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Abstract

Large networks are becoming a widely used abstraction for studying complex systems in a broad 

set of disciplines, ranging from social network analysis to molecular biology and neuroscience. 

Despite an increasing need to analyze and manipulate large networks, only a limited number of 

tools are available for this task.

Here, we describe Stanford Network Analysis Platform (SNAP), a general-purpose, high-

performance system that provides easy to use, high-level operations for analysis and manipulation 

of large networks. We present SNAP functionality, describe its implementational details, and give 

performance benchmarks. SNAP has been developed for single big-memory machines and it 

balances the trade-off between maximum performance, compact in-memory graph representation, 

and the ability to handle dynamic graphs where nodes and edges are being added or removed over 

time. SNAP can process massive networks with hundreds of millions of nodes and billions of 

edges. SNAP offers over 140 different graph algorithms that can efficiently manipulate large 

graphs, calculate structural properties, generate regular and random graphs, and handle attributes 

and meta-data on nodes and edges. Besides being able to handle large graphs, an additional 

strength of SNAP is that networks and their attributes are fully dynamic, they can be modified 

during the computation at low cost. SNAP is provided as an open source library in C++ as well as 

a module in Python.

We also describe the Stanford Large Network Dataset, a set of social and information real-world 

networks and datasets, which we make publicly available. The collection is a complementary 

resource to our SNAP software and is widely used for development and benchmarking of graph 

analytics algorithms.
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1. INTRODUCTION

The ability to analyze large networks is fundamental to study of complex systems in many 

scientific disciplines [Easley and Kleinberg 2010; Jackson 2008; Newman 2010]. With 

networks, we are able to capture relationships between entities, which allows us to gain 

deeper insights into the systems being analyzed [Newman 2003]. This increased importance 

of networks has sparked a growing interest in network analysis tools [Batagelj and Mrvar 

1998; Hagberg et al. 2008; Kyrola et al. 2012; Malewicz et al. 2010].

Network analysis tools are expected to fulfill a set of requirements. They need to provide 

rich functionality, implementing a wide range of graph and network analysis algorithms. 

Implementations of graph algorithms must be able to process graphs with 100s of millions 

of nodes. Graphs need to be represented in a compact form with a small memory footprint, 

since many algorithms are bound by the memory throughput. Powerful operators are 

required for modifying graph structure, so that nodes and edges in a graph can be added or 

removed, or new graphs can be constructed from existing ones. Additionally for a wide 

system adoption, it is desirable that the source code is available under an open source 

license.

While there has been significant amount of work on systems for processing and analyzing 

large graphs, none of the existing systems fulfills the requirements outlined above. In 

particular, research on graph processing in large-scale distributed environments [Gonzalez et 

al. 2012; Malewicz et al. 2010; Kang et al. 2009; Salihoglu and Widom 2013; Xin et al. 

2013] provides efficient frameworks, but these frameworks only implement a handful of 

most common graph algorithms, which in practice is not enough to make these tools useful 

for practitioners. Similarly, there are several user-friendly libraries that implement dozens of 

network analysis algorithms [Batagelj and Mrvar 1998; Csardi and Nepusz 2006; Gregor 

and Lumsdaine 2005; Hagberg et al. 2008; O’Madadhain et al. 2005]. However, the 

limitations of these systems are that they might not scale to large graphs, can be slow, hard 

to use, or do not include support for dynamic networks. Thus, there is a need for a system 

that addresses those limitations and provides reasonable scalability, is easy to use, 

implements numerous graph algorithms, and supports dynamic networks.

Here, we present Stanford Network Analysis Platform (SNAP), which was specifically built 

with the above requirements in mind. SNAP is a general-purpose, high-performance system 

that provides easy to use, high-level operations for analysis and manipulation of large 

networks. SNAP has been developed for single big-memory multiple-cores machines and as 

such it balances the trade-off between maximum performance, compact in-memory graph 

representation, and the ability to handle dynamic graphs where nodes and edges are being 

added or removed over time.
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SNAP offers methods that can efficiently manipulate large graphs, calculate structural 

properties, generate regular and random graphs, and handle attributes on nodes and edges. 

Besides being able to handle large graphs, an additional strength of SNAP is that network 

structure and attributes are fully dynamic, they can be modified during the computation via 

low cost operations.

Overall, SNAP implements 8 graph and network types, 20 graph generation methods/

models, 20 graph manipulation methods, and over 100 graph algorithms, which provides in 

total over 200 different functions. It has been used in a wide range of applications, such as 

network inference [Gomez-Rodriguez et al. 2014], network optimization [Hallac et al. 

2015], information diffusion [Leskovec et al. 2009; Suen et al. 2013], community detection 

[Yang and Leskovec 2014], and geo-spatial network analysis [Leskovec and Horvitz 2014]. 

SNAP is provided for major operating systems as an open source library in C++ as well as a 

module in Python. It is released under the BSD open source license and can be downloaded 

from http://snap.stanford.edu/snap.

Complementary to the SNAP software, we also maintain public Stanford Large Network 

Dataset Collection, an extensive set of social and information networks with about 80 

different network datasets. The collection includes online social networks with rich 

dynamics and node attributes, communication networks, scientific citation networks, 

collaboration networks, web graphs, Internet networks, online reviews, as well as social 

media data. The network datasets can be obtained at http://snap.Stanford.edu/data.

The remainder of the paper is organized as follows. We discuss related graph analysis 

systems in Section 2. The next two sections describe key principles behind SNAP. We give 

an overview of basic graph and network classes in SNAP in Section 3, while Section 4 

focuses on graph methods. Implementational details are discussed in Section 5. An 

evaluation of SNAP and comparable systems with benchmarks on a range of graphs and 

graph algorithms is presented in Section 6. Next, in Section 7, we describe Stanford Large 

Network Dataset Collection and, in Section 8, SNAP documentation and its distribution 

license. Section 9 concludes the paper.

2. RELATED NETWORK ANALYSIS SYSTEMS

In this section we briefly survey related work on systems for processing, manipulating, and 

analyzing networks. We organize the section into two parts. First, we discuss single-machine 

systems and then proceed to discuss how SNAP relates to distributed systems for graph 

processing.

One of the first single-machine systems for network analysis is Pajek [Batagelj and Mrvar 

1998], which is able to analyze networks with up to ten million nodes. Pajek is written in 

Pascal and is distributed as a self-contained system with its own GUI-based interface. It is 

only available as a monolithic Windows executable, and thus limited to the Windows 

operating system. It is hard to extend Pajek with additional functionality or use it as a library 

in another program. Originally, networks in Pajek are represented using doubly linked lists 

[Batagelj and Mrvar 1998] and while linked lists make it easy to insert and delete elements, 
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they can be slow to traverse on modern CPUs, where sequential access to memory is much 

faster than random access.

Other widely used open source network analysis libraries that are similar in functionality to 

SNAP are NetworkX [Hagberg et al. 2008] and iGraph [Csardi and Nepusz 2006]. 

NetworkX is written in Python and implements a large number of network analysis methods. 

In terms of the speed vs. flexibility trade-off, NetworkX offers maximum flexibility at the 

expense of performance. Nodes, edges and attributes in NetworkX are represented by hash 

tables, called dictionaries in Python. Using hash tables for all graph elements allows for 

maximum flexibility, but imposes performance overhead in terms of a slower speed and a 

larger memory footprint than alternative representations. Additionally, since Python 

programs are interpreted, most operations in NetworkX take significantly longer time and 

require more memory than alternatives in compiled languages. Overall, we find SNAP to be 

one to two orders of magnitude faster than NetworkX, while also using around 50 times less 

memory. This means that, using the same hardware, SNAP can process networks that are 50 

times larger or networks of the same size 100 times faster.

Similar to NetworkX in functionality but very different in implementation is the iGraph 

package [Csardi and Nepusz 2006]. iGraph is written in the C programming language and 

can be used as a library. In addition, iGraph also provides interfaces for Python and R 

programming languages. In contrast to NetworkX, iGraph emphasizes performance at the 

expense of the flexibility of the underling graph data structure. Nodes and edges are 

represented by vectors and indexed for fast access and iterations over nodes and edges. Thus 

graph algorithms in iGraph can be very fast. However, iGraph’s representation of graphs is 

heavily optimized for fast execution of algorithms that operate on a static network. As such, 

iGraph is prohibitively slow when making incremental changes to the graph structure, such 

as node and edge additions or deletions. Overall, we find SNAP uses about three times less 

memory than iGraph due to extensive use of indexes in iGraph, while being about three 

times slower executing a few algorithms that benefit from indexes and fast vector access. 

However, the big difference is in flexibility of the underlying graph data structure. For 

example, SNAP was five orders of magnitude faster than iGraph in our benchmarks of 

removal of individual nodes from a graph.

While SNAP was designed to work on a single large-memory machine, an alternative 

approach would be to use a distributed system to perform network analysis. Examples of 

such systems include Pregel [Malewicz et al. 2010], PowerGraph [Gonzalez et al. 2012], 

Pegasus [Kang et al. 2009], and GraphX [Xin et al. 2013]. Distributed graph processing 

systems can in principle process larger networks than a single machine, but are significantly 

harder to program, and more expensive to maintain. Moreover, none of the existing 

distributed systems comes with a large suite of graph processing functions and algorithms. 

Most often, graph algorithms, such as community detection or link prediction, have to be 

implemented from scratch.

We also note a recent trend where, due to decreasing RAM prices, the need for distributed 

graph processing systems has diminished in the last few years. Machines with large RAM of 

1TB or more have become relatively inexpensive. Most real-world graphs comfortably fit in 
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such machines, so multiple machines are not required to process them [Perez et al. 2015]. 

Multi-machine environments also impose considerable execution overhead in terms of 

communication and coordination costs, which further reduces the benefit of distributed 

systems. A single machine thus provides an attractive platform for graph analytics [Perez et 

al. 2015].

3. SNAP FOUNDATIONS

SNAP is a system for analyzing graphs and networks. In this section we shall provide an 

overview of SNAP, starting by introducing some basic concepts. In SNAP we define graphs 
to consist of a set of nodes and a set of edges, each edge connecting two nodes. Edges can be 

either directed or undirected. In multigraphs, more than one edge can exist between a pair of 

nodes. In SNAP terminology networks are defined as graphs, where attributes or features, 

like “age”, “color”, “location”, “time” can be associated with nodes as well as edges of the 

network.

SNAP is designed in such a way that graph/network methods are agnostic to the underling 

graph/network type/representation. As such most methods work on any type of a graph/

network. So, for most of the paper we will be using terms graphs and networks 
interchangeably, meaning graph and I or network and the specific meaning will be evident 

from the context.

An alternative terminology to the one we use here is to use the term graph to denote 

mathematical objects and the term network for real-world instances of graphs, such as an 

online social network, a road network, or a network of protein interactions. However, inside 

the SNAP library we use the terminology where graphs represent the “wiring diagrams”, and 

networks are graphs with data associated with nodes and edges.

3.1. Graph and Network Containers

SNAP is centered around core foundational classes that store graphs and networks. We call 

these classes graph and network containers. The containers provide several types of graphs 

and networks, including directed and undirected graphs, multigraphs, and networks with 

node and edge attributes. In order to optimize for execution speed and memory usage, an 

application can chose the most appropriate container class so that critical operations are 

executed efficiently.

An important aspect of containers is that they all have a unified interface for accessing the 

graph/network structure as well as for traversing nodes and edges. This common interface is 

used by graph methods to implement more advanced graph algorithms. Since the interface is 

the same for all graph and network containers, these advanced methods in SNAP are generic 

in a sense that each method can work on a container of any type. Implementation of new 

algorithms is thus simplified as each method needs to be implemented only once and can 

then be executed on any type of a graph or a network. At the same time, the use of SNAP 

library is also streamlined. It is easy to substitute one type of graph container for another at 

the container creation time, and the rest of the code usually does not need to be changed.
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Methods that operate on graph/network containers can be split into several groups (Figure 

1): graph generation methods which create new graphs as well as networks, graph 

manipulation methods which manipulate the graph structure, and graph analytic methods 

which do not change the underlying graph structure, but compute specific graph statistics. 

Graph methods are discussed further in Section 4.

Table I describes the multiple graph and network containers provided by SNAP. Each 

container is optimized for a particular type of graph or network.

Graph containers are TUNGraph, TNGraph, TNEGraph, and TBPGraph, which correspond 

to undirected graphs where edges are bidirectional, directed graphs where edges have 

direction, directed multigraphs where multiple edges can exist between a pair of nodes, and 

bipartite graphs, respectively. Network containers are TNodeNet, TNodeEDatNet, 

TNodeEdgeNet, and TNEANet, which correspond to directed graphs with node attributes, 

directed graphs with node and edge attributes, directed multigraphs with node and edge 

attributes and directed multigraphs with dynamic node and edge attributes, respectively.

In all graph and network containers, nodes have unique identifiers (ids), which are non-

negative integers. Node ids do not have to be sequentially ordered from one to the number of 

nodes, but can be arbitrary non-negative integers. The only requirement is that each node has 

a unique id. In simple graphs edges have no identifiers and can be accessed by providing an 

pair of node ids that the edge connects. However, in multigraphs each edge has a unique 

non-negative integer id and edges can be accessed either by providing an edge id or a pair of 

node ids.

The design decision to allow arbitrary node (and edge) ids is important as it allows us to 

preserve node identifiers as the graph structure is being manipulated. For example, when 

extracting a subgraph of a given graph, the node as well as edge ids get preserved.

Network containers, except TNEANet, require that types of node and edge attributes are 

specified at compile time. These attribute types are simply passed as template parameters in 

C++, which provides a very efficient and convenient way to implement networks with rich 

data on nodes and edges. Types of node and edge attributes in the TNEANet container can 

be provided dynamically, so new node and edge attributes can be added or removed at run 

time.

Graph and network containers vary in how they represent graphs and networks internally, so 

time and space trade-offs can be optimized for specific operations and algorithms. Further 

details on representations are provided in Section 5.

3.2. Functionality of Graph Containers

Container interface allows that the same commonly used primitives are used by containers of 

all types. This approach results in significant reduction of the effort needed to provide new 

graph algorithms in SNAP, since most algorithms need to be implemented only once and can 

then be used for all the graph and network container types.
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Common container primitives are shown in Table II. These provide basic operations for 

graph manipulation. For example, they include primitives that add or delete nodes and edges, 

and primitives that save or load the graph.

Expressive power of SNAP comes from iterators that allow for a container independent 

traversal of nodes and edges. Listing 1 illustrates the use of iterators by providing examples 

of how all the nodes and edges in the graph can be traversed.

The iterators are used consistently and extensively throughout the SNAP code base. As a 

result, existing graph algorithms in SNAP do not require any changes in order to be applied 

to new graph and network container types.

Special attention has been paid in SNAP to performance of graph load and save operations. 

Since large graphs with billions of edges can take a long time to load or save, it is important 

that these operations are as efficient as possible. To support fast graph saving and loading 

operations, SNAP can save graphs directly in a binary format, which avoids a 

computationally expensive step of data serializing and deserializing.

4. GRAPH METHODS

SNAP provides efficient implementations of commonly used traditional algorithms for graph 

and network analysis, as well as recent algorithms that employ machine learning techniques 

on graph problems, such as community detection [Yang and Leskovec 2013; Yang and 

Leskovec 2014; McAuley and Leskovec 2014], statistical modeling of networks [Kim and 

Leskovec 2012b; Kim and Leskovec 2013], network link and missing node prediction [Kim 

and Leskovec 2011b], random walks [Lofgren et al. 2016], network structure inference 

[Gomez-Rodriguez et al. 2010; Gomez-Rodriguez et al. 2013]. These algorithms have been 

developed within our research group or in collaboration with other groups. They use SNAP 

primitives extensively and their code is made available as part of SNAP distributions.

Graph methods can be split into the following groups: graph creation, graph manipulation, 

and graph analytics. Graph creation methods, called generators, are shown in Table III. They 

implement a wide range of models for generation of regular and random graphs, as well as 

graphs that model complex real-world networks. Table IV shows major families of graph 

manipulation and analytics methods. Next, we describe advanced graph methods in more 

detail.

4.1. Community Detection

Novel SNAP methods for community detection are based on the observation that overlaps 

between communities in the graph are more densely connected than the non-overlapping 

parts of the communities [Yang and Leskovec 2014]. This observation matches empirical 

observations in many real-world networks, however, it has been ignored by most traditional 

community detection methods.

The base method for community detection is the Community-Affiliation Graph Model 

(AGM) [Yang and Leskovec 2012]. This method has been extended in several directions to 
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cover networks with millions of nodes and edges [Yang and Leskovec 2013], networks with 

node attributes [Yang et al. 2013], and 2-mode communities [Yang et al. 2014].

Community-Affiliation Graph Model identifies communities in the entire network. SNAP 

also provides a complementary approach to network wide community detection. The Circles 

method [McAuley and Leskovec 2012] uses the friendship network connections as well as 

user profile information to categorize friends from a person’s ego network into social circles 

[McAuley and Leskovec 2014].

4.2. Predicting Missing Links, Nodes, and Attributes in Networks

The information we have about a network might often be partial and incomplete, where 

some nodes, edges or attributes are missing from the available data. Only a subset of nodes 

or edges in the network is known, the rest of the network elements are unknown. In such 

cases, we want to predict the unknown, missing network elements.

SNAP methods for these prediction tasks are based on the multiplicative attribute graph 

(MAG) model [Kim and Leskovec 2012b]. The MAG model can be used to predict missing 

nodes and edges [Kim and Leskovec 2011a], missing node features [Kim and Leskovec 

2012a], or network evolution over time [Kim and Leskovec 2013].

4.3. Fast Random Walk Algorithms

Random walks can be used to determine the importance or authority of nodes in a graph. In 

personalized PageRank, we want to identify important nodes from the point of view of a 

given node [Benczur et al. 2005; Lofgren et al. 2014; Page et al. 1999].

SNAP provides a fast implementation of the problem of computing personalized PageRank 

scores for a distribution of source nodes to a given target node [Lofgren et al. 2016]. In the 

context of social networks, this problem can be interpreted as finding a source node that is 

interested in the target node. The fast personalized PageRank algorithm is birectional. First, 

it works backwards from the target node to find a set of intermediate nodes ’near’ it and then 

generates random walks forwards from source nodes in order to detect this set of 

intermediate nodes and compute a provably accurate approximation of the personalized 

PageRank score.

4.4. Information Diffusion

Information diffusion and virus propagation are fundamental network processes. Nodes 

adopt pieces of information or become infected and then transmit the information or 

infection to some of their neighbors. A fundamental problem of diffusion over networks is 

the problem of network inference [Gomez-Rodriguez et al. 2010]. The network inference 

task is to use node infection times in order to reconstruct the transmissions as well as the 

network that underlies them. For example, in an epidemic, we can usually observe just a 

small subset of nodes being infected, and we want to infer the underlying network structure 

over which the epidemic spread.

SNAP implements an efficient algorithm for network inference, where the problem is to find 

the optimal network that best explains a set of observed information propagation cascades 
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[Gomez-Rodriguez et al. 2012]. The algorithm scales to large datasets and in practice gives 

provably near-optimal performance. For the case of dynamic networks, where edges are 

added or removed over time and we want to infer these dynamic network changes, SNAP 

provides an alternative algorithm [Gomez-Rodriguez et al. 2013].

5. SNAP IMPLEMENTATION DETAILS

SNAP is written in the C++ programming language and optimized for compact graph 

representation while preserving maximum performance. In the following subsections we 

shall discuss implementational details of SNAP.

5.1. Representation of Graphs and Networks

Our key requirement when designing SNAP was that data structures are flexible in allowing 

for efficient manipulation of the underlying graph structure, which means that adding or 

deleting nodes and edges must be reasonably fast and not prohibitively expensive. This 

requirement is needed, for example, for the processing of dynamic graphs, where graph 

structure is not known in advance, and nodes and edges get added and deleted over time. A 

related use scenario is motivated by on-line graph algorithms, where an algorithm 

incrementally modifies existing graphs as new input becomes available.

Furthermore, we also want our algorithms to offer high performance and be as fast as 

possible given the flexibility requirement. These opposing needs of flexibility and high 

performance pose a trade-off between graph representations that allow for efficient structure 

manipulation and graph representations that are optimized for speed. In general, flexibility is 

achieved by using hash table based representations, while speed is achieved by using vector 

based representations. An example of the former is NetworkX [Hagberg et al. 2008], an 

example of the latter is iGraph [Csardi and Nepusz 2006].

SNAP graph and network representation—For SNAP, we have chosen a middle 

ground between all-hash table and all-vector graph representations. A graph in SNAP is 

represented by a hash table of nodes in the graph. Each node consists of a unique identifier 

and one or two vectors of adjacent nodes, listing nodes that are connected to it. Only one 

vector is used in undirected graphs, while two vectors, one for outgoing and another one for 

incoming nodes/edges, are used in directed graphs. In simple graphs, there are no explicit 

edge identifiers, edges are treated as pairs of a source and a destination node instead. In 

multigraphs, edges have explicit identifiers, so that two edges between the same pair of 

nodes can be distinguished. An additional hash table is required in this case for the edges, 

mapping edge ids to the source and destination nodes. Figure 2 summarizes graph 

representations in SNAP.

The values in adjacency vectors are sorted for faster access. Since most of the real-world 

networks are sparse with node degrees significantly smaller than the number of nodes in the 

network, while at the same time exhibiting a power law distribution of node degrees, the 

benefits of maintaining the vectors in a sorted order significantly outweigh the overhead of 

sorting. Sorted vectors also allow for fast and ordered traversal and selection of node’s 

neighbors, which are common operations in graph algorithms.
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As we show in experiments (Section 6), SNAP graph representation also optimizes memory 

usage for large graphs. Although it uses more memory for storing nodes than some 

alternative representations, it requires less memory for storing edges. Since a vast majority 

of relevant networks have more edges than nodes, the overall memory usage in SNAP is 

smaller than representations that use less memory per node but more per edge. A compact 

graph representation is important for handling very large networks, since it determines the 

sizes of networks that can be analyzed on a computer with a given amount of RAM. With a 

more compact graph representation and smaller RAM requirements, larger networks can fit 

in the RAM available and can thus be analyzed. Since many graph algorithms are bound by 

memory throughput, an additional benefit of using less RAM to represent graphs is that the 

algorithms execute faster, since less memory needs to be accessed.

Time complexity of key graph operations—Table V summarizes time complexity of 

key graph operations in SNAP. It can be seen that most of the operations complete in 

constant time of O(1), and that the most time consuming are edge operations, which depend 

on the node degree. However, since most of the nodes in real-life networks have low degree, 

edge operations overall still perform faster than alternative approaches. One such alternative 

approach is to maintain neighbors in a hash table rather than in a sorted vector. This 

alternative approach does not work well in practice, because hash tables are faster than 

vectors only when the number of elements stored is large. But most nodes in real-time 

networks have a very small degree, and hash tables will be slower than vectors for these 

nodes. We find that a small number of large degree nodes does not compensate for the time 

lost with a large number of small degree nodes. Additionally, an adjacency hash table would 

need to be maintained for each node, leading to significantly increased complexity with 

hundreds of millions of hash tables for graphs with hundreds of millions of nodes.

As we show in the experimental section (Section 6), the representation of graphs in SNAP is 

able to provide high performance and compact memory footprint, while allowing for 

efficient additions or deletions of nodes and edges.

5.2. Implementation Layers

SNAP is designed to operate in conceptual layers (see Figure 3). Layers are designed in such 

a way that every level abstracts out the complexity of the lower level. The bottom layer 

comprises of basic scalar classes, like integers, floats, and strings. Next layer implements 

composite data structures, like vectors and hash tables. A layer above them are graph and 

network containers. And the last layer contains graph generation, manipulation, and 

analytics methods. SNAP implementation takes advantage of GLib, a general purpose C++ 

STL-like library (Standard Template Library), developed at Jozef Stefan Institute in 

Ljubljana, Slovenia. GLib is being actively developed and used in numerous academic and 

industrial projects.

Scalar classes—This foundational layer implements basic classes, such as integers, 

floating point numbers, and strings. A notable aspect of this layer is its ability to efficiently 

load and save object instances to a secondary storage device. SNAP saves objects in a binary 
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format, which allows loading and storing of objects without any complex parsing and thus 

can be done at close to disk speeds.

Composite classes—The next layer implements composite classes on top of scalar 

classes. Two key composite classes are vectors, where elements are accessed by an integer 

index, and hash tables, where elements are accessed via a key. The elements and keys in 

hash tables can have an arbitrary type. SNAP expands fast load and save operations from 

scalar classes to vectors and hashes, so that these composite classes can be manipulated 

efficiently as well.

Graph and network containers—The layer above vectors and hash tables are graph and 

network containers. These were discussed in detail in Sections 3.1 and 5.1.

Graph and network methods—The top layer of SNAP implements graph and network 

algorithms. These rely heavily on node and edge iterators, which provide a unified interface 

to all graph and network classes in SNAP (Section 3.2). By using iterators, only one 

implementation of each algorithm is needed to provide the algorithm for all the graph/

network containers. Without a unified iterator interface, a separate algorithm implementation 

would be needed for each container type, which would result in significantly larger 

development effort and increased maintenance costs.

For example, to implement a k-core decomposition algorithm [Batagelj and Zaveršnik 

2002], one would in principle need to keep a separate implementation for each graph/

network type (i.e., graph/network container). However, in SNAP all graph/network 

containers expose the same set of functions and interfaces to access the graph/network 

structure. In case of the k-core algorithm, we need functionality to traverse all of the nodes 

of the network (we use node iterators to do that), determine the degree of a current node, and 

then delete it. All graph/network containers in SNAP expose such functions and thus a single 

implementation of the k-core algorithm is able to operate on any kind of graph/network 

container (directed and undirected graphs, multigraphs as well as networks).

Memory management—In large software systems, memory management is an important 

aspect. All complex SNAP objects, from composite to network classes, employ reference 

counting, so memory for an object is automatically released, when no references are left that 

point to the object. Thus, memory management is completely transparent to the SNAP user 

and has minimal impact on performance, since the cost of reclaiming unused memory is 

spread in small chunks over many operations.

6. BENCHMARKS

In this section, we compare SNAP with existing network analytics systems. In particular, we 

contrast the performance of SNAP with two systems that are most similar in functionality, 

NetworkX [Hagberg et al. 2008] and iGraph [Csardi and Nepusz 2006].

NetworkX and iGraph are single machine, single thread graph analytics libraries that occupy 

two opposite points in the performance vs. flexibility spectrum. iGraph is optimized for 
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performance, but not flexible in a sense that it supports primarily only static graph structure 

(dynamically adding/deleting nodes/edges is prohibitively expensive). On the other hand, 

NetworkX is optimized for flexibility at the expense of lower performance. SNAP lies in-

between, providing flexibility while maximizing performance.

Furthermore, we also give a summary of our experiments with parallel versions of several 

SNAP algorithms [Perez et al. 2015]. These experiments demonstrate that a single large-

memory multi-core machine provides an attractive platform for the analysis of all-but-the-

largest graphs. In particular, we show that performance of SNAP on a single machine 

measures favorably when compared to distributed graph processing frameworks.

All the benchmarks were performed on a computer with 2.40GHz Intel Xeon E7-4870 

processors and sufficient memory to hold the graphs in RAM. Since all the systems are non-

parallel, benchmarks utilized only one core of the system. All benchmarks were repeated 5 

times and the average times are shown.

6.1. Memory Consumption

A memory requirement to represent graphs is an important measure of a graph analytics 

library. Many graph operations are limited by available memory access bandwidth, and a 

smaller memory footprint allows for faster algorithm execution.

To determine memory consumption, we use undirected Erdõs-Rényi random graphs, G(n, 

m), where n represents the number of nodes, and m the number of edges in the graph. We 

measure memory requirements for G(n, m) graphs at three different sizes G(1M, 10M), 

G(1M, 100M), and G(10M, 100M), where 1M denotes 106. We have chosen those graph 

sizes to illustrate system scaling as the number of nodes or the average node degree 

increases.

Table VI shows the results. Notice, that SNAP can store a graph of 10M nodes, and 100M 

edges in mere 1.3GB of memory, while iGraph needs over 3.3GB and NetworkX requires 

nearly 55GB of memory to store the same graph. It is somewhat surprising that iGraph 

requires about 3 times more memory than SNAP, despite using vectors to represent nodes 

rather than a hash table. NetworkX uses hash tables extensively and it is thus not surprising 

that it requires over 40 times more memory than SNAP.

We used the memory consumption measurements in Table VI to calculate the number of 

bytes required by each library to represent a node or an edge. As can be seen in Table VII, 

SNAP requires four times less memory per edge than iGraph and 50 times less memory per 

edge than NetworkX. Since graphs have usually significantly more edges than nodes, 

memory requirements to store the edges are the main indicator of the size of graphs that will 

fit in a given amount of RAM.

We illustrate the size of a graph that can be represented by each system in a given amount of 

RAM by fixing the number of nodes at 100 million and then calculating the maximum 

number of edges that fit in the remaining RAM, using numbers from Table VII. The results 

are shown in Figure 4. For 1024GB of RAM, SNAP can represent graphs with 123.5 billion 

edges, iGraph 31.9 billion edges, and NetworkX 2.1 billion edges.
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6.2. Basic Graph Operations

Next, we measure execution times of basic graph operations for an Erdõs-Rényi random 

graph G(1M, 100M).

First, we examine the times for generating a graph, saving the graph to a file, and loading the 

graph from the file. Results are shown in Table VIII. We used a built-in function in each 

system to generate the graphs. For graph generation, SNAP is about two times slower than 

iGraph, and more than 5 times faster than NetworkX (Table VIII). However, graph 

generation in SNAP is inserting one edge at a time, while iGraph has an optimized 

implementation that inserts edges in bulk.

The performance of graph loading and saving operations is often a bottleneck in graph 

analysis. For these operations, SNAP is over 15 times faster than iGraph and 100 times 

faster than NetworkX (Table VIII). The benchmark utilized an internal binary representation 

of graphs for SNAP, while a text representation was used for iGraph and NetworkX. SNAP 

and iGraph have similar performance when saving/loading graphs from/to a textual format. 

So, the advantage of SNAP over iGraph can be attributed to the SNAP support for the binary 

graph representation on the disk.

Second, we also benchmark the fundamental operations when working with graphs. We 

focus on the time it takes to test for the existence of a given edge (i, j). We performed an 

experiment where we generated larger and larger instances of Erdõs-Rényi random graphs 

and measured execution times for testing the presence of edges in a given graph. For each 

test, we generated a random source and destination node and tested for its existence in the 

graph. The number of test iterations is equal to the number of edges in the graph. Table IX 

gives the results and we notice that SNAP is about 10–20% faster than or comparable to 

iGraph and 3–5 times faster than NetworkX.

Last, we also estimate system flexibility, which tells us how computationally expensive it is 

to modify graph structure, by measuring the execution times of deleting 10% of nodes and 

their corresponding edges from G(1M, 10M). SNAP is much faster than iGraph and 

NetworkX when deleting nodes from the graph (Table X). Furthermore, the nodes in SNAP 

and NetworkX were deleted incrementally, one node at the time, while the nodes in iGraph 

were deleted in a single batch with one function call. When nodes were deleted one by one 

in iGraph as well, it took 334,720 seconds to delete 10% of nodes in the graph. The fact that 

SNAP is more than 5 orders of magnitude faster than iGraph indicates that iGraph’s graph 

data structures are optimized for speed on static graphs while also being less memory 

efficient. However, the iGraph data structure seems to completely fail in case of dynamic 

graphs where nodes/edges appear/disappear over time.

6.3. Graph Algorithms

To evaluate system performance on a real-world graph, we used a friendship graph of the 

LiveJournal online social network [Leskovec and Krevl 2014]. The LiveJournal network has 

about 4.8M nodes and 69M edges. We measured execution times for common graph 

analytics operations: PageRank, clustering coefficient, weakly connected components, 
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extracting 3-core of a network, and testing edge existence. For the PageRank algorithm, we 

show the time it takes to perform 10 iterations of the algorithm.

Table XI gives the results. We can observe that SNAP is only about 3 times slower than 

iGraph in some operations and about equal in others, while it is between 4 to 60 times faster 

than NetworkX (Table XI). As expected, NetworkX performs the best when the algorithms 

require mostly a large number of random accesses for which hash tables work well, while it 

performs poorly when the algorithm execution is dominated by sequential data accesses 

where vectors dominate.

In summary, we find that the SNAP graph data structure is by far the most memory efficient 

and also most flexible as it is able to add/delete nodes and edges the fastest. In terms of 

input/output operations SNAP also performs the best. And last, we find that SNAP offers 

competitive performance in executing static graph algorithms.

6.4. Comparison to Distributed Graph Processing Frameworks

So far we focused our experiments on SNAP performance on a sequential execution of a 

single thread on a single machine. However, we have also been studying how to extend 

SNAP to single machine multi-threaded architectures.

We have implemented parallel versions of several SNAP algorithms. Our experiments have 

shown that a parallel SNAP on a single machine can offer comparable performance to 

specialized algorithms and even frameworks utilizing distributed systems for network 

analysis and mining [Perez et al. 2015]. Results are summarized in Table XII. For example, 

triangle counting on the Twitter2010 graph [Kwak et al. 2010], which has about 42 million 

nodes and 1.5 billion edges, required 469s on a 6 core machine [Kim et al. 2014], 564s on a 

200 processor cluster [Arifuzzaman et al. 2013], while the parallel SNAP engine on a single 

machine with 40 cores required 263s.

We obtained similar results by measuring execution time of the PageRank algorithm [Page et 

al. 1999] on the same graph. PowerGraph [Gonzalez et al. 2012], a state-of-the-art 

distributed system for network analysis running on 64 machines with 512 cores, took 3.6s 

per PageRank iteration, while our system needed 6s for the same operation using only one 

machine and 40 cores, a significantly simpler configuration and more than 12 times fewer 

cores.

Note also that SNAP uses only about 13GB of RAM to process the Twitter2010 graph, so 

the graph fits easily in the RAM of most modern laptops.

These results, together with the sizes of networks being analyzed, demonstrate that a single 

multi-core big-memory machine provides an attractive platform for network analysis of a 

large majority of networks [Perez et al. 2015].

7. STANFORD LARGE NETWORK DATASET COLLECTION

As part of SNAP, we are also maintaining and making publicly available the Stanford Large 

Network Dataset Collection [Leskovec and Krevl 2014], a set of around 80 different social 
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and information real-world networks and datasets from a wide range of domains, including 

social networks, citation and collaboration networks, Internet and Web based networks, and 

media networks. Table XIII gives the types of datasets in the collection.

The datasets were collected as part of our research in the past and in that sense represent 

typical graphs being analyzed. Table XIV gives the distribution of graph sizes in the 

collection. It can be observed that a vast majority of graphs are relatively small with less 

than 100 million edges and thus can easily be analyzed in SNAP. The performance 

benchmarks in Table XI are thus indicative of the execution times of graph algorithms being 

applied to real-world networks.

8. RESOURCES

SNAP resources are available from our Web site at: http://snap.Stanford.edu.

The site contains extensive user documentation, tutorials, regular SNAP stable releases, links 

to the relevant GitHub repositories, a programming guide, and the datasets from the Stanford 

Large Network Dataset Collection.

Complete SNAP source code has been released under a permissive BSD type open source 

license. SNAP is being actively developed. We welcome community contributions to the 

SNAP code base and the SNAP dataset collection.

9. CONCLUSION

We have presented SNAP, a system for analysis of large graphs. We demonstrate that graph 

representation employed by SNAP is unique in the sense that it provides an attractive 

balance between the ability to efficiently modify graph structure and the need for fast 

execution of graph algorithms. While SNAP implements efficient operations to add or delete 

nodes and edges in a graph, it imposes only limited overhead on graph algorithms. An 

additional benefit of SNAP graph representation is that it is compact and requires lower 

amount of RAM than alternative representations, which is useful in analysis of large graphs.

We are currently extending SNAP in several directions. One direction is speeding up 

algorithms via parallel execution. Modern CPUs provide a large number of cores, which 

provide a natural platform for parallel algorithms. Another direction is exploring ways of 

how the graphs are constructed from data and then identify powerful primitives that cover a 

broad range of graph construction scenarios.
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Fig. 1. 
SNAP components: graph and network containers and methods.
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Fig. 2. 
A diagram of graph data structures in SNAP. Node ids are stored in a hash table, and each 

node has one or two associated vectors of neighboring node or edge ids.
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Fig. 3. 
Different layers of SNAP design.
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Fig. 4. 
Maximum graph sizes for varying RAM availability. Number of nodes is fixed at 100 

million, estimated maximum number of edges is shown. Using 1TB RAM, SNAP can fit 

over 120 billion edges, iGraph 30 billion, and NetworkX 2 billion.
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Listing 1. 
Iterating over Nodes and Edges. Top example prints out the ids and out-degrees of all the 

nodes. Bottom example prints out all the edges as pairs of edge source node id and edge 

destination node id. These traversals can be executed on any type of a graph/network 

container.
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Table I

SNAP Graph and Network Containers.

Graph Containers

TUNGraph Undirected graphs

TNGraph Directed graphs

TNEGraph Directed multigraphs

TBPGraph Bipartite graphs

Network Containers

TNodeNet Directed graphs with node attributes

TNodeEDatNet Directed graphs with node and edge attributes

TNodeEdgeNet Directed multigraphs with node and edge attributes

TNEANet Directed multigraphs with dynamic node and edge attributes
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Table II

Common Graph and Network Methods.

Nodes

AddNode Adds a node

DelNode Deletes a node

IsNode Tests, if a node exists

GetNodes Returns the number of nodes

Edges

AddEdge Adds an edge

DelEdge Deletes an edge

IsEdge Tests, if an edge exists

GetEdges Returns the number of edges

Graph Methods

Clr Removes all nodes and edges

Empty Tests, if the graph is empty

Dump Prints the graph in a human readable form

Save Saves a graph in a binary format to disk

Load Loads a graph in a binary format from disk

Node and Edge Iterators

BegNI Returns the start of a node iterator

EndNI Returns the end of a node iterator

GetNI Returns a node (iterator)

NI++ Moves the iterator to the next node

BegEI Returns the start of an edge iterator

EndEI Returns the end of an edge iterator

GetEI Returns an edge (iterator)

EI++ Moves the iterator to the next edge
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Table III

Graph generators in SNAP.

Category Graph Generators

Regular graphs Complete graphs, circles, grids, stars, and trees;

Basic random graphs Erdõs-Rényi graphs, Bipartite graphs,

Graphs where each node has a constant degree,

Graphs with exact degree sequence;

Advanced graph models Configuration model [Bollobás 1980],

Ravasz-Barabasi model [Ravasz and Barabási 2003],

Copying model [Kumar et al. 2000],

Forest Fire model [Leskovec et al. 2005],

Geometric preferential model [Flaxman et al. 2006],

Barabasi-Albert model [Barabási and Albert 1999],

Rewiring model [Milo et al. 2003],

R-MAT [Chakrabarti et al. 2004],

Graphs with power-law degree distribution,

Watts-Strogatz model [Watts and Strogatz 1998],

Kronecker graphs [Leskovec et al. 2010],

Multiplicative Attribute Graphs [Kim and Leskovec 2012b].
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Table IV

Graph manipulation and analytics methods in SNAP.

Category Graph Manipulation and Analytics

Graph manipulation Graph rewiring, decomposition to connected
components, subgraph extraction, graph type
conversions;

Connected components Analyze weakly, strongly, bi- and 1-connected
components;

Node connectivity Node degrees, degree distribution, in-degree,
out-degree, combined degree, Hop plot, Scree plot;

Node centrality algorithms PageRank, Hits, degree-, betweenness-, closeness-,
farness-, and eigen-centrality, personalized PageRank;

Triadic closure algorithms Node clustering coefficient, triangle counting, clique
detection;

Graph traversal Breadth first search, depth first search, shortest
paths, graph diameter;

Community detection Fast modularity, clique percolation, link clustering,
Community-Affiliation Graph Model, BigClam, CoDA,
CESNA, Circles;

Spectral graph properties Eigenvectors and eigenvalues of the adjacency matrix,
spectral clustering;

K-core analysis Identification and decomposition of a given graph to
k-cores;

Graph motif detection Counting of small subgraphs;

Information diffusion Infopath, Netinf;

Network link and node prediction Predicting missing nodes, edges and attributes.

ACM Trans Intell Syst Technol. Author manuscript; available in PMC 2017 March 22.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Leskovec and Sosič Page 28

Table V

Time complexity of key graph operations in SNAP. degmax denotes the maximum node degree in the graph.

Operation Time Complexity

Get node, get next node O(1)

Get edge, get next edge O(1)

Add, delete, test an existence of a node O(1)

Add, delete an edge O(degmax)

Test an existence an edge O(log(degmax))
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Table VI

Memory requirements of undirected Erdõs-Rényi random graphs, the G(n, m) model. Memory usages are in 

MB. Overall, SNAP uses three times less memory than iGraph and over 40 times less memory than 

NetworkX.

Graph size Memory usage [MB]

Nodes Edges SNAP iGraph NetworkX

1M 10M 137 344 5,423

1M 100M 880 3,224 43,806

10M 100M 1,366 3,360 54,171
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Table VII

Memory requirements to represent a node or an edge, based on the measurements of the G(n, m) model. 

Memory usages are in bytes. SNAP uses four times less memory per edge than iGraph and over 50 times less 

memory per edge than NetworkX.

Memory usage [bytes]

Item SNAP iGraph NetworkX

Node 54.4 24.0 1158.2

Edge 8.3 32.0 426.5
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Table VIII

Execution times for basic graph operations on Erdős-Rényi random graph G(1M, 100M). Times are in 

seconds. Overall, SNAP is about two times slower than iGraph at generating the graph but it is 15 times faster 

at loading and saving it to the disk. NetworkX is 5 to 200 times slower than SNAP.

Execution time [seconds]

Operation SNAP iGraph NetworkX

Generate 139.3 74.2 748.7

Save 3.3 47.0 757.2

Load 4.6 87.8 522.0
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Table IX

Testing edge existence. Edges are random, the number of tests is equal to the number of total edges in the 

graph. Times are in seconds. SNAP is about 10–20% faster than or comparable to iGraph, while being 3–5 

times faster than NetworkX.

Graph size Execution time [seconds]

Nodes Edges SNAP iGraph NetworkX

1M 10M 3.8 5.2 23.5

1M 100M 75.4 113.8 218.3

10M 100M 67.9 63.3 255.8
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Table X

Execution times for deleting 10% of nodes and their corresponding edges from Erdős-Rényi random graph 

G(1M, 10M). Times are in seconds. SNAP is four to five times faster than iGraph and NetworkX. However, if 

one deletes nodes from the graph one-by-one in iGraph, its performance slows down for five orders of 

magnitude.

Execution time [seconds]

Operation SNAP iGraph NetworkX

Deleting nodes 0.7 3.0 4.1
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Table XI

Execution times for graph algorithms on the LiveJournal network with 4.8M nodes and 69M edges. Times are 

in seconds. Generally we observe that due to a hash based graph representation that allows efficient changes in 

the structure, SNAP is equal to iGraph in some graph operations while about 3 times slower in algorithms that 

benefit from fast vector access in iGraph. NetworkX is much slower than either SNAP or iGraph in most 

operations.

Execution time [seconds]

Operation SNAP iGraph NetworkX

PageRank 40.9 10.6 2,720.8

Clustering Coefficient 143.3 58.5 4,265.4

Connected Components 13.3 5.8 60.3

3-core 37.9 41.7 2,276.1

Test Edge Existence 45.7 35.2 158.6
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Table XII

Execution times for graph algorithms on the Twitter2010 network with 42M nodes and 1.5B edges. Times are 

in seconds.

Benchmark System Execution time [seconds]

Triangles

OPT, 1 machine, 6 cores [Kim et al. 2014] 469

PATRIC, 200 processor cluster [Arifuzzaman et al. 2013] 564

SNAP, 1 machine, 40 cores 263

PageRank
PowerGraph, 64 machines, 512 cores [Gonzalez et al. 2012] 3.6

SNAP, 1 machine, 40 cores 6.0
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Table XIII

Datasets in the Stanford Large Network Dataset Collection.

Dataset type Count Sample datasets

Social networks 10 Facebook, Google+, Slashdot, Twitter, Epinions

Ground-truth communities 6 LiveJournal, Friendster, Amazon products

Communication networks 3 Email, Wikipedia talk

Citation networks 3 Arxiv, US patents

Collaboration networks 5 Arxiv

Web graphs 4 Berkeley, Stanford, Notre Dame

Product co-purchasing networks 5 Amazon product

Internet peer-to-peer networks 9 Gnutella

Road networks 3 California, Pennsylvania, Texas

Autonomous systems graphs 5 AS peering, CAIDA, Internet topology

Signed networks 6 Epinions, Wikipedia, Slashdot Zoo

Location-based social networks 2 Gowalla, Brightkite

Wikipedia networks 6 Navigation, voting, talk, elections, edit history

Memetracker and Twitter 4 Post hyperlinks, popular phrases, tweets

Online communities 2 Reddit, Flickr

Online reviews 6 BeerAdvocate, RateBeer, Amazon, Fine Foods
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Table XIV

Distribution of graph sizes in the Stanford Large Network Dataset Collection.

Graph size
(number of edges)

Number of
graphs

<0.1M 18

0.1M – 1M 24

1M – 10M 17

10M – 100M 7

100M – 1B 4

>1B 1
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