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This article surveys the empirical information which
originated both by laboratory experiments and by
computational simulations, and expands previous
understanding of the rates of chemical processes
in the low-temperature range, where deviations
from linearity of Arrhenius plots were revealed.
The phenomenological two-parameter Arrhenius
equation requires improvement for applications
where interpolation or extrapolations are demanded
in various areas of modern science. Based on
Tolman’s theorem, the dependence of the reciprocal
of the apparent activation energy as a function
of reciprocal absolute temperature permits the
introduction of a deviation parameter d covering
uniformly a variety of rate processes, from those
where quantum mechanical tunnelling is significant
and d < 0, to those where d > 0, corresponding to the
Pareto–Tsallis statistical weights: these generalize
the Boltzmann–Gibbs weight, which is recovered
for d = 0. It is shown here how the weights arise,
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relaxing the thermodynamic equilibrium limit, either for a binomial distribution if d > 0
or for a negative binomial distribution if d < 0, formally corresponding to Fermion-
like or Boson-like statistics, respectively. The current status of the phenomenology is
illustrated emphasizing case studies; specifically (i) the super-Arrhenius kinetics, where
transport phenomena accelerate processes as the temperature increases; (ii) the sub-Arrhenius
kinetics, where quantum mechanical tunnelling propitiates low-temperature reactivity; (iii)
the anti-Arrhenius kinetics, where processes with no energetic obstacles are rate-limited
by molecular reorientation requirements. Particular attention is given for case (i) to the
treatment of diffusion and viscosity, for case (ii) to formulation of a transition rate theory
for chemical kinetics including quantum mechanical tunnelling, and for case (iii) to the
stereodirectional specificity of the dynamics of reactions strongly hindered by the increase of
temperature.

This article is part of the themed issue ‘Theoretical and computational studies of non-
equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at
interfaces’.

1. Introduction
For understanding, monitoring and controlling the physical chemistry of materials and the
biophysics of environments, information is needed on the kinetics of the involved elementary
processes, specifically on their rates—often in a wide range of conditions and notably as a
function of temperature. In the late nineteenth century, the increasing phenomenology started
to be compacted, principally within the Arrhenius equation [1,2]; in the mid-1930s, the heuristic
formulations of the transition-state theory (TST) were introduced ([3–6]; see also [7–14]);
experimental progress in the age of nanotechnologies has been mainly extended in the low-
temperature range: advances were propitiated to assist the new sciences of astrochemistry
and astrobiology, demanding alternative paradigms. Computational progress has occurred by a
variety of approaches, benchmarks being those aimed at exploring quantum mechanical advances
(here the exemplary story is that of the F + H2 reaction and its variants; see §4b): crucial progress
came from time-independent methods, accompanied by those employing carefully checked time-
dependent, classical trajectories or semi-classical techniques. The applications of the TST type
of formulations benefit quantum mechanics ‘equilibrium’ calculations, where most degrees of
freedom are frozen (or allowed to adiabatically adjust) except for a few, mostly one only, and
specifically that corresponding motion along a reaction coordinate running through saddles in
potential energy surfaces (PESs). Knowledge of PESs is thus crucial, and demands the enormous
corpus of theories and computer information coming from quantum chemical calculations that
make use of advanced electronic structure codes.

An early remarkable attempt at application to chemical kinetics of the then newly born science
of statistical mechanics was initiated by Tolman in 1920 [15]: he concludes his later 1927 book
[16, p. 323] saying

The problem of reaction velocities is probably nearer to the heart of most chemists than
anything else in their whole range of activity. Rates of reaction are the factors that determine
yields, and costs, and possibilities, and their theory must eventually succumb to scientific
treatment

However, his optimism was soon frustrated. He subsequently abandoned the field and did not
dedicate any attention to it in his monumental treatise [17], which from 1938 was the standard
reference on the foundations of statistical mechanics. According to Laidler & King [18], both
the use of old quantum theory and some assumptions on the role of radiation in activating
chemical processes became obsolete; however, the relevance of what is now often referred to as the
‘Tolman theorem’ (see §2a) was definitely reformulated from a quantum-mechanical perspective
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by Fowler & Guggenheim [19]. They start a long chapter dedicated to chemical kinetics in their
1939 book on statistical thermodynamics by warning that

The subject of chemical kinetics strictly lies outside the province of this book. Equilibrium
theory alone gives no information as to how equilibrium is attained. Nevertheless,
equilibrium theory can be a useful tool for dealing with this problem, if combined with
certain assumptions concerning the mechanisms involved. We therefore include a survey of
such use of equilibrium theory, and shall lay particular stress on the assumptions involved,
as these are too frequently ignored in discussions of reaction kinetics [19, p. 489].

We will do the same in this paper, where in order to illustrate the new results we will
move directly to them from early motivations, paying only a little attention to some important
intermediate developments.

The next section accounts for the basic theory, introducing the apparent activation energy (§2a)
and its inverse, the transitivity, admitting an expansion in inverse absolute temperature (§2b),
which leads directly to the deformed Arrhenius formula (§2c). Section 3 provides links to the
rigorous statistical mechanics foundations, discussing the deviation from the thermodynamic
limit (§3a) and introducing the non-equilibrium statistical distributions (§3b). A report on case
studies, their treatment and an account of the state of the phenomenological progress is given in
§4, which includes a presentation of the recently developed d-TST theory [20]. Final comments
are given in the concluding §5.

2. The basic theory

(a) The apparent activation energy
The so-called Tolman’s theorem was introduced in a 1920 paper [15], which provides a statistical-
mechanics foundation to chemical kinetics, developing a formulation based on the kinetic theory
of gases. Its interpretative and predictive power is controversial, but the attention paid by Tolman
to the following function is remarkable:

Ea = kT2 d ln k(T)
d T

= −k
d ln k(T)
d (1/T)

, (2.1)

which, as is well known, is now to be taken as the definition of the (apparent) activation
energy Ea.

This function has been recommended by the International Union for Pure and Applied
Chemistry (IUPAC) [21] as directly linked to the key experimental quantity, the reaction rate
constant k(T) and obtainable by the familiar Arrhenius plots according to the practice of chemical
kinetics. In (2.1), k is the Boltzmann constant and T is the absolute temperature. Formula (2.1)
simplifies introducing, as is customary in statistical mechanics, the Lagrange parameter

β = 1
kT

(2.2)

to yield

Ea = −d ln k(β)
dβ

= − 1
k(β)

dk(β)
dβ

. (2.3)

The Tolman expression for Ea, as the difference between the average energy of chemically
successful collisions and the total kinetic energy of the gas where the reaction occurs, attributes
to this quantity the meaning of an energetic requirement for the reaction to occur. However, its
often discussed identification with the Arrhenius activation energy turns out to be transparent
only in particular cases [22–25], specifically in temperature ranges where it is a constant or varies
slowly.
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(b) The reciprocal temperature dependence of the reciprocal activation energy
In general, Ea is to be considered as temperature-dependent. In her comprehensive review ‘On
the temperature dependence of Ea’, Berta Perlmutter–Hayman in 1976 [26] has examined in detail
two power-series expansions for Ea, one directly in the temperature T and another in terms of
its reciprocal (essentially our β, equation (2.2)). We have found it interesting to endorse as the
basic expansion the reciprocal-activation–reciprocal-temperature relationship [27], for which we
can provide a formal mathematical justification by extending the so-called Tolman theorem [15],
following the quantum mechanical formulation in [19]. Tolman’s function Ea, when written as
the logarithmic derivative of the rate constants with respect to β (equation (2.3)), is indeed akin
to the concept of an activation energy, in the sense that it represents a measure of an energetic
obstacle to the progress of the reaction; therefore, its reciprocal can be interpreted as a measure
of the propensity for the reaction to proceed and defined as the specific transitivity [20] of the
process:

γ (β) ≡ 1
Ea(T)

. (2.4)

Our notation emphasizes the fact that in general the transitivity may not be constant but may
take a gamma of values: it is assumed to be a smooth function of β in a sufficiently ample range
of temperature, not including abrupt changes, e.g. in the mechanism or in the phases of reactants:
in this range it will admit a Laurent expansion in a neighbourhood around a reference value
denoted as β0:

γ (β) =
∞∑

n=−∞
Cn(β − β0)n, (2.5)

where the coefficients Cn will contain n-order derivatives of γ (β) with respect to β and taken
at β0. The theory of chemical reaction kinetics is focused on the task of providing a set of such
coefficients to connect to the experiment on k(T) via equations ((2.1)–(2.4)).

Since we require a description of the deviations of rates from their high-temperature behaviour,
we now consider β0 = 0 and look for a theory with a minimal number of parameters (Occam’s
razor), limited to only two terms of the Taylor–McLaurin series

γ (β) ≡ 1
Ea

= 1
E

− dβ + O(β2), (2.6)

where E is constant and represents an energetic obstacle at high temperatures and O(β2) indicates
neglect of terms of order higher than one. In (2.6), d is the first-order coefficient (C1) and is defined
as the deformation parameter. The relationship was first given in [28,29] (see also [20]).

The expansion (2.6) in (2.3), as detailed previously [27,28], leads to a linear first-order
differential equation for k(β) of the Bernoulli type that can be integrated by quadrature. It is
immediate, but reassuring, to recover the Arrhenius equation within the validity of the first term,
i.e. assuming Ea a constant. And it is simple, but remarkable, that inclusion of the second term
leads directly to the deformed expression for the rate constant, which is to be considered next.

(c) The deformed Arrhenius rate formula
Further insight into the relationship (2.6) is gained by inserting it in the first equality in equation
(2.3), considered as a differential equation for k(β). Equation (2.6) is of first order in the variable β

and is easily integrated, specifying the lower limit of the integration range, β0, as shown below:

ln k(β) =
∫β

β0

−E
(1 − dEβ)

dβ = −1
d

ln(1 − dEβ) + 1
d

ln(1 − dEβ0), (2.7)

yielding the deformed Arrhenius equation (d-Arrhenius)

k(β) = A(1 − dEβ)1/d, (2.8)
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when β0, as remarked, can be taken to be zero at high temperature and the symbol A is introduced
for the last term in (2.7) in view of its correspondence to the Arrhenius pre-exponential factor:
indeed, it can be immediately realized that in the limit d → 0, the term (1 − dEβ)1/d can be
identified with the Arrhenius exponential law

k(β) = Ae−Eβ , (2.9)

where the apparent activation energy Ea becomes a constant identified with E, appearing as the
first term in equation (2.6).

3. A statistical mechanics interlude
The key step of the previous section, which connects equations (2.8) and (2.9), is a well-
known mathematical limit, which is due to Euler and is further under focus in the following
developments (§3b).

For d < 0 in the equation (2.8) (sub-Arrhenius behaviour), the identification of d with features
of the potential barrier permits entering the deformed exponential formula for describing
quantum tunnelling [20,27]. For d > 0 (super-Arrhenius behaviour), one obtains a uniform
generalization to classical statistical mechanics, where the Boltzmann–Gibbs distribution is
deformed into that of the Pareto–Tsallis statistics (Here, the identification d = 1 − q must be
made; see [30–33]). It is not difficult to show that the deformed distribution can be interpreted
following lines of thought initiated by Maxwell and developed much later: it is obtained without
taking the thermodynamic limit assumption of an infinite number of particles, a step clearly
seen e.g. in [34–36] corresponding to an incomplete equipartition over available degrees of
freedom (§3b).

(a) Deviation from the thermodynamic limit
Let’s attempt to give a preliminary and perhaps more insightful schematic approach within
the present context. In general, one can describe the deviation from the thermodynamic limit
as due to the interruption of a discrete temporal sequence of events, which is equivalent to
avoiding taking the assumption of a continuous time variable. We are inspired by Hinshelwood
[37], who gave an illuminating elementary illustration of how exponential expressions come in
throughout physical chemistry, and in particular determine the Arrhenius dependence of reaction
rate constants upon temperature. The probability that a molecule possesses energy, E, in excess of
the average is generally taken as proportional to e−Eβ according to a Boltzmann distribution. One
can understand this considering that to accumulate such an energy a molecule needs a fortunate
sequence of favourable collisions and the exponential expression arises directly from the limit
on probabilities of lucky runs, obtained by Euler in the eighteenth century and a mathematical
milestone. That is the limit that we exploited in the previous section. We use it as in §3b.

Notoriously, Euler obtained the limit solving a problem posed by Jakob Bernoulli more than
100 years before: the problem is the important one on how to establish a connection between
discrete and continuous computations of interest rates. (Incidentally, Eyring and co-workers [6]
pointed out that a theory of reaction rates ‘is not merely a theory of the kinetics of chemical
reactions; it is one that can, in principle, be applied to any rate process’). As remarked before, it has
been known for a long time [26] that if one wants to keep the exponential form of the Arrhenius
equation, there is an interdependence between the energy of activation and the pre-exponential
factor, so that if Ea is temperature-dependent, the same must be true for A. The way out that is
coherent with the IUPAC definition of Ea, given in equation (2.1), is to follow our procedure and
to consider it as a differential equation for k, involving abandoning the exponential form in favour
of its d-deformation, equation (2.8).
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(b) Non-equilibrium statistical distributions
Let’s elaborate further on the centrality of the road to the deformed exponential rate equation
(2.8) via the remarkable discovery by Euler that the exponential function can be considered as the
limit of succession, alternative to the previously known power-series:

ex = lim
N→∞

(
1 + x

N

)N
. (3.1)

The utilization of this expression, where for us the d parameter is the reciprocal of the
continuous generalization of the integer N, marks a bifurcation between equilibrium and non-
equilibrium treatments, leading to non-equilibrium statistical distribution when the number of
microscopic ‘entities’ (particles, or in general sequences of events) is not considered to tend to
infinity. When the assumption of the existence of the thermodynamic limit is relaxed, a deformed
exponential distribution arises naturally to describe the probability distribution for fluctuations
in many-particle systems. Invariably, all treatments (e.g. [38]) proceed directly to the limit.

The deformed exponential distribution arises naturally to account for probabilities attributed
to the occurrence of long series of events generated randomly. Considering two mutually
excluding events (A and B). For N trials (or for N particles in a microscopic description), let there
be a pn chance that the event A occurs and (1 − p)N−n be the chance for event B. In more detail, n is
the number of times which the trial experiment yields event A (for example, n can be the number
of given particles on a specific configuration A in the microscopic description of the distribution).
Then, the number of different ways to yield event A is given by the binomial coefficient(

N
n

)
= N!

n!(N − n)!
(3.2)

and since the trials are independent, the Bernoulli probability distribution for n is the well-known
binomial distribution

Wbinomial(n) =
(

N
n

)
pn(1 − p)N−n. (3.3)

Considering the mean of events 〈n〉= pN, equation (3.3) can be conveniently rewritten as

Wbinomial(n) = 1
n!

N!
(N − n)!

pn(1 − p)−n
(

1 − 〈n〉
N

)N
. (3.4)

If N → ∞, p → 0 in the binomial distribution (this step would amount to take the
thermodynamic limit), the Poisson distribution is obtained

WPoisson(n) = 1
n!

〈n〉ne−〈n〉. (3.5)

It can be shown that a modification of (3.4) accounts for the probability distribution of a specific
event involving distinguishable (or Fermion) particles [39–43]:

WFermion(n) = Nnpn(1 − p)−n
(

1 − 〈n〉
N

)N
, (3.6)

which is the distribution that applies prior to the N → ∞ limit, leading to the Fermi–Dirac
distribution.

In microscopic systems where quantum effects are operative and the indistinguishability of
particles has to be taken into account separately, another physically significant case applies,
wherein no limitation occurs on the number of particles per state (Boson particles):

WBoson(n) = 1
n!

(N + n)!
N!

pn(1 + p)−n−1
(

1 + 〈n〉
N

)−N
, (3.7)

recognized as a negative binomial distribution [40,44].
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Proceeding as previously, the large N limit now leads to the Bose–Einstein distribution.
In summary, the first case is the Fermi–Dirac distribution and the second case is the Bose–
Einstein distribution [40,41,44] and appears that ‘tertium non datur’ [45]. The most probable
distributions resulting for equations (3.4), (3.6) and (3.7) lead to Boltzmann, Fermi–Dirac and
Bose–Einstein statistics [39,46], respectively, when the thermodynamic limit is taken. However,
the presentation emphasizes that an intermediate step in the derivation of all the three statistical
distributions in equations (3.4), (3.6) and (3.7) includes what we refer to as the Euler deformed
exponential function, (1 − (〈n〉/N))N. This step is crucial here as well as to discuss the role of
the Tsallis distribution in non-equilibrium statistics for finite heat baths: when finite size effects
are negligible, we can establish the connection between the thermodynamic and the microscopic
parameters: n = Eβ and d = 1/N [44,47–49]. See also important previous work on statistical
distributions in the kinetics of rate processes [50–52].

4. Low-temperature behaviour in chemical kinetics and materials science
Modern experimental techniques and theoretical approaches are providing an ample
phenomenology of deviations from the well-known Arrhenius behaviour, especially occurring at
low temperatures. As a classification for the phenomenology of these processes, we illustrate the
use of the deformed Arrhenius equation (equation (2.8)), permitting one to evaluate prototypical
systems where the temperature dependence of the rate constant according to equation (2.8) is
described by E > 0 and d > 0 or d < 0, corresponding to convex (super-Arrhenius), concave (sub-
Arrhenius) in the semi-log plots against reciprocal temperature. A case for E < 0 will also be
documented and indicated as anti-Arrhenius.

(a) Super-Arrhenius
The super-Arrhenius behaviour is one that deserves particular attention, and its occurrence is
varied and demanding (figure 1). It often manifests because of collective phenomena, such
as those amenable to treatment by the non-extensive thermodynamics of Tsallis, and covers
an ample set of phenomena: rates of enzymatic catalysis-promoted processes [53–55], food
preservation processes [56,57] and basic features of the dynamics of complex or glass-forming
liquids and solids [58–63].

A significant number of studies in the temperature dependence of rates of enzymatic catalysis
reactions has inspired several formulations for the description of the mechanism involved in these
processes [64–67]. Results in the kinetics of catalytic reactions of the dehydrogenase and oxidase
enzymes have shown an undoubted super-Arrhenius behaviour [25,53,54,68].

The theory has interesting applications. A similar behaviour is found in the temperature
dependence of food processes. We propose in [56] the use of equation (2.8) to describe the non-
Arrhenius behaviour in these processes, showing that the d-Arrhenius formula is suitable for
describing the effect of temperature on non-enzymatic browning of onion and on the rate of
growth of several species of bacteria. The d-Arrhenius rate law provides a means to account
for convex curvature. Such factors include particle diffusion and constraints on the proposed
microscopic model, in particular requiring that any successful approach to super-Arrhenius
processes should be consistent with the microcanonical rate constant (see §3a, [25,56]).

A most fundamental case of super-Arrhenius temperature dependence occurs for the diffusion
in supercooled systems near the glass transition temperature Tg. The following discussion is
a simplification for a didactic purpose of a very complicated and still controversial issue. The
mechanism involved in convex curvature of Arrhenius plots in supercooled liquids is one of
the less understood unsolved processes in condensed matter science [58,69,70]. An interesting
example is the diffusion of krypton in methanol and ethanol mixtures at low temperature near
their glass transition temperatures [71–73]. Since the diffusion coefficient D and viscosity η are
connected (see e.g. the Stokes–Einstein formulation, D = kT/6πrη, where r is the range parameter
[6,74]), a manifestation occurs for a super-Arrhenius behaviour of this property. A variety of
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g(d )

k

T

Arrhenius

super-Arrhenius

d > 0

e > 0

(a)

ln k
1/Tg

1/T

kTgd = e

(b)

Ea
Tg

T

d ln kd
super

d ( ) 

Ea = –
1

kT

(c)

eg = 1 – d
kT

1/T

e.g.
food processes
enzymatic catalysis
glass transition

kd
super

kT
(T) = A 1 – de[ ]1/d

Figure 1. (a) The exponential dependence of reaction rates k(T) upon absolute temperatureT. Deviations from linearity at
low temperatures can be observed in the plot as showing a ‘convex’ curvature, i.e. lower than expected rates as temperature
decreases. In (b), the super-Arrhenius behaviour is accentuaded in an Arrhenius plot view, where ln k(T) is reported against
1/T. In supercooled systems, an approximate relationship between the deformation parameter d and the glass transition
temperatureTg illustrates the trend of this complicated phenomenon (see §4a). (c) Deviations from constancy of the apparent
activation energy, expected from the Arrhenius Law, manifests for a super-Arrhenius behaviour the apparent activation energy
increase with decreasing temperature. Panel (d) exhibits the linear relationship of the transitivity (equation (2.4)) with
inverse temperature, basic to our derivation of the d-Arrhenius formula. Super-Arrhenius behaviour, often arising for collective
phenomena, is amenable to a classical mechanics interpretation for the examples mentioned and discussed in §4a. (Online
version in colour.)
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liquids with different composition exhibit variations of the temperature-dependent viscosity [75].
Around Tg temperature, the Arrhenius-like formulation,

η(β) = η0eEβ , (4.1)

of course breaks down. In (4.1), η0 is the viscosity when the temperature tends to infinity
(β → 0) and the energy parameter E has to be substantiated by a proper microscopic model. It
is no surprise that a variety of proposed non-Arrhenius equations provide options to tackle this
problem: we mention those by William–Landel–Ferry [76], Bässler [77], Vogel–Tammann–Fulcher
[78–80] and other variants [81,82]. The treatment leading us to equation (2.8) can inspire an option
to describe the temperature-dependent viscosity, exploiting the flexibility and continuity of the
deformed exponential function introduced owing again to the Euler limit, equation (3.1).

Let the deformed temperature rate law for viscosity be written as follows:

ηd(β) = η0(1 − dEβ)1/d, (4.2)

where the transitivity (see equation (2.6)) goes to zero, and Tg is identified as the temperature
where the glass activation energy tends to infinity, so it is possible to propose a relationship with
the deformation parameter d:

Tg = dE
k

or d = kTg

E
. (4.3)

From the Kauzmann–Eyring [6,83] pre-exponential factor, where Na is the Avogadro number
and V̄ is the molar volume and η0 = Nah/V̄, one can write, for the deformed viscosity rate law,

ηd(β) = Nah

V̄
(1 − dεβ)1/d (4.4)

Several previous formulations described the dependence of Tg and E parameters from the
intrinsic properties of the molecular system, and encourage us to give a heuristic interpretation for
equation (4.4): from the Flory–Kauzmann hypothesis [83–85], Tg is proportional to the molecular
mass (M) and the molecular dimensionality (L), Tg = M1/2/L. According to Eyring and colleagues,
the E parameter is connected to the energy of vapourization, �Evap [6,86]: the work required to
make a hole of molecular size is intuitively identified with the �Evap, and so E may be estimated
to correspond to a certain fraction of the �Evap. This treatment of course does not provide
further insight into these amply investigated issues, but points at a simple and perhaps useful
parametrization of a long-standing intriguing rate phenomenon.

(b) Sub-Arrhenius cases
There are uncountable cases of concave deviation on the temperature rate constants for the
elementary chemical reactions that can be classified as exhibiting a sub-Arrhenius behaviour
(figure 2). In systems with no apparent changes in the chemical mechanism, this behaviour can
be attributed in most cases to quantum mechanical tunnelling [28,29]. A number of investigations
have provided examples of several chemical reactions within this regime. A series of experimental
kinetic data and of benchmark quantum mechanical calculations [87–94] has established that, for
example, the reaction of a fluorine atom with molecular hydrogen represents a prototypical case
of sub-Arrhenius behaviour [95,96] has been experimentally confirmed [97].

Concerning atmospheric and industrial reactions, the direct H-atom abstraction from organic
compounds by the hydroxyl radical often presents an evident concave curvature in the Arrhenius
plot [98–101]. Within an entirely different chemical environment, experimental rate constants
related to multiple proton transfer reactions in condensed matter also show strong sub-Arrhenius
behaviour [102–104]. Also, sub-Arrhenius behaviour has been revealed for rates of processes
promoted by enzymatic catalysis [55,68,105]. In the next sections, we address the TST and deform
it to include the tunnelling correction as a simple tool to describe sub-Arrhenius behaviour.
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k

T

ln k

Ea

g

Ea = –

1/T

1/T
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d = 1
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3 2e
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e.g. 
tunneling effect

sub-Arrhenius

Arrhenius

d > 0

e > 0
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kT
(T) = A 1 – de[ ]1/d

1/Td 1/Tc

d 
1

kT

d
kTe

1
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(a)

(c)
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Figure 2. (a) The exponential dependence of reaction rates k(T) upon absolute temperatureT. Deviations from linearity at
low temperatures can be observed in the plot as showing a ‘concave’ curvature, i.e. higher than expected rates as temperature
decreases. (b) The sub-Arrhenius behaviour is accentuaded in an Arrhenius plot view, where ln k(T) is reported against 1/T.
In elementary reactions at temperatures where quantum mechanical tunnelling is operative, there is a relation between the
deformation parameter and features of (height and width) of the barrier (see 4b(i)). Panel (c) shows that deviations from
constancy of the apparent activation energy, expected from the Arrhenius Law, for a sub-Arrhenius behaviour manifests as a
decrease with decreasing temperature. Panel (d) exhibits the linear relationship of the transitivity (equation (2.4)) with inverse
temperature, basic to our derivation of the d-Arrhenius formula. Sub-Arrhenius behaviour, discussed as a manifestation of
quantummechanical tunnelling through a potential energy barrier as exemplified in the panel. (Online version in colour.)
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(i) Transition state theory

The Eyring formulation [4,6] of chemical reaction rates provided chemists with the basic
ingredients for understanding and even predicting both parameters A and E of the Arrhenius
equation (equation (2.9)) [1] and is assumed as a paradigm for describing the temperature
dependence of the rate coefficient of chemical reactions:

kTST(β) = kT
h

Q�=

Q1Q2
e−Eβ , (4.5)

(for simplicity, we consider a bimolecular process), where h is the Planck constant, Q1 and Q2
are the (translational, vibrational and rotational) partition functions of the two reactants, and Q�=
is the partition function of the activated complex, from which the translational contribution along
the reaction coordinate is excluded. A recent paper [20] exploits the fact that the parameters of
equation (4.5) can be explicitly obtained from features of barriers on PESs, as generated from
current codes for quantum chemistry calculations. The factor (kT/h) Q�=/Q1Q2 has sometimes
been called the collision number, but a more satisfactory term used is frequency factor. The
quantity E is the energy of activation of the reaction, encountered before as representing the
energy that the molecule in the initial state of the process must acquire before it can take part
in the reaction.

Early concerns on possible deviations from Arrhenius behaviour because of quantum
mechanical tunnelling (sub-Arrhenius behaviour) were circumvented ad hoc, e.g. by a
multiplicative transmission coefficient κ evaluated according to recipes, such as those due to
Eckart [106], Pelzer & Wigner [3] and Bell [107]. The tunnelling correction κ is introduced in
the TST rate constant as a multiplicative factor, k = κ × kTST and Henriksen & Hansen [7,108]
have shown that indeed it is a natural extension of the original formulation. Recent attention
has been focused on the role of non-equilibrium or deviation from assumed Maxwell–Boltzmann
distributions in the reaction rate theory [109–111] and, in the next section, we show a proposal
remarkably distinct from others (see [20]).

(ii) Deformed transition-state theory

What we call the sub-Arrhenius behaviour would be accounted for traditionally by introducing
a tunnelling parameter κ , as discussed above. In the deformed transition-state theory (d-TST)
formulation, we replace the κ × e−Eβ factor in the TST rate constant, equation (4.5), by the
deformed exponential function, yielding

kd−TST(T) = kT
h

Q�=

Q1Q2
(1 − dEβ)1/d. (4.6)

The symbols are the same as in (4.5), to which (4.6) tends as d tends to zero, according to
(3.1). In [27], the significance of the d parameter and an explicit procedure for its calculation were
proposed comparing expansions for the apparent activation energies, Ea. It is shown that d is
inversely proportional to the square of the barrier height (E) and directly proportional to the
square of the frequency for crossing the barrier (ν �=) at a maximum in the PES:

d = −1
3

(
hν �=

2E

)2

. (4.7)

The application of d-TST to several hydrogen transfer reactions has been showing promising
results [20]. Temperature ranges for the validity of the approach are assessed with respect
to features of the potential energy barrier to reaction [20,112], permitting comparison with
experiments and tests against alternative formulations. Elementary reactions, widely investigated
both experimentally and theoretically, which have been described successfully, are F + H2
[28,96], F + HD [113], CH4 + OH [20], CH3Cl + OH [20], H2 + CN [20], and also abstraction and
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dissociation in the nitrogen trifluoride channels [114], and proton rearrangement in curcumin
[115] and methylhydroxycarbene [116]. The deformed formulation has also been found useful
to describe other reactions not involving tunnelling but showing non-negligible sub-Arrhenius
behaviour, such as the C + CH+ reaction [117], which is of relevance in cold interstellar clouds.

As discussed in [107,118], the degree of concavity in the Arrhenius plot can characterize
the degree of tunnelling in chemical reactions. The crossover temperature, Tc = hν �=/k, is the
parameter that delimits the degree of tunnelling regimes. The ranges of tunnelling regimes are
important to quantify how the tunnelling affects the rate constant in particular cases.

From a mathematical viewpoint, the d-TST formulation has clear limitations in the description
of the deep tunnelling regime (Wigner limit) [119,120], since the Euler limit deformation of
the exponential function fails to quantify the distributions of reactive particles with energy
less than the height of the barrier. However, the flexibility of the distribution formula permits
one to cover the sub-Arrhenius behaviour, specifically typical of quantum tunnelling, smoothly
extending into the Boltzmann distribution [27] of the classical regime.

A definition of a validity temperature that delimits the applicability within the negligible or
moderate tunnelling ranges can be obtained from the limit of the Bell equation [107,113,121].
In the case of the Wigner limit, when T tends to zero, k(T) tends to a constant. Assuming the
Bell limit, lim

T→0
kBell = e−E/hν �=

in contrast with the d-TST limit, lim
T→0

kd−TST = 0, the temperature

that marks the change of validity ranges can be found at the intersection of the two limiting
behaviours:

Td = Tc + dE
2k

(4.8)

where Td is therefore the validity temperature of the d-TST formalism: at temperatures below Td
under deep tunnelling conditions, there is no guarantee of the accuracy of the d-TST description.

Although several other papers [109,110,122–125] have proposed ways to insert the Pareto–
Tsallis distribution in the description of rate constants in chemical reaction theory, none gave
a physical meaning and an explicitly tractable expression for the deformation parameter d as
provided by (4.7).

(c) An anti-Arrhenius case
The rates of some processes increase as the temperature decreases according to an apparently
negative activation energy. These processes can be classified as anti-Arrhenius. In a gas-
phase reaction the anti-Arrhenius behaviour is frequently found in molecule–radical reactions
[126–131]. Among these processes, the OH + HBr → H2O + Br reaction is one of the most studied
experimentally. Recently, salient features of the PES have been characterized and most kinetic
aspects can be considered as satisfactorily reproduced by classical trajectory simulations [132,133].
An insightful illustration of the origin of this behaviour is concerned with the stereodirectional
effect assessed by first-principles Born–Oppenheimer ‘canonical’ molecular dynamics [134,135].
The anti-Arrhenius behaviour is documented as being due to the adjustment of the reactants’
mutual orientation in order to encounter the entrance into the ‘cone of acceptance’ for reactivity.
The aperture angle of this cone is dictated by a range of directions of approach compatible
with the formation of the specific HOH angle of the product water molecule; and consistently
the adjustment is progressively less effective the higher the kinetic energy. Qualitatively, this
emerging picture corroborates experiments on this reaction [136,137], involving collisions of
aligned and oriented molecular beams, and covering a range of energies higher than the thermal
ones. The rate constant from this molecular dynamic approach was estimated larger than expected
and a calibration process was necessary for accounting of the limited dynamical sampling of the
involved phase space.

Currently, there is ample activity investigating whether advances in molecular dynamics
simulations can provide quantitative values for rate constants [138–140]. However, the methods
have difficulty in estimating the rate constants, generally leading to overestimates, and the
discrepancy with experimental data is larger for high temperatures, as documented for the
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OH + HBr reaction [134,135]. These uncertainties are often associated with inherent difficulties
of possible direct evaluations from molecular dynamics simulation, and are ascribed to the
statistical validity of samplings of the system phase space and the accurate characterization of
transition state features [141–143]. These crucial issues in the applications of TST-type approaches
to calculations of rates constitute hard problems in the extraction of rate constants from first-
principles molecular dynamics experiments, preventing them from representing an at least
semi-quantitative alternative to direct exact or approximate quantum mechanical methods, often
prohibitive to be implemented.

As a final example on how the study of the anti-Arrhenius behaviour offers opportunities for
fundamental research and can guide scientific progress in different areas, we note a recent paper
where the stereodirectionality effect contributed to understanding the negative activation energy
in addition reactions of arylchlorocarbenes to alkenes [144].

5. Concluding remarks
These notes were written to appear in a collection of papers presented on the occasion of a
workshop on ‘Theoretical and Computational Studies of Non-Equilibrium and Non-Statistical
Dynamics in Gas-Phase, Condensed-Phase, and Interfacial Reactions’ and the effort of organizers
and the stimulus of the participants are acknowledged. The venue was the Institut Henri Poincaré
in Paris in April 2016. To Poincaré we owe the observation that ‘mathematics is the art of giving
the same name to different things’. Accordingly, we can interpret as a task for scientists that of
providing samples of phenomena to be compacted within a common frame. In this presentation
of progress on the kinetics of rate processes, the focus of our interest has been to emphasize
the unifying role of the treatment of a different type of rate, mentioning the relationship with
those occurring in the calculation of interest in bank accounts. The description of the rates
of chemical changes is a subject where the main issue is to understand how systems depart
from equilibrium states and how they approach new ones: the rates are typically exponentially
influenced by the reciprocal of the temperature (Arrhenius behaviour). The description of
deviations at low temperatures exploits Euler’s solution of the problem posed by Jakob Bernoulli
on the computation of compound rates. The key is the Euler formula, equation (3.1), established
as a continuous limit of a discrete succession of events: in essence, our deformation formulas are
based on the same now elementary mathematical tool.
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