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Abstract. Piperaquine combined with dihydroartemisinin is one of the artemisinin derivative combination therapies,
which can replace artesunate–mefloquine in treating uncomplicated falciparum malaria in Thailand. The aim of this
study was to determine the in vitro sensitivity of Thai Plasmodium falciparum isolates against piperaquine and the
influence of the pfmdr1 gene on in vitro response. One hundred and thirty-seven standard laboratory and adapted
Thai isolates of P. falciparum were assessed for in vitro piperaquine sensitivity. Polymorphisms of the pfmdr1 gene
were determined by polymerase chain reaction methods. The mean and standard deviation of the piperaquine IC50
in Thai isolates of P. falciparum were 16.7 ± 6.3 nM. The parasites exhibiting chloroquine IC50 of ≥ 100 nM were sig-
nificantly less sensitive to piperaquine compared with the parasite with chloroquine IC50 of < 100 nM. No significant
association between the pfmdr1 copy number and piperaquine IC50 values was found. In contrast, the parasites
containing the pfmdr1 86Y allele exhibited significantly reduced piperaquine sensitivity. Before nationwide implemen-
tation of dihydroartemisinin–piperaquine as the first-line treatment in Thailand, in vitro and in vivo evaluations of this
combination should be performed especially in areas where parasites containing the pfmdr1 86Y allele are predominant
such as the Thai–Malaysian border.

INTRODUCTION

Emergence and spread of multidrug-resistant Plasmodium
falciparum strains presents its most serious situation along
the Thai–Myanmar and Thai–Cambodian borders.1,2 To com-
bat this problem, Thailand was the first country to use an
artemisinin combination therapy (ACT), artesunate–mefloquine
to treat uncomplicated falciparum malaria.3 Unfortunately,
evidence of artemisinin resistance, indicated by delayed par-
asite clearance has been reported in these areas.4,5 Although
artemisinin resistance has been a matter of concern, ACTs
are still the first line of choice to treat multidrug-resistant
falciparum malaria due to its acceptable cure rate. Treatment
failure of ACT has been associated with resistance to the
partner drugs rather than delayed parasite clearance pheno-
type.6–8 Thus, an ACT with the effective partner drug should
be chosen rationally.
Piperaquine, a bisquinoline antimalarial drug, was

extensively used as a monotherapy for the treatment of
chloroquine-resistant falciparum malaria in China.9 To date,
dihydroartemisinin–piperaquine is one of the available ACTs
to treat uncomplicated falciparum malaria. Short-course
dihydroartemisinin–piperaquine has shown excellent efficacy
in a few clinical trials and is considered as a promising fixed-
dose formulation to treat multidrug-resistant falciparum
malaria.10–12 Currently, dihydroartemisinin–piperaquine has
been used in southeast Asia includingMyanmar andCambodia.
However, the development of piperaquine resistance in
P. falciparum has been concerned as the resistance was
reported in China after being used as a monotherapy. Rapid
emergence of piperaquine resistance may be associated
with its long half-life and cross-resistance to a structurally
related 4-aminoquinoline, chloroquine.9 After implementing
national policy to use dihydroartemisinin–piperaquine as

the first-line treatment of uncomplicated falciparum malaria in
Cambodia, rapid decline in the efficacy of dihydroartemisinin–
piperaquine was reported.13–17 The treatment failure observed
with dihydroartemisinin–piperaquine has proved to be related
to the presence of piperaquine resistance.16–18

Recently, a few molecular markers have been identified for
antimalarial resistance in P. falciparum. The P. falciparum
chloroquine resistance transporter (pfcrt) has been identified
as the main determinant of chloroquine resistance.19 A point
mutation on the pfcrt gene resulting in replacement of lysine
by threonine in the PfCRT at codon 76 has been linked
to chloroquine resistance among parasite isolates collected
worldwide.20 A few studies have shown a correlation
between in vitro chloroquine and piperaquine sensitivity21–24;
however, the influence of the pfcrt 76T allele on the in vitro
sensitivity of piperaquine is still controversial.24–27 Plasmodium
falciparum multidrug resistance 1 (pfmdr1), a gene on chro-
mosome 5 encoding a P-glycoprotein homologue 1 (Pgh1)
also contributes to chloroquine resistance.28–31 At least five
single-nucleotide polymorphisms (SNPs) on the pfmdr1 gene
have been identified, that is, N86Y, Y184F, S1034C, N1042D,
and D1246Y.28 Both SNPs and copy number variation (CNV)
of the pfmdr1 gene influence in vitro and in vivo responses
to mefloquine, an arylaminoalcohol.32–36 Evidence suggests
that the pfmdr1 gene plays a role in the in vitro response to
other quinolines such as quinine, lumefantrine, and artemisinin
derivatives.29,37–40

Plasmodium falciparum isolates collected from different
areas along the international border of Thailand have
exhibited different resistant phenotypic and genotypic pat-
terns.41 Different pfmdr1 polymorphism patterns exhibit
varied antimalarial drug susceptibilities.41 Dihydroartemisinin–
piperaquine is one of the ACTs of choice to replace
artesunate–mefloquine to treat uncomplicated falciparum
malaria in Thailand. Thus, we aimed to determine in vitro
piperaquine sensitivity against both laboratory and recently
adapted Thai isolates of P. falciparum and the influence of
the pfmdr1 gene on in vitro piperaquine sensitivity.
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MATERIALS AND METHODS

Plasmodium falciparum strains and cultivation. One
hundred and thirty-seven isolates of P. falciparum including
five standard laboratory isolates, that is, K1, T994, M12,
3D7, and G112 and adapted Thai isolates, obtained from
malarial patients presenting for treatment from the Thai–
Myanmar border, that is, Tak, Kanchanaburi, and Ranong
and Thai–Cambodian border, that is, Chanthaburi, Trat, and
Sisaket from 1989 to 2014. A total of 12, 9, 60, 27, and 24
isolates were collected in 1989, 1993, 1998, 2003, and
2009 to 2014, respectively. Parasites were maintained in
continuous cultures for two to three cycles before in vitro
sensitivity assays by modifying method of Trager and
Jensen.42 Cultures were maintained under an atmosphere
of 90% N2, 5% O2, and 5% CO2.
In vitro sensitivity assays. Sensitivity of P. falciparum

isolates to piperaquine and other antimalarial drugs including
chloroquine, quinine, mefloquine, lumefantrine, artemether,
artesunate, and dihydroartemisinin were determined by mea-
suring [3H]hypoxanthine incorporation in parasite nucleic
acids as previously described.43 For each experiment, para-
site preparation containing 1% parasitemia and 2% hemato-
crit was incubated with different concentrations of the tested
drug at 37°C for 24 hours before [3H] hypoxanthine prepara-
tion was added. The plate was then incubated at 37°C for
another 24 hours before harvesting. Drug IC50, that is, the
concentration of a drug which inhibits parasite growth by
50%, was determined from the log dose/response relation-
ship as fitted by GRAFIT (Erithacus Software, Kent, England).
Genotypic characterization for the pfcrt and pfmdr1

genes. Parasite DNA was extracted simultaneously as the
in vitro sensitivity assay was performed using the Chelex
resin method.44 Polymerase chain reaction (PCR) and
allele-specific restriction analysis were performed to detect
the pfcrt mutations encoded amino acids at position 76.45

Nested PCR and restriction endonuclease digestion
method, developed by Duraisingh and others (2000) was
performed to detect the pfmdr1 mutations at codons 86,
184, 1034, 1042, and 1246. K1 and 7G8 strains were used
as the positive control.37 Results with a combined band
pattern of undigested and digested fragments were consid-
ered mixed alleles. The pfmdr1 gene copy number was
determined by TaqMan real-time PCR (ABI sequence detec-
tor 7000; Applied Biosystems, Foster City, CA) as developed
by Price and others (2004).36 Primers and fluorescence-
labeled probes were used to amplify pfmdr1 and β-tubulin
genes. PCR conditions and thermal cycling conditions were
used as described. The K1 and DD2 clone containing one
and four pfmdr1 copies, respectively, was used as the refer-
ence DNA sample. The pfmdr1 and β-tubulin amplification
reactions were run in duplicate. The relative pfmdr1 copy

number was assessed using the method described by Price
and others (2004).36

Statistical analysis. Data were analyzed using STATA/
MP, Version 12 (StataCorp, College Station, TX). Each IC50

value represented the mean of at least three independent
experiments. Normally distributed IC50 data were assessed
by the Kolmogorov–Smirnov test. Correlations were assessed
by Pearson’s correlation. Differences of the mean IC50 and
copy number of the pfmdr1 gene among groups were
analyzed using independent t test and one-way analysis
of variance (ANOVA). Post hoc test (Scheffe) for multiple
comparisons was used to test differences between the two
groups. Association between genotypes and P. falciparum
from different areas was analyzed using χ2 test or Fisher’s
exact test. The level of significance was set at a P value
of < 0.05.

RESULTS

In vitro piperaquine sensitivity. One hundred and thirty-
seven isolates were tested for sensitivity to piperaquine.
The piperaquine IC50s of the 132 adapted Thai isolates
ranged from 6.4 to 33.7 nM. Laboratory strains including
K1, T994, M12, 3D7, and G112 showed IC50s of 37.8, 24.7,
37.9, 18.9, and 14.2 nM, respectively. The mean and stan-
dard deviation (SD) of piperaquine IC50 in 132 Thai isolates
were 16.7 ± 6.3 nM. Piperaquine IC50s of these isolates were
normally distributed. Table 1 shows the mean piperaquine
IC50s of 132 parasites isolated from Thai–Myanmar and
Thai–Cambodian areas. No significant difference was found
in piperaquine IC50s among the parasites isolated from the
two different areas (independent t test, P = 0.223). The mean
piperaquine IC50 of the parasites isolated from different years
(14.9 ± 6.1 nM in 1989, 16.1 ± 9.0 nM in 1993, 16.4 ±
5.9 nM in 1998, 16.8 ± 5.4 nM in 2003, and 18.6 ± 7.0 nM
in 2009–2014) showed no significant difference (one-way
ANOVA, P = 0.438). The correlations between the IC50s of
piperaquine and other antimalarial drugs, that is, chloroquine,
quinine, mefloquine, lumefantrine, artemether, artesunate,
and dihydroartemisinin were insignificant (data not shown).
However, chloroquine-resistant parasites (IC50 ≥ 100 nM)
exhibited less sensitivity to piperaquine (19.1 ± 7.8 nM, N =
50) compared with parasites exhibiting chloroquine IC50 of
< 100 nM (15.9 ± 5.7, N = 87) (independent t test, P = 0.014).
Characterization of the pfmdr1 gene. One hundred and

thirty-two adapted Thai isolates were analyzed for mutations
in the pfcrt and pfmdr1 genes. All 132 isolates contained the
pfcrt 76T allele. Mixed K76 and 76T alleles were unidentified.
Distribution of the pfmdr1 polymorphisms in the parasite
isolates from two different areas is shown in Table 1. Distri-
bution of the pfmdr1 alleles had changed significantly over
time among the parasites from the Thai–Cambodian border.

TABLE 1
In vitro piperaquine sensitivity and distribution of pfmdr1 mutations of parasites from Thai–Myanmar and Thai–Cambodian areas

Area N Piperaquine IC50 (nM) pfmdr1 copy no.

pfmdr1 mutations n (%)

86Y 184F 1034C 1042D 1246Y

Thai–Myanmar 72 16.5 ± 5.8 2.8 ± 1.4 5 (6.9) 25 (34.7) 4 (5.6) 4 (5.6) –
Thai–Cambodian 60 16.6 ± 5.2 1.4 ± 0.9 7 (11.7) 52 (86.7) 6 (10.0) 10 (16.7) –
Total 132 16.7 ± 6.3 2.2 ± 1.4 12 (9.1) 77 (58.3) 10 (7.6) 14 (10.6) –
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The pfmdr1 184F allele increased from 66.7% in 1989 and
1993 to 93.3% in 2003 and 100%after 2009. Themean pfmdr1
copy number of these isolates was 2.2 ± 1.4 (range = 0.76–
5.5). For laboratory isolates, only K1 and M12 contained
the pfcrt 76T allele. K1, T994, and M12 contained the pfmdr1
86N allele. Isolate 3D7 contained the pfmdr1 184F allele,
whereas G112 showed nomutation.
Association between in vitro piperaquine sensitivity

and the pfmdr1 gene. Table 2 shows in vitro piperaquine
sensitivities of P. falciparum isolates with different pfmdr1
genotypes. Reduced piperaquine sensitivity was observed
in those parasites containing 86Y and 1042N alleles. The
pfmdr1 copy number had no impact on piperaquine sus-
ceptibility. The parasite isolates were categorized in seven
groups according to their genotype of the pfmdr1 gene
(Table 3), that is, (I) 86N allele, (II) 184F allele, (III) 1034C +
1042D alleles, (IV) 1042D allele, (V) 184F + 1034C + 1042D
alleles, (VI) wild type with the copy number of ≤ 1, and (VII)
wild type with the copy number of > 1. Significant differ-
ences were observed in the piperaquine IC50s among these
seven haplotypes (P < 0.001, one-way ANOVA). Post hoc
analysis showed that the piperaquine IC50s of the parasites
in group I was significantly higher than those of groups II
(P < 0.001), III (P = 0.003), IV (P = 0.003), and VII
(P < 0.001). Because the parasites in groups I–IV contained
varied pfmdr1 copy numbers, influence of the pfmdr1 copy
number on the piperaquine IC50s in each group was ana-
lyzed. No significant difference was found in the pipera-
quine IC50s among the parasites with different copy
numbers in these four groups.

Using 28.3 nM (the mean IC50 plus two SDs) as the cutoff
point for reduced piperaquine sensitivity, 11 of 137 (8.3%)
isolates exhibited reduced piperaquine sensitivity. Univariate
and multivariate analysis identified the pfmdr1 86Y allele as a
significant factor associated with reduced piperaquine sensi-
tivity (odds ratio = 15.7, 95% confidence interval = 4.0–60.8,
P < 0.001), adjusted for the pfmdr1 N1042D mutation, pfmdr1
copy number, and chloroquine resistance (IC50 ≥ 100 nM).

DISCUSSION

In vitro sensitivities of piperaquine of laboratory and adapted
Thai isolates were determined. To date, the cutoff point for
in vitro piperaquine resistance remains undetermined. Different
criteria for reduced sensitivity to piperaquine in vitro were used
in a few studies.23,46,47 When we used a 3-fold decrease in
sensitivity to piperaquine IC50 (56.7 nM) of 3D7, the laboratory
standard indicated in the study of China–Myanmar isolates,23

no parasite isolate exhibited reduced piperaquine sensitivity.
When the cutoff point for reduced in vitro piperaquine sensitivity
was estimated using the mean IC50 plus 2 SDs (28.3 nM), 11
Thai isolates (8.3%) exhibited reduced sensitivity to pipera-
quine in vitro (28.9–33.7 nM). Themean piperaquine IC50 in the
present study was in the same range as reported in other
studies from southeast Asia.22,23,48–50 However, Thai isolates
in this study showed up to five timesmore sensitivity to pipera-
quine compared with African isolates.21,22,51,52 In 2010,
dihydroartemisinin–piperaquine was adopted as the
nationwide drug used for multidrug-resistant falciparum
malaria in Cambodia.13 Unfortunately, treatment failure of
dihydroartemisinin–piperaquine was reported right after
the implementation possibly due to the existing parasites
with reduced piperaquine susceptibility because pipera-
quine monotherapy was used in Cambodia in the 1990s.9

Some but not all reports showed that treatment failure of
dihydroartemisinin–piperaquine was associated with higher
piperaquine IC50s.

14,17,18

The rapid emergence of piperaquine resistance in China
might be explained by the cross-resistance between pipera-
quine and chloroquine.9 A significant correlation between
in vitro piperaquine and chloroquine sensitivity has been
reported in some but not all studies.21–26,51 From the analysis
of 137 laboratory and adapted Thai isolates, no significant
correlation was observed between in vitro piperaquine and
chloroquine sensitivity (Pearson’s correlation coefficient =
0.13, P = 0.13). The parasites exhibiting chloroquine IC50

≥ 100 nM showed slightly but significantly higher piperaquine
IC50s (19.1 nM) compared with those exhibited chloroquine
IC50 of < 100 nM (15.9 nM). This could explain the result of
multivariate analysis showing that a chloroquine-resistant
phenotype was not the associated factor of reduced pipera-
quine sensitivity.
Polymorphisms of the pfcrt and pfmdr1 genes have been

linked to chloroquine resistance.19,20,28–31 The K76T muta-
tion in the pfcrt gene is a key determinant for chloroquine
resistance.19,20 However, a few studies have shown para-
site isolates containing the pfcrt 76T allele exhibited chloro-
quine sensitivity.53,54 In the present study, we found three
Thai chloroquine-sensitive isolates containing the pfcrt 76T
allele. The discordance between the in vitro sensitivity and
the K76T mutation may be due to the interaction of resis-
tant genes. Indeed, it has been shown that polymorphisms

TABLE 2
Comparison of in vitro piperaquine sensitivity among Plasmodium

falciparum with different pfmdr1 genotypes
pfmdr1 genotypes N (%) Mean piperaquine IC50 (nM) P value

Mutations
86 N86 122 (89.1) 16.0 ± 5.7 < 0.001*

86Y 15 (10.9) 25.8 ± 8.2
184 Y184 59 (43.1) 17.3 ± 7.6 0.252

184F 78 (56.9) 16.5 ± 5.9
1034 S1034 127 (92.7) 17.3 ± 6.8 0.177

1034C 10 (7.3) 14.3 ± 3.8
1042 N1042 123 (89.8) 17.5 ± 6.8 0.003*

1042D 14 (10.2) 13.5 ± 3.9
Copy no. ≤ 1 41 (30.0) 17.3 ± 7.2 0.365

> 1–2 35 (25.5) 17.8 ± 7.0
> 2–3 24 (17.5) 16.8 ± 6.3
> 3–4 18 (13.1) 18.4 ± 6.7
≥ 4 19 (13.9) 14.3 ± 4.8

*Significant difference determined by independent t test.

TABLE 3
In vitro piperaquine sensitivities of different genotyped subgroups

Group

Pfmdr1 haplotype

N
Piperaquine IC50

(nM)86 184 1034 1042 Copy no.

I Y Y S N 0.87–5.0 15 25.8 ± 8.2
II N F S N 0.76–5.0 65 17.1 ± 6.1*
III N Y C D 0.87–3.4 9 14.8 ± 3.7†
IV N Y S D 1.0–4.7 4 11.3 ± 3.8†
V N F C D 1.0 1 10.1
VI N Y C N ≤ 1 4 16.5 ± 5.9
VII N Y C N > 1 39 15.1 ± 5.1*

Significant difference among groups (P < 0.001, one-way analysis of variance).
*Significant difference compared with group I (P < 0.001, post hoc analysis).
†Significant difference compared with group I (P = 0.003, post hoc analysis).
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of the pfmdr1 gene could modulate the level of chloroquine
resistance.28–31 In contrast to chloroquine, the role of these
resistant genes on piperaquine sensitivity is controversial.
Using genetically modified parasites, Muangnoicharoen and
others showed that the K76T mutation in the pfcrt gene
could affect in vitro piperaquine sensitivity.27 However, a
few studies using standard laboratory and adapted strains
from different geographical areas showed no association
between in vitro piperaquine sensitivity and the K76T muta-
tion in the pfcrt gene.24–26 Recently, a few studies have
focused on the association between SNPs and CNV of the
pfmdr1 gene and in vitro piperaquine sensitivity.50,55–57

Using a drug pressure experiment, de-amplification of a
region in chromosome 5 encompassing the pfmdr1 gene
was identified in piperaquine-resistant clones compared
with the parent strains. This finding suggests a possible
linkage between pfmdr1 copy number and piperaquine sensi-
tivity.55 A study of parasites isolated from the Thai–Myanmar
border showed that parasites with one pfmdr1 copy number
exhibited significantly reduced piperaquine sensitivity com-
pared with the parasites containing more than one pfmdr1
copy number.56 However, the result from our study shows no
association between the pfmdr1 copy number and in vitro
piperaquine sensitivity. The contrasting findings might be
explained by differences in genetic background of parasites
from different geographical areas. For example, a study of
parasites isolated from three provinces of Cambodia showed
influence of the pfmdr1 copy number on in vitro piperaquine
sensitivity only in the parasites isolated from Pursat Province
in the western Cambodia, but neither Preah Vihear nor
Ratanakiri provinces in the eastern Cambodia.50 Recently,
a nonsynonymous SNP encoding a Glu415Gly mutation in
a putative exonuclease (exo-E415G), and amplification of
plasmepsin II and plasmepsin III genes have been identified as
genetic markers of piperaquine resistance in Cambodia.58,59

On the other hand, the parasites in this study containing
the pfmdr1 86Y allele showed significantly higher pipera-
quine IC50s compared with those containing the pfmdr1 N86
allele. Multivariate analysis also identified the pfmdr1 86Y
allele as an associated factor of reduced piperaquine sensi-
tivity. The important role of SNPs in the pfmdr1 gene on
in vitro piperaquine sensitivity has been confirmed by a
recent study using genetically modified P. falciparum lines.
The N86Y and Y184F mutations modulated piperaquine
sensitivity in strains containing an Asian/African variant of
the PfCRT, CVIET.57 In Thailand, P. falciparum isolates from
different areas contained different patterns of pfmdr1 poly-
morphisms.41 The majority of parasites from the Thai–
Cambodian border contained the pfmdr1 184F allele with
a lower copy number, whereas parasites collected from the
Thai–Myanmar border usually contained either the 184Y or
184F allele with a higher copy number of the pfmdr1 gene.
In contrast, the parasites from the southernmost provinces
of Thailand predominantly contained the pfmdr1 86Y
allele.41 Since the nationwide implementation of fixed-dose
ACT, that is, dihydroartemisinin/piperaquine would be
started in Thailand, parasites with reduced piperaquine sen-
sitivity might be selected in such areas. Thus, in vitro and
in vivo monitoring should be regularly performed.
In conclusion, this study determined the baseline in vitro

piperaquine sensitivity in Thai isolates of P. falciparum. The
parasites containing the pfmdr1 86Y allele exhibited reduced

in vitro piperaquine sensitivity. Thus, dihydroartemisinin–
piperaquine should be carefully evaluated especially where
the parasites with this particular genotype are predominant
before it can be considered as the first-line treatment
in Thailand.
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