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Abstract

The dark data extraction or knowledge base construction (KBC) problem is to populate a SQL 

database with information from unstructured data sources including emails, webpages, and pdf 

reports. KBC is a long-standing problem in industry and research that encompasses problems of 

data extraction, cleaning, and integration. We describe DeepDive, a system that combines database 

and machine learning ideas to help develop KBC systems. The key idea in DeepDive is that 

statistical inference and machine learning are key tools to attack classical data problems in 

extraction, cleaning, and integration in a unified and more effective manner. DeepDive programs 

are declarative in that one cannot write probabilistic inference algorithms; instead, one interacts by 

defining features or rules about the domain. A key reason for this design choice is to enable 

domain experts to build their own KBC systems. We present the applications, abstractions, and 

techniques of DeepDive employed to accelerate construction of KBC systems.

1. INTRODUCTION

The process of populating a structured relational database from unstructured sources has 

received renewed interest in the database community through high-profile start-up 

companies (e.g., Tamr and Trifacta), established companies like IBM’s Watson [5, 13], and a 

variety of research efforts [9, 24, 29, 38, 43]. At the same time, communities such as those 

of natural language processing and machine learning are attacking similar problems under 

the name knowledge base construction (KBC) [3, 11, 20]. While different communities 

place differing emphasis on the extraction, cleaning, and integration phases, all seem to be 

converging toward a common set of techniques that include a mix of data processing, 

machine learning, and engineers-in-the-loop.

http://deepdive.Stanford.edu

http://www.freebase.com/

http://macrostrat.org/

There is a justification for probabilistic reasoning as Cox’s theorem asserts (roughly) that if one uses numbers as degrees of belief, 
then one must either use probabilistic reasoning or risk contradictions in one’s reasoning system, i.e., a probabilistic framework is the 
only sound system for reasoning in this manner. We refer the reader to Jaynes [19].

http://www.itl.nist.gov/iad/mig/tests/ace/2000/

For more information, including examples, please see http://deepdive.Stanford.edu. Note that our engine is built on Postgres and 
Greenplum for all SQL processing and UDFs. There is also a port to MySQL.

For example, for the grounding procedure illustrated in Figure 8, the delta rule for 𝖥1 is qδ (x) : −𝖱δ (x, y).
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The ultimate goal of KBC is to obtain high-quality structured data from unstructured 

information. The output databases produced are richly structured with tens of different entity 

types in complex relationships. Typically, quality is assessed using two complementary 

measures: precision (how often a claimed tuple is correct) and recall (of the possible tuples 

to extract, how many are actually extracted). These systems can ingest massive numbers of 

documents–far outstripping the document counts of even well-funded human curation 

efforts. Industrially, KBC systems are constructed by skilled engineers in a months-long (or 

longer) process–not a one-shot algorithmic task. Arguably, the most important question in 

such systems is how to best use skilled engineers’ time to rapidly improve data quality. In its 

full generality, this question spans a number of areas in computer science, including 

programming languages, systems, and HCI. We focus on a narrower question, with the 

axiom that the more rapidly the programmer moves through the KBC construction loop, the 
more quickly she obtains high-quality data.

This paper presents DeepDive, our open-source engine for knowledge base construction. 

DeepDive’s language and execution model are similar to other KBC systems: DeepDive 

uses a high-level declarative language [9, 29, 31]. From a database perspective, DeepDive’s 

language is based on SQL. From a machine learning perspective, DeepDive’s language is 

based on Markov Logic [10, 31]: DeepDive’s language inherits Markov Logic Networks’ 

(MLN’s) formal semantics. Moreover, it uses a standard execution model for such systems 

[9, 29, 31] in which programs go through two main phases: grounding, in which one 

evaluates a sequence of SQL queries to produce a data structure called a factor graph that 

describes a set of random variables and how they are correlated. Essentially, every tuple in 

the database or result of a query is a random variable (node) in this factor graph. The 

inference phase takes the factor graph from the grounding phase and performs statistical 

inference using standard techniques, e.g., Gibbs sampling [44, 47]. The output of inference 

is the marginal probability of every tuple in the database. As with Google’s Knowledge 

Vault [11] and others [32], DeepDive also produces marginal probabilities that are 

calibrated: if one examined all facts with probability 0.9, we would expect approximately 

90% of these facts to be correct. To calibrate these probabilities, DeepDive estimates (i.e., 

learns) parameters of the statistical model from data. Inference is a subroutine of the 

learning procedure and is the critical loop. Inference and learning are computationally 

intense (hours on 1TB RAM/48-core machines).

In our experience with DeepDive, we found that KBC is an iterative process. In the past few 

years, DeepDive has been used to build dozens of high-quality KBC systems by a handful of 

technology companies, a number law enforcement agencies via DARPA’s MEMEX, and 

scientists in fields such as paleobiology, drug re-purposing, and genomics. Recently, we 

compared the quality of a DeepDive system’s extractions to those provided by human 

volunteers over the last ten years for a paleobiology database, and we found that the 

DeepDive system had higher quality (both precision and recall) on many entities and 

relationships. Moreover, on all of the extracted entities and relationships, DeepDive had no 

worse quality [34]. Additionally, the winning entry of the 2014 TAC-KBC competition was 

built on DeepDive [1]. In all cases, we have seen the process of developing KBC systems is 

iterative: quality requirements change, new data sources arrive, and new concepts are needed 

in the application. This led us to develop a set of techniques to make not only the execution 
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of statistical inference and learning efficient, but also the entire pipeline incremental in the 

face of changes both to the data and to the DeepDive program.

This paper aims at giving a broad overview of DeepDive. The rest of the paper is organized 

as follows. Section 2 describes the KBC process, its scientific applications, and technical 

challenges. Section 3 presents our language for modeling KBC systems inside DeepDive. 

We discuss the different techniques in Section 4 and give pointers for readers who are 

interested in each technique.

2. APPLICATIONS AND CHALLENGES

Knowledge base construction (KBC) is the process of populating a knowledge base with 

facts extracted from unstructured data sources such as text, tabular data expressed in text and 

in structured forms, and even maps and figures, In sample-based science [34], one typically 

assembles a large number of facts (typically from the literature) to understand macroscopic 

questions, e.g., about the amount of carbon in the Earth’s atmosphere throughout time, the 

rate of extinction of species, or all the drugs that interact with a particular gene. To answer 

such questions, a key step is to construct a high-quality knowledge base, and some sciences 

have undertaken decade-long sample collection efforts, e.g., PaleoDB.org and 

PharmaGKB.org.

In parallel, KBC has attracted interest from industry [13, 49] and academia [2, 3, 6, 12, 21, 

23, 29, 32, 35, 38, 40, 45]. To understand the common patterns in KBC systems, we are 

actively collaborating with scientists from a diverse set of domains, including geology [46], 

paleontology [34], pharmacology for drug repurposing, and others. We first describe one 

KBC application we built, called PaleoDeepDive, then present a brief description of other 

applications built with similar purposes, and then finally discuss the challenges.

2.1 PaleoDB and PaleoDeepDive

Paleontology is based on the description and biological classification of fossils, an enterprise 

that has been recorded in and an untold number of scientific publications over the past four 

centuries. One central task for paleontology is to construct a knowledge base about fossils 

from scientific publications, and an existing knowledge base compiled by human volunteers 

has greatly expanded the intellectual reach of paleontology and led to many fundamental 

new insights into macroevolutionary processes and the nature of biotic responses to global 

environmental change. However, the current process of using human volunteers is usually 

expensive and time-consuming. For example, PaleoDB, one of the largest such knowledge 

bases, took more than 300 professional paleontologists and 11 human years to build over the 

last two decades, resulting in PaleoDB.org. To get a sense of the impact of this database on 

this field, at the time of writing, this dataset has contributed to 205 publications, of which 17 

have appeared in Nature or Science.

This provided an ideal test bed for our KBC research. In particular, we constructed a 

prototype called PaleoDeepDive [34] that takes in PDF documents. This prototype attacks 

challenges in optical character recognition, natural language processing, information 

extraction, and integration. Some statistics about the process are shown in Figure 3. As part 
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of the validation of this system, we performed a double-blind experiment to assess the 

quality of the system versus the PaleoDB. We found that the KBC system built on DeepDive 

has achieved comparable—and sometimes better—quality than a knowledge base built by 

human volunteers over the last decade [34]. Figure 3 illustrates the accuracy of the results in 

PaleoDeepDive.

2.2 Beyond Paleontology

The success of PaleoDeepDive motivates a series of other KBC applications in a diverse set 

of domains including both natural and social sciences. Although these applications focus on 

very different types of KBs, they are usually built in a way similar to PaleoDeepDive. This 

similarity across applications motivate our study of building DeepDive as a unified 

framework to support these diverse applications.

Human-Trafficking—MEMEX is a DARPA program that explores how next generation 

search and extraction systems can help with real-world use cases. The initial application is 

the fight against human trafficking, hi this application, the input is a portion of the publicly-

indexed and "dark" web in which human traffickers are likely to (surreptitiously) post supply 

and demand information about illegal labor, sex workers, and more. DeepDive processes 

such documents to extract evidential data such as names, addresses, phone numbers, job 

types, job requirements, information about rates of service, etc. Some of these data items are 

difficult for trained human annotators to accurately extract and have never been previously 

available, but DeepDive-based systems have high accuracy (Precision and Recall in the 90s, 

which may surpass that of non-experts). Together with provenance information, such 

structured, evidential data are then passed on to both other collaborators on the MEMEX 

program as well as law enforcement for analysis and consumption in operational 

applications. MEMEX has been featured extensively in the media and is supporting actual 

investigations. For example, every human trafficking investigation pursued by the Human 

Trafficking Response Unit in New York City now involves MEMEX, for which DeepDive is 

the main extracted data provider. In addition, future use cases such as applications in the war 

on terror are under active consideration.

Medical Genetics—The body of literature in life sciences has been growing at an 

accelerating speed, to the extent that it has been unrealistic for scientists to perform research 

solely based on reading and/or keyword search. Numerous manually-curated structured 

knowledge bases are likewise unable to keep pace with exponential increases in the number 

of publications available online. For example, OMIM is an authoritative database of human 

genes and mendelian genetic disorders which dates back to the 1960s, and so far contains 

about 6,000 hereditary diseases or phenotypes, growing at a rate of roughly 50 records / 

month for many years. Conversely, almost 10,000 publications were deposited into PubMed 

Central per month last year. In collaboration with Prof. Gill Bejerano at Stanford, we are 

developing DeepDive applications to create knowledge bases in the field of medical 

genetics. Specifically, we use DeepDive to extract mentions of genes, gene variants, and 

phenotypes from the literature, and statistically infer their relationships, presently being 

applied to clinical genetic diagnostics & reproductive counseling.
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Pharmacogenomics—Understanding the interactions of chemicals in the body is key for 

drug discovery. However, the majority of this data resides in the biomedical literature and 

cannot be easily accessed. The Pharmacogenomics Knowledgebase is a high quality 

database that aims to annotate the relationships between drugs, genes, diseases, genetic 

variation, and pathways in the literature. With the exponential growth of the literature, 

manual curation requires prioritization of specific drugs or genes in order to stay up to date 

with current research. In collaboration with Emily Mallory and Prof. Russ Altman [27] at 

Stanford, we are developing DeepDive applications in the field of pharmacogenomics. 

Specifically, we use DeepDive to extract relations between genes, diseases, and drugs in 

order to predict novel pharmacological relationships.

TAC-KBP—TAC-KBP is a NIST-sponsored research competition where the task is to 

extract common properties of people and organizations (e.g., age, birthplace, spouses, and 

shareholders) from a 1.3 million newswire and web documents – this task is also termed Slot 

Filling. In the 2014 evaluation, 31 US and international teams participated in the 

competition, including a solution based on DeepDive from Stanford [1]. The DeepDive 

based solution achieved the highest precision, recall, and Fl among all submissions.

2.3 Challenges

On all the applications mentioned above, KBC systems built with DeepDive achieved high 

quality as illustrated in Figure 3. Achieving this high quality level requires that we solve a 

set of challenges.

Joint Statistical Inference—We have found that text is often not enough: often, the data 

that are interesting to scientists are located in the tables, figures, and images of articles. For 

example, in geology, more than 50% of the facts that we are interested in are buried in tables 

[14]. For paleontology, the relationship between taxa, as known as taxonomy, is almost 

exclusively expressed in section headers [34]. For pharmacology, it is not uncommon for a 

simple diagram to contain a large number of metabolic pathways. To build a KBC system 

with the quality that scientists will be satisfied with, we need to deal with these diverse 

sources of input. Additionally, external sources of information (other knowledge bases) 

typically contain high-quality signals (e.g., Freebase and Macrostrat). Leveraging these 

sources in information extraction is typically not studied in the classical information 

extraction context. To perform high-quality and high-coverage knowledge extraction, one 

needs a model that is able to ingest whatever sources present themselves, opportunistically—

that is, a model which is not tied solely to text but can handle more general extraction and 

integration from multiple source types simultaneously.

This challenge becomes more serious when the information from different sources are all 

noisy. Take Figure 4 for example, to reach the extraction that the genus Xenacanthus appears 

in the location of the name Obara, the extraction system needs to consult extractions from 

text, tables, and external structured sources. These extractions are often associated with a 

confidence score. To join these extractions with difference confidence level together, one 

needs a principled framework. The DeepDive approach to this challenge is based on a 

Bayesian probabilistic approach. DeepDive treats all these information sources as one joint 
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probabilistic inference problem, with all predictions modeled as random variables within a 

factor graph model. This probabilistic framework ensures all facts that are produced by 

DeepDive are associated with a marginal probability. These marginal probabilities are 

meaningful in DeepDive, i.e., the empirical accuracy that one should expect for the extracted 

mentions, and provide a guideline to the developer to improve the KBC system built using 

DeepDive. In Section 3, we present a declarative language inside DeepDive to help 

developers specify a joint statistical inference problem easily.

Scalability and Efficiency—Performance is also a major challenge. In our KBC systems 

using DeepDive, we may need to perform inference and learning on billions of highly 

correlated random variables. For example, Figure 5 illustrates the data flow of 

PaleoDeepDive. The input to PaleoDeepDive contains nearly 300K journal articles and 

books, whose total size exceeds 2TB. These raw inputs are then processed with tools such as 

OCR and linguistic parsing, which are computationally expensive and may take hundreds of 

thousands of machine hours. The outputs of these tools are then used by DeepDive to 

construct factor graphs which contain more than 300 million variables as candidates for 

predictions (where over 30 million of these variables have probability ⩾ 0.9 and are thus 

output as final predictions). Therefore, one of our technical focus areas has been to speed up 

probabilistic inference [30, 31, 33, 47, 48]. In Section 4, we briefly describe these 

techniques and provide pointers to readers who are interested in further details.

3. KBC USING DEEPDIVE

We describe DeepDive, an end-to-end framework for building KBC systems with a 

declarative language.

3.1 Definitions for KBC Systems

The input to a KBC system is a heterogeneous collection of unstructured, semi-structured, 

and structured data, ranging from text documents to existing but incomplete KBs. The output 
of the system is a relational database containing relations extracted from the input and put 

into an appropriate schema. Creating the knowledge base may involve extraction, cleaning, 

and integration.

Example 3.1—Figure 6 illustrates a new running example: a knowledge base with pairs of 
individuals that are married to each other. The input to the system is a collection of news 
articles and an incomplete set of married persons; the output is a KB containing pairs of 
person that are asserted to be married by the input sources. A KBC system extracts linguistic 
patterns, e.g., “… and his wife…” between a pair of mentions of individuals (e.g., “Barack 
Obama” and ”M. Obama“). Roughly, these patterns are then used as features in a classifier 
deciding whether this pair of mentions indicates that they are married (in the HasSpouse) 
relation.

We adopt standard terminology from KBC, e.g., ACE. There are four types of objects that a 

KBC system seeks to extract from input documents, namely entities, relations, mentions, 

and relation mentions. An entity is a real-world person, place, or thing. For example, 

“Michelle_Obama_1” represents the actual entity for a person whose name is “Michelle 
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Obama”; another individual with the same name would have another number. A relation 
associates two (or more) entities, and represents the fact that there exists a relationship 

between the participating entities. For example, “Barack_Obama_1” and 

“Michelle_Obama_1” participate in the HasSpouse relation, which indicates that they are 

married. These real-world entities and relationships are described in text; a mention is a 

span of text in an input document that refers to an entity or relationship: “Michelle” may be 

a mention of the entity “Michelle_Obama_1.” A relation mention is a phrase that connects 

two mentions that participate in a relation such as “(Barack Obama, M. Obama)”. The 

process of mapping mentions to entities is called entity linking.

3.2 The DeepDive Framework

DeepDive is an end-to-end framework for building KBC systems, as shown in Figure 6. We 

walk through each phase. DeepDive supports both SQL and datalog, but we use datalog 

syntax for this exposition. The rules we describe in this section are manually created by the 

user of DeepDive and the process of creating these rules is application specific.

Candidate Mapping and Feature Extraction—All data in DeepDive is stored in a 

relational database. The first phase populates the database using a set of SQL queries and 

user-defined functions (UDFs) that we call feature extractors. By default, DeepDive stores 

all documents in the database in one sentence per row with markup produced by standard 

NLP pre-processing tools, including HTML stripping, part-of-speech tagging, and linguistic 

parsing. After this loading step, DeepDive executes two types of queries: (1) candidate 
mappings, which are SQL queries that produce possible mentions, entities, and relations, 

and (2) feature extractors that associate features to candidates, e.g., “… and his wife …” in 

Example 3.1.

Example 3.2: Candidate mappings are usually simple. Here, we create a relation mention 
for every pair of candidate persons in the same sentence (s):

(R1) MarriedCandidate(m1, m2):-

     PersonCandidate(s, m1),PersonCandidate(s, m2).

Candidate mappings are simply SQL queries with UDFs that look like low-precision but 

high-recall ETL scripts. Such rules must be high recall: if the union of candidate mappings 

misses a fact, DeepDive has no chance to extract it.

We also need to extract features, and we extend classical Markov Logic in two ways: (1) 

user-defined functions (UDFs) and (2) weight tying, which we illustrate by example.

Example 3.3: Suppose that phrase(m1, m2, sent) returns the phrase between two mentions 
in the sentence, e.g., “and his wife” in the above example. The phrase between two mentions 
may indicate whether two people are married. We would write this as:

(FE1) MarriedMentions(m1, m2):-
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      MarriedCandidate(m1, m2),Mention(s, m1),

      Mention(s, m2),Sentence(s, sent)

      weight = phrase(m1, m2, sent).

One can think about this like a classifier: This rule says that whether the text indicates that 
the mentions m1 and m2 are married is influenced by the phrase between those mention 
pairs. The system will infer based on training data its confidence (by estimating the weight) 
that two mentions are indeed indicated to be married.

Technically, phrase returns an identifier that determines which weights should be used for a 

given relation mention in a sentence. If phrase returns the same result for two relation 

mentions, they receive the same weight. We explain weight tying in more detail in Section 

3.3. In general, phrase could be an arbitrary UDF that operates in a per-tuple fashion. This 

allows DeepDive to support common examples of features such as “bag-of-words” to 

context-aware NLP features to highly domain-specific dictionaries and ontologies. In 

addition to specifying sets of classifiers, DeepDive inherits Markov Logic’s ability to 

specify rich correlations between entities via weighted rules. Such rules are particularly 

helpful for data cleaning and data integration.

Supervision—Just as in Markov Logic, DeepDive can use training data or evidence about 

any relation; in particular, each user relation is associated with an evidence relation with the 

same schema and an additional field that indicates whether the entry is true or false. 

Continuing our example, the evidence relation MarriedMentions_Ev could contain 

mention pairs with positive and negative labels. Operationally, two standard techniques 

generate training data: (1) hand-labeling, and (2) distant supervision, which we illustrate 

below.

Example 3.4: Distant supervision [17, 28] is a popular technique to create evidence in KBC 
systems. The idea is to use an incomplete KB of married entity pairs to heuristically label (as 
True evidence) all relation mentions that link to a pair of married entities:

(S1) MarriedMentions_Ev(m1, m2, true):-

     MarriedCandidates(m1, m2),EL(m1, e1),

     EL(m2, e2),Married(e1, e2).

Here, Married is an (incomplete) list of married real-world persons that we wish to extend. 
The relation EL is for “entity linking” that maps mentions to their candidate entities. At first 
blush, this rule seems incorrect. However, it generates noisy, imperfect examples of 
sentences that indicate two people are married. Machine learning techniques are able to 
exploit redundancy to cope with the noise and learn the relevant phrases (e.g., “and his 
wife”). Negative examples are generated by relations that are largely disjoint (e.g., siblings). 
Similar to DIPRE [4] and Hearst patterns [16], distant supervision exploits the “duality” [4] 
between patterns and relation instances; furthermore, it allows us to integrate this idea into 
DeepDive’s unified probabilistic framework.
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Learning and Inference—In the learning and inference phase, DeepDive generates a 

factor graph, similar to Markov Logic, and uses techniques from Tuffy [31]. The inference 

and learning are done using standard techniques (Gibbs Sampling) that we describe below 

after introducing the formal semantics.

Error Analysis—DeepDive runs the above three phases in sequence, and at the end of the 

learning and inference, it obtains a marginal probability p for each candidate fact. To 

produce the final KB, the user often selects facts in which DeepDive is highly confident, 

e.g., p > 0.95. Typically, the user needs to inspect errors and repeat the previous steps, a 

process that we call error analysis. Error analysis is the process of understanding the most 

common mistakes (incorrect extractions, too-specific features, candidate mistakes, etc.) and 

deciding how to correct them [36]. To facilitate error analysis, users write standard SQL 

queries.

3.3 Discussion of Design Choices

We have found the following key aspects of the DeepDive approach that we believe enable 

non-computer scientists to build sophisticated KBC systems: (1) there is no reference in a 

DeepDive program to the underlying machine learning algorithms. Thus, DeepDive 

programs are declarative in a strong sense. Probabilistic semantics provide a way to debug 

the system independent of the algorithm it uses. (2) DeepDive allows users to write feature 

extraction code (UDFs) in familiar languages (Python, SQL, and Scala). (3) DeepDive fits 

into the familiar SQL stack, which allows standard tools to inspect and visualize the data. (4) 

The user constructs an end-to-end system and then refines the quality of the system in a pay-

as-you-go way [26]. In contrast, traditional pipeline-based ETL scripts may lead to user’s 

time and effort over-spent on a specific extraction or integration step–without the ability to 

evaluate how important each step is for the quality of the end result. Anecdotally, pay-as-

you-go leads to more informed decisions about how to improve quality.

4. TECHNIQUES

A DeepDive program is a set of rules with weights specified using the language we 

described above. During inference, the values of all weights are assumed to be known, 

while, in learning, one finds the set of weights that maximizes the probability of the 

evidence. The execution of a DeepDive program consists of two phases, namely grounding 

and statistical inference and learning. In this section, we briefly describe the techniques we 

developed in each phase to make DeepDive performant and scalable.

4.1 Grounding

As in Figure 8, DeepDive explicitly constructs a factor graph for inference and learning 

using a set of SQL queries. A factor graph is a triple (𝖵, F, ŵ) in which 𝖵 is a set of nodes 

that correspond to Boolean random variables, 𝖥 is a set of hyperedges (for 𝖿 ∈ 𝖥, 𝖿 ⊆ 𝖵), and 

ŵ : 𝖥 × {0, 1}𝖵 → ℝ is a weight function. In DeepDive, each hyperedge 𝖿 corresponds to 

the set of groundings for a rule. In DeepDive, 𝖵 and 𝖥 are explicitly created using a set of 

SQL queries, and this process is called grounding.
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Example 4.1—Take the database instances and rules in Figure 8 as an example: each tuple 
in relation 𝖱, 𝖲, and 𝖰 is a random variable, and 𝖵 contains all random variables. The 
inference rules 𝖥 and 𝖥2 ground factors with the same name in the factor graph as illustrated 
in Figure 8. Both 𝖥1 and 𝖥2 are implemented as SQL statements in DeepDive.

Incremental Grounding—Because DeepDive is based on SQL, we are able to take 

advantage of decades of work on incremental view maintenance. The input to this phase is 

the same as the input to the grounding phase, a set of SQL queries and the user schema. The 

output of this phase is how the output of grounding changes, i.e., a set of modified variables 

Δ𝖵 and their factors Δ𝖥. Since 𝖵 and 𝖥 are simply views over the database, any view 

maintenance techniques can be applied to incremental grounding. DeepDive uses the DRED 

algorithm [15] which handles both additions and deletions. Recall that in DRED, for each 

relation 𝖱𝗂 in the user’s schema, we create a delta relation, , with the same schema as 𝖱𝗂 
and an additional column count. For each tuple t, t.count represents the number of 

derivations of 𝗍 in 𝖱𝗂. On an update, DeepDive updates delta relations in two steps. First, for 

tuples in , DeepDive directly updates the corresponding counts. Second, a SQL query 

called a “delta rule” is executed which processes these counts to generate modified variables 

Δ𝖵 and factors Δ𝖥. We found that the overhead of DRED is modest and the gains may be 

substantial, so DeepDive always runs DRED–except on initial load.

4.2 Statistical Inference and Learning

The main task that DeepDive conducts on factor graphs is statistical inference, i.e. 

determining for a given node what the marginal probability is that this node takes the value 

1. Since a node takes value 1 when a tuple is in the output, this process computes the 

marginal probability values returned to users. In general, computing these marginal 

probabilities is ♯𝖯-hard [42]. Like many other systems, DeepDive uses Gibbs sampling [37] 

to estimate the marginal probability of every tuple in the database.

Efficiency and Scalability—There are two components to scaling statistical algorithms: 

statistical efficiency, roughly how many steps an algorithm takes to converge, and hardware 
efficiency, how efficient each of those step is. We introduced this terminology and studied 

this extensively in a recent paper [48].

DimmWitted, the statistical inference and learning engine in DeepDive [48] is built upon our 

research of how to design a high-performance statistical inference and learning engine on a 

single machine [25, 30, 47, 48]. DimmWitted models Gibbs sampling as a “column-to-row 

access” operation: each row corresponds to one factor, each column to one variable, and the 

non-zero elements in the matrix correspond to edges in the factor graph. To process one 

variable, DimmWitted fetches one column of the matrix to get the set of factors, and other 

columns to get the set of variables that connect to the same factor. In standard benchmarks, 

DimmWitted was 3.7× faster than GraphLab’s implementation without any application-

specific optimization. Compared with traditional work, the main novelty of DimmWitted is 

that it considers both hardware efficiency and statistical efficiency for executing an inference 

and learning task.
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• Hardware Efficiency DeepDive takes into consideration the architecture of 

modern Non-uniform memory access (NUMA) machines. A NUMA machine 

usually contains multiple nodes (sockets), where each sockets contains multiple 

CPU cores. To achieve high hardware efficiency, one wants to decrease the 

communication across different NUMA nodes.

• Statistical Efficiency Pushing hardware efficiency to the extreme might decrease 

statistical efficiency because the lack of communication between nodes might 

decrease the rate of convergence of a statistical inference and learning algorithm. 

DeepDive takes advantage of the theoretical results of model averaging [50] and 

our own results about lock-free execution [25, 30].

On the whole corpus of Paleobiology, the factor graph contains more than 0.2 billion random 

variables and 0.3 billion factors. On this factor graph, DeepDive is able to run Gibbs 

sampling on a machine with 4 sockets (10 cores per socket), and we find that we can 

generate 1,000 samples for all 0.2 billion random variables in 28 minutes. This is more than 

4× faster than a non-NUMA-aware implementation.

Incremental Inference—Due to our choice of incremental grounding, the input to 

DeepDive’s inference phase is a factor graph along with a set of changed variables and 

factors. The goal is to compute the output probabilities computed by the system. Our 

approach is to frame the incremental maintenance problem as approximate inference. 

Previous work in the database community has looked at how machine learning data products 

change in response to both to new labels [22] and to new data [7, 8]. In KBC, both the 

program and data change on each iteration. Our proposed approach can cope with both types 

of change simultaneously.

The technical question is which approximate inference algorithms to use in KBC 

applications. We choose to study two popular classes of approximate inference techniques: 

sampling-based materialization (inspired by sampling-based probabilistic databases such as 

MCDB [18]) and variational-based materialization (inspired by techniques for 

approximating graphical models [41]). Applying these techniques to incremental 

maintenance for KBC is novel, and it is not theoretically clear how the techniques compare. 

Thus, we conducted an experimental evaluation of these two approaches on a diverse set of 

DeepDive programs. We found these two approaches are sensitive to changes along three 

largely orthogonal axes: the size of the factor graph, the sparsity of correlations, and the 

anticipated number of future changes. The performance varies by up to two orders of 

magnitude in different points of the space. Our study of the tradeoff space highlights that 

neither materialization strategy dominates the other. To automatically choose the 

materialization strategy, we developed a simple rule-based optimizer [39].

5. RELATED WORK

Knowledge Base Construction (KBC) has been an area of intense study over the last decade 

[2, 3, 6, 12, 21, 23, 29, 35, 38, 40, 45, 49]. Within this space, there are a number of 

approaches.
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Rule-Based Systems

The earliest KBC systems used pattern matching to extract relationships from text. The most 

well-known example is the “Hearst Pattern” proposed by Hearst [16] in 1992. In her seminal 

work, Hearst observed that a large number of hyponyms can be discovered by simple 

patterns, e.g., “X such as Y.” Hearst’s technique has formed the basis of many further 

techniques that attempt to extract high-quality patterns from text. Rule-based (pattern 

matching-based) KBC systems, such as IBM’s SystemT [23, 24], have been built to aid 

developers in constructing high-quality patterns. These systems provide the user with a 

(declarative) interface to specify a set of rules and patterns to derive relationships. These 

systems have achieved state-of-the-art quality on tasks such as parsing [24].

Statistical Approaches

One limitation of rule-based systems is that the developer needs to ensure that all rules 

provided to the system are high-precision rules. For the last decade, probabilistic (or 

machine learning) approaches have been proposed to allow the system to select from a range 

of a priori features automatically. In these approaches, the extracted tuple is associated with 

a marginal probability that it is true. DeepDive, Google’s knowledge graph, and IBM’s 

Watson are built on this approach. Within this space, there are three styles of systems that 

based on classification-based frameworks [2, 3, 6, 12, 45], maximum a posteriori (MAP) 

[21, 29, 40], and probabilistic graphical models [10, 35, 49]. Our work on DeepDive is based 

on graphical models.
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Figure 1. 
Knowledge Base Construction (KBC) is the process of populating a structured relational 

knowledge base from unstructured sources. DeepDive is a system aimed at facilitating the 

KBC process by allowing domain experts to integrate their domain knowledge without 

worrying about algorithms.
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Figure 2. 
Example KBC Application Built with DeepDive.
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Figure 3. 
Quality of KBC systems built with DeepDive. On many applications, KBC systems built 

with DeepDive achieves comparable (and sometimes better) quality than professional human 

volunteers, and leads to similar scientific insights on topics such as biodiversity. This quality 

is achieved by iteratively integrating diverse sources of data- often quality scales with the 

amount of information we enter into the system.
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Figure 4. 
One challenge of building high-quality KBC systems is dealing with diverse sources jointly 

to make predictions. In this example page of a Paleontology journal article, information 

extracted from tables, text, and external structured knowledge bases are all required to reach 

the final extraction. This problem becomes even more challenging when many extractors are 

not 100% accurate, thus motivating the joint probabilistic inference engine inside DeepDive.
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Figure 5. 
Another challenge of building high-quality KBC systems is that one usually needs to deal 

with data at the scale of tera-bytes. These data are not only processed with traditional 

relational operations, but also operations involving machine learning and statistical 

inference. Thus, DeepDive consists of a set of techniques to speed up and scale up inference 

tasks involving billions of correlated random variables.
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Figure 6. 
A KBC system takes as input unstructured documents and outputs a structured knowledge 

base. The runtimes are for the TAC-KBP competition system. To improve quality, the 

developer adds new rules and new data with error analysis conducted on the result of the 

current snapshot of the system. DeepDive provides a declarative language to specify each 

type of different rules and data, and techniques to incrementally execute this iterative 

process.
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Figure 7. 
An example KBC system. See Section 3.2 for details.
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Figure 8. 
Schematic illustration of grounding. Each tuple corresponds to a Boolean random variable 

and node in the factor graph. We create one factor for every set of groundings.

De Sa et al. Page 22

SIGMOD Rec. Author manuscript; available in PMC 2017 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	1. INTRODUCTION
	2. APPLICATIONS AND CHALLENGES
	2.1 PaleoDB and PaleoDeepDive
	2.2 Beyond Paleontology
	Human-Trafficking
	Medical Genetics
	Pharmacogenomics
	TAC-KBP

	2.3 Challenges
	Joint Statistical Inference
	Scalability and Efficiency


	3. KBC USING DEEPDIVE
	3.1 Definitions for KBC Systems
	Example 3.1

	3.2 The DeepDive Framework
	Candidate Mapping and Feature Extraction
	Example 3.2
	Example 3.3

	Supervision
	Example 3.4

	Learning and Inference
	Error Analysis

	3.3 Discussion of Design Choices

	4. TECHNIQUES
	4.1 Grounding
	Example 4.1
	Incremental Grounding

	4.2 Statistical Inference and Learning
	Efficiency and Scalability
	Incremental Inference


	5. RELATED WORK
	Rule-Based Systems
	Statistical Approaches

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8

