et al. 2016).

Resistance to viruses can also be generated following 
an S gene approach. Disrupting the functionality of eIF4E 
(eukaryotic translation initiation factor 4E) effected broad 
potyvirus resistance in cucumber (Chandrasekaran et  al. 
2016). Pyott et  al. (2016) likewise achieved potyvirus 
resistance in Arabidopsis.

Product quality

In many crops, including legumes and cereals, phytate in 
seeds interferes with phosphorous uptake. Decreasing 
phytate content in feed will increase net uptake of P by 
livestock which may reduce losses of P to the environment. 
Liang et  al. (2014) used both TALEN and CRISPR-Cas9 
successfully in maize to obtain mutations in IPK, which is 
involved in phytate production. Reducing phytate comes 
with trade-offs for plant performance that may be addressed 
more precisely through genome editing. Recently, Yamaji 
et  al. (2017) reported an alternative approach of reducing 
seed P content in rice using retrotransposon-insertional 
knockout mutants of SPDT, a P distribution transporter 
controlling the allocation of P to the grains. In these 
mutant plants, yield and seed performance were appar-
ently not affected. An alternative TALEN-based approach 
was explored by Wendt et  al. (2013): introducing small 
indels into the promoter of the most important barley grain 
phytase gene, HvPAPhy_a, which could be used to test for 
the possibilities of changing gene expression in the grain. 

Mutations were achieved in the targeted promoter site, but 
no further testing of plants was reported.

Clasen et  al. (2016) used gene editing to knock out 
Vnvl to reduce acrylamide (a potential carcinogen) levels 
of potato products after heating. A similar result could be 
obtained by silencing asparagine synthetase genes, in this 
case using RNAi (Zhu et  al. 2016). Some other examples 
of traits improving product quality targeted by SDN-1 are 
high amylopectin (“waxy”) maize (by Pioneer, https://
www.aphis.usda.gov/biotechnology/downloads/reg_loi/15-
352-01_air_response_signed.pdf) and potato (Andersson 
et  al. 2016) based on knockout of GBSS, and high oleic 
acid oilseed crops soybean (Haun et al. 2014) and camel-
ina (Jiang et  al. 2016) based on knockouts of FAD2 and/
or FAD3. Both traits had been addressed earlier using clas-
sical mutagenesis or RNAi. Rice fragrancy was improved 
by knockout of BADH2 (Shan et  al. 2015). For bio-based 
crops, reducing lignin contents has been studied using a 
transgenic silencing method up to the level of field trials in 
poplar for improving biofuel production (Van Acker et al. 
2014). Zhou et  al. (2015) reported successful SDN-1 in 
two poplar 4CL genes, the knockout of one of which led to 
lower lignin levels in stem wood.

Allergens

Removing allergens through genome editing would benefit 
specific groups of consumers. Dubois et al. (2015) showed 
that silencing Mal d 1 reduced the allergenicity of apple, 
which, in most patients, is a mild allergy resulting from 
cross-reactivity of the birch pollen Bet v 1 allergens to 
PR-10 proteins in Rosaceous fruits, such as apple, cherry, 
and strawberry. PR-10 proteins are encoded by a large gene 
family. Apple has 31 Mal d 1 genes of which 20 may be 
expressed in the fruit (Pagliarani et  al. 2013) and may be 
targeted by genome editing. Peanut allergy is a life-threat-
ening food allergy. Dodo et al. (2008) managed to reduce 
the allergenicity of the immunodominant Ara h 2 protein 
in peanuts using RNAi. For hypoallergenic peanuts to be 
safe for consumption by many patients, all genes coding 
for allergens would need to be silenced or removed, and 
genome editing offers the tools to efficiently do this.

Sensitivity of individuals with coeliac disease to cereal 
gluten is particularly difficult to address as gluten com-
prises of large gene families, with several epitopes in 
mainly alpha-, gamma-, and omega-gliadins that can be 
recognised by human T cells (Van Herpen et  al. 2006; 
Van den Broeck et  al. 2009; Salentijn et  al. 2012) and 
that all are targets for controlled deletion or modification 
(Smulders et al. 2015; Jouannin et al. in prep.). Barro et al. 
(2016) succeeded in removing highly immunogenic glia-
din proteins from wheat using RNAi. Clinical trials using 
breads from these silenced wheat plants were planned in 

https://www.aphis.usda.gov/biotechnology/downloads/reg_loi/15-352-01_air_response_signed.pdf
https://www.aphis.usda.gov/biotechnology/downloads/reg_loi/15-352-01_air_response_signed.pdf
https://www.aphis.usda.gov/biotechnology/downloads/reg_loi/15-352-01_air_response_signed.pdf
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Spain. Silencing will in most cases not completely remove 
the gliadin, and a complete knockout approach by genome 
editing may be more effective, and possibly more easily 
accepted by consumers as no foreign DNA is introduced 
(Laursen 2016).

Hybrid varieties

Pivotal to successful production of high-quality hybrid 
varieties is the availability of reliably male-sterile mater-
nal lines. Pioneer is using a male sterility system in maize 
involving mutants of the male fertility gene Ms45. Knock-
out of the Ms45 gene using CRISPR-Cas9 was recently 
reported by Svitashev et al. (2015).

Yield

Interestingly, a complex trait par excellence, yield, was 
also shown to be amenable to an SDN-1 approach. Li et al. 
(2017) used CRISPR-Cas9 in rice to mutate the regula-
tory genes Gna1, DEP1, and GS3 and obtained plants with 
increased grain numbers, dense erect panicles plus semi-
dwarf phenotype, and larger grains, respectively.

Regulatory and IP issues

Currently, there is worldwide a discussion whether 
genome-edited plants should fall under existing regula-
tory systems that have been designed for transgenic (GM 
or GE) plants (for an overview, see Sprink et al. 2016). In 
the US, no regulatory oversight was deemed necessary by 
USDA-APHIS (e.g., waxy maize, high oleic acid soybean 
mentioned above under ‘Product quality’ and sweet14-
based blight resistance in rice under ‘Disease resist-
ance’, see for further examples Table 1 of Hilscher et al. 
2016). In Europe, there is no definitive legal analysis yet. 
The EFSA GMO unit (2015) considered SDN-1 a form 
of mutagenesis; further analysis may be needed upon 
technological advancement. Among EU Member States, 
the German BVL (Federal Office of Consumer Protec-
tion and Food Safety) had a similar judgement, includ-
ing for CRISPR, as gRNAs were not seen as recombinant 
DNA (i.e., no novel combination of genetic material) and 
the Swedish Board of Agriculture (SBA) saw CRISPR-
Cas as equivalent to mutagenesis provided that no “for-
eign” DNA was left in plants. The German BfN (Fed-
eral Agency for Nature Conservation) held a different 
view, as were NGOs and organic farming organizations 
(see IFOAM 2015 statement): they consider the process 
as most relevant and the process involves molecules not 
occurring naturally (Sprink et al. 2016). Mutagenesis was 
exempted from regulation in EU Directive 2001/18/EC as 

having a history of safe use (see for detailed comparison 
with SDN-1, the off-targets section above).

The EU GM regulation is perceived as prohibitive to 
most applications and to small companies because of 
costs and uncertainties around timing and outcomes of 
the application procedure. When extensive GM regula-
tion would be applicable to SDN-1 techniques, this may 
lead to a paradoxical result. Parties aiming at commer-
cializing the plant products could produce a gene-edited 
plant with deletions to establish whether it generates the 
desired functionality, and then would “re-produce” a sim-
ilar plant using classical mutagenesis. Companies would 
be able to do that also because the quickly increasing 
efficiency of next-generation DNA sequencing for muta-
tion screening in recent times has stimulated them to (re)
develop mutated populations in their crops (Van de Wiel 
et al. 2016). However, this would not be an efficient and 
optimal use of resources in breeding, and would give up 
on advantages hardly feasible by classical mutagenesis, 
such as the possibility of inducing recessive mutations in 
all alleles of a targeted gene in polyploid crops. There is 
a need for regulatory systems duly addressing biosafety 
that are balanced in terms of workability and costs, so 
that they do not unduly limit the benefits of producing 
innovative plant products with potential advantages to 
agricultural sustainability.

The possibilities offered by genome editing also have 
ramifications to IP, access, and benefit issues, even when 
it concerns deletions and loss-of-function mutations. It 
may also raise questions in the context of the use of genetic 
resources: can copying a mutation already existing in a 
genebank accession into elite material be considered use 
in the sense of the ‘Nagoya Protocol on Access to Genetic 
Resources and the Fair and Equitable Sharing of Benefits 
Arising from their Utilization to the Convention on Bio-
logical Diversity’? These ramifications may attract a lot 
of attention in the coming years when the possibilities of 
SDN-1 are realized in the form of improved crop varieties 
(or even varieties from underutilized or novel crops). These 
discussions are important for the realisation of the possibil-
ities that SDN-1 using genome editing offers for increasing 
the sustainability of agriculture.
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