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Introduction

Vitiligo is a common, disfiguring autoimmune disease that negatively affects patients’ self-

esteem and quality of life (1, 2). Existing vitiligo treatments, which are used off-label, are 

general, non-targeted immunosuppressants that provide only modest efficacy. Developing 

safe and effective treatments requires a better understanding of disease pathogenesis to 

identify new therapeutic targets (3). Vitiligo is caused by a dynamic interplay between 

genetic and environmental risks that initiates an autoimmune attack on melanocytes in the 

skin.

Vitiligo pathogenesis

Genetics

The observation that vitiligo was more prevalent in the immediate relatives of patients with 

vitiligo provided early evidence of its heritability. While vitiligo affects ~1% of the general 

population (4), the risk of a patient’s sibling developing the disease is 6%, and for an 

identical twin it is 23% (5). In addition, patients with vitiligo and their relatives have an 

increased risk of developing other autoimmune diseases, including autoimmune thyroiditis, 

type 1 diabetes, pernicious anemia, and Addison’s disease, suggesting that vitiligo is also an 

autoimmune disease (6). These early observations were later confirmed by genome-wide 

association (GWA) studies, which identified numerous common genetic variants in vitiligo 

patients encoding for components of both the innate (NLRP1, IFIH1, CASP7, C1QTNF6, 

TRIF) and adaptive immune system (FOXP3, BACH2, CD80, CCR6, PTPN22, IL2R, alpha 

GZMB, HLA class I and II) [(7–9), see also Spritz R, Andersen G: Genetics of vitiligo; in 

this issue].
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Oxidative Stress

Accumulating evidence suggests that melanocytes from vitiligo patients have intrinsic 

defects that reduce their capacity to manage cellular stress {reviewed in (10)}. Epidermal 

cells, including melanocytes, are constantly exposed to environmental stressors such as UV 

radiation and various chemicals, which can increase production of reactive oxygen species 

(ROS). While healthy melanocytes are capable of mitigating these stressors, melanocytes 

from vitiligo patients appear to be more vulnerable. For example, melanocytes from 

perilesional vitiligo skin demonstrate a dilated endoplasmic reticulum (ER) and 

abnormalities in their mitochondria and melanosome structure, all of which are 

characteristic of elevated cellular stress. High concentrations of epidermal H2O2 level and a 

decreased level of catalase, a critical enzyme that protects cells from oxidative damage, have 

been observed in skin of patients with vitiligo (11–17).

Environment

The earliest triggering events that lead to vitiligo are not fully understood. Multiple studies 

suggest that a combination of melanocyte intrinsic defects and exposure to specific 

environmental factors may play a central role in disease onset. This was evident in a group 

of factory workers who developed vitiligo following exposure to monobenzone, an organic 

chemical phenol, in their gloves (18). Later studies confirmed that a history of exposure to 

other phenolic and catecholic chemicals found in dyes (especially hair dyes), resins/

adhesives, and leather was associated with vitiligo (19, 20).

Melanogenesis is a multi-step process through which the melanocyte produces melanin. 

Tyrosinase is a rate-limiting enzyme in this process that controls the production of melanin 

through oxidation of the amino acid tyrosine, a naturally occurring phenol {reviewed in (21) 

and further discussed in this issue, Harris JE: Chemical-induced vitiligo}. In vitro studies 

demonstrated that chemical phenols can act as tyrosine analogs within the melanocyte, 

precipitating high levels of cellular stress. This may include increased production of ROS 

and triggering of the unfolded protein response (UPR), which in turn activates innate 

inflammation (22, 23).

Innate Immunity

As mentioned earlier, GWA studies in vitiligo patients implicated multiple susceptibility loci 

related to the genes that control the innate immunity (7–9). This likely causes dysregulated 

innate activation in response to melanocyte stress, demonstrated through recruitment of 

innate populations like natural killer (NK) cells and production and release of high levels of 

pro-inflammatory proteins and cytokines including heat-shock proteins (HSP), IL-1β, IL6, 

and IL-8 {(22–28), and reviewed in (10, 29)}. Among larger HSP molecules, inducible 

HSP70 (HSP70i) is unique, as it can be secreted to chaperone peptides specific to the 

originating host cells (30). Recently, HSP70i has been shown to be important for vitiligo 

pathogenesis in a mouse model through induction of inflammatory dendritic cells (DCs), 

which themselves may be cytotoxic or carry and present melanocyte-specific antigens to T 

cells in lymphoid tissues (24, 25). This has been proposed to be a key crosstalk step between 

innate and adaptive immunity leading to the T cell-mediated autoimmune destruction of 

melanocytes (31).
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Adaptive Immunity

Ultimately, cytotoxic CD8+ T cells are responsible for the destruction of melanocytes (32). 

Cytokines secreted within the skin act as an early signal to help these autoreactive T cells 

locate stressed melanocytes. This is probably important because the epidermis is not 

vascularized, and so active mechanisms are required to help them efficiently locate 

melanocytes (33). Chemokines are small, secreted proteins that act as chemoattractants to 

guide T cell migration. IFN-γ and IFN-γ-induced chemokines (CXCL9 and CXCL10) are 

highly expressed in the skin and blood of patients with vitiligo, as well as a mouse model 

(34–36). In addition, IFN-γ and CXCL10 are required for both disease progression and 

maintenance in a mouse model of the disease (34, 37). Recently, a separate study 

demonstrated that serum CXCL10 was not only higher in patients with vitiligo compared to 

healthy controls, but its level was associated with disease activity and significantly decreased 

after successful treatment, suggesting it may be used as a biomarker to monitor the disease 

activity and treatment response (36).

Emerging treatments

Based on our current understanding of vitiligo pathogenesis, a successful strategy to treat 

vitiligo should incorporate three distinct approaches: reducing melanocytes stress, regulating 

the autoimmune response, and stimulating melanocyte regeneration. Existing treatments 

partially address these needs, however emerging therapies may do this in a more targeted 

way, and combination therapies may synergize to produce a better overall response (Fig. 1).

Reducing melanocyte stress

The apparent reduction of catalase enzyme in the epidermis of vitiligo patients as well as 

elevated levels of ROS in lesional skin prompted the hypothesis that treating patients with 

antioxidants or otherwise controlling ROS might be an effective treatment strategy (38). 

Pseudocatalase describes a treatment cream comprised of any number of metal ions capable 

of converting H2O2, a common ROS, into water and oxygen. Early studies using 

pseudocatalase combined with phototherapy for vitiligo patients seemed promising (38–40), 

however they were either not controlled or not blinded, and subsequent studies have not 

reproduced positive results (41–43). It is unclear whether this strategy could be optimized or 

otherwise improved for the development of future therapies.

Oral or topical natural health products, vitamins, and supplements have been suggested as 

possible therapies based on their antioxidant and anti-inflammatory properties {(44), and 

reviewed in this issue, Grimes PE, Nashawati R: The role of diet and supplements in vitiligo 

management}. The herbal supplement Gingko biloba has been tested in 2 small trials and 

reported to promote some improvement (45, 46). The plant extract Polypodium leucotomos 
reportedly improved responses to nbUVB in a small group of vitiligo patients compared to 

placebo (47). One group tested nbUVB with or without supplementation by an “antioxidant 

pool” that included α-lipoic acid, vitamin C, vitamin E, and polyunsaturated fatty acids. 

They reported greater efficacy in patients who received a combination of nbUVB plus 

antioxidants (48). Larger, controlled trials will need to be conducted to determine if adding 

antioxidants will be a beneficial strategy to add to patient management.
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Regulating autoimmunity

Over the past decade, significant progress has been made in the development of 

immunomodulators to treat inflammatory skin disease, including more targeted treatments. 

Recent advances in our understanding of the immunopathogenesis of vitiligo have helped us 

to identify novel immune targets to develop and test new vitiligo treatments.

HSP70i—One group reported a role for the heat shock protein HSP70i in vitiligo 

pathogenesis, suggesting that it was released by stressed melanocytes and initiated innate 

inflammation within the skin (49). They then found that mutating the protein made it less 

immunogenic, and appeared to even induce tolerance when expressed in the skin of a mouse 

model, preventing the onset of disease. They proposed future testing this as a new treatment 

for vitiligo (25), although DNA delivery of a mutant protein in patient skin may take some 

time to develop and demonstrate safety.

IFN-γ/CXCL10—We previously reported that the IFN-γ/CXCL10 axis is a critical 

signaling pathway required for both the progression and maintenance of vitiligo, and 

hypothesized that targeting this pathway could be an effective treatment strategy (34, 37). A 

variety of antibodies and small-molecule inhibitors have already been developed to target 

components of this pathway (including IFN-γ, CXCL10, and the CXCL10 receptor 

CXCR3), and were found to be safe in early phase clinical trials for treatment of other 

autoimmune diseases including psoriasis, rheumatoid arthritis, and Crohn’s disease. Most of 

these trials failed to reach their efficacy endpoint, likely because IFN-γ is not a major 

driving cytokine in those diseases. However, recent findings in patients and a mouse model 

suggest that vitiligo is an optimal disease to test those investigational drugs (3).

JAK-STAT signaling—JAK-STAT signaling is essential to transmit extracellular signals 

of many cytokines, including IFN-γ, to the nucleus. Following ligation of the cytokine 

receptor, Janus kinases (JAKs) phosphorylate signal transducer and activator of transcription 

proteins (STATs), which become activated and induce transcription of target genes. There 

are four members of JAK family, including JAK1, JAK2, JAK3, and Tyrosine kinase 2 

(TYK2). Among these, JAK1 and JAK2 are directly involved in IFN-γ signaling, which 

activate STAT1 and thus induce the transcription of IFN-γ-induced genes, including 

CXCL10 {(Fig. 2), reviewed in (50)}.

Several small-molecule JAK inhibitors with distinct selectivity have been tested in patients 

or are under development. Interestingly, a patient with generalized vitiligo was reported to 

respond to treatment with oral tofacitinib, a JAK 1/3 inhibitor approved for the treatment of 

moderate to severe rheumatoid arthritis (51). Ruxolitinib, another JAK inhibitor with JAK 

1/2 selectivity, is currently approved by the FDA for the treatment of intermediate or high-

risk myelofibrosis and polycythemia vera (52, 53). We reported that a patient with vitiligo 

developed rapid repigmentation on his face and trunk after initiating oral ruxolitinib (54). 

The treatment response from these inhibitors did not appear to be durable, as patients lost 

the repigmentation after discontinuing treatment [(55) and Dr. B. King, personal 

communication].
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Similar to all other immunosuppressive drugs, tofacitinib and ruxolitinib may have adverse 

effects, including opportunistic infections and rare malignancies. In addition, ruxolitinib 

may induce blood abnormalities including thrombocytopenia, anemia, and neutropenia (56). 

Topical formulation of these drugs may provide therapeutic benefit without increasing the 

risk of adverse events (57). Currently, an open label, phase 2, proof of concept clinical trial 

is recruiting participants to test the efficacy of topical ruxolitinib 1.5% in the treatment of 

vitiligo (58).

In addition to JAK inhibitors, STAT inhibitors could potentially have similar effects. So far, 

seven members have been identified in this family, however only STAT1 as a homodimer has 

been implicated in IFN-γ signaling {reviewed in (50)}. A previous study in vitro reported 

that statins, which lower cholesterol via inhibition of HMG-CoA reductase, inhibited STAT1 

function (59). In addition, a vitiligo patient was reported to improve after taking oral 

simvastatin (60). A recent study tested systemic simvastatin in a mouse model of vitiligo and 

found it to be effective in both preventing and reversing disease (61). However, a small pilot 

clinical trial we conducted to test the efficacy of high-dose (80mg daily) oral simvastatin in 

patients with generalized vitiligo did not reach its primary efficacy end-point (62). Adverse 

effects of simvastatin limit dosing in humans, which may be responsible for the disparate 

results between the mouse model and vitiligo patients. An ongoing study is currently 

recruiting patients to evaluate the benefits of combining atorvastatin and UVB for the 

treatment of active vitiligo (63), and future studies could test topical simvastatin as a way to 

increase local concentrations without toxicity.

Immune checkpoints—Successful application of immunotherapy to treat metastatic 

melanoma via blockade of inhibitory checkpoints has gained recent attention. Immune 

checkpoints are molecules that modulate T cell responses to inflammation, and include 

Cytotoxic T-Lymphocyte-Associated protein 4 (CTLA-4) and Programmed cell death 

protein 1 (PD-1), among others (64). Interestingly, the treatment response of melanoma 

patients to immune checkpoint inhibitors correlates with the development of vitiligo (65). 

Some have hypothesized that activating these surface receptors could restore tolerance in 

vitiligo patients (66).

Abatacept is a fusion protein composed of the Fc region of the immunoglobulin IgG1 fused 

to the extracellular domain of CTLA-4. It is currently approved by the FDA for the treatment 

of moderate to severe rheumatoid arthritis (67). Recently, an open label, single arm, pilot 

study was initiated to test the efficacy of abatacept in patients with vitiligo (68). 

Additionally, PD-1 ligand (PD-L1, a PD-1 agonist) is currently under development, and is 

being tested in preclinical phases of inflammatory bowel disease and psoriasis (69).

Stimulating melanocyte regeneration

α-MSH—Phototherapy is currently first-line therapy for vitiligo, especially in patients with 

widespread disease {(1, 2) and reviewed in this issue, Esmat S, Hegazy RA, Shalaby S, Hu 

SC, et al: Phototherapy and combination therapies for vitiligo}. While the mechanism of its 

therapeutic effects are not completely understood, repigmentation from phototherapy is 

probably due to its ability to induce immunosuppression, but also to the induction of 
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melanocyte stem cell differentiation and proliferation (70). Alpha-Melanocyte-stimulating 

hormone (α-MSH) is a naturally occurring hormone that stimulates melanogenesis 

{reviewed in (71)}. Afamelanotide, a synthetic analogue of αMSH, is currently approved by 

the European Medicines Agency to mitigate photosensitivity in erythropoietic 

protoporphyria (72), and thus may also improve the efficacy of phototherapy for vitiligo 

(73). Recently, a randomized comparative multicenter trial was conducted to test the safety 

and efficacy of an afamelanotide subcutaneous implant in combination with NB-UVB in 

adults with generalized vitiligo. The combination therapy was somewhat well-tolerated, 

although side effects included nausea and skin hyperpigmentation, which led some subjects 

to withdraw from the trial. The treatment resulted in faster and increased total 

repigmentation compared to NB-UVB monotherapy. This response was most evident in 

patients with darker skin (Fitzpatrick type IV to VI) (74). It is currently unknown whether 

afamelanotide monotherapy would have any benefit in the treatment of vitiligo.

WNT signaling—A recent study reported that melanocytes from vitiligo patients had 

defective WNT signaling, a pathway that promotes the differentiation of melanocyte 

precursors in skin. They hypothesized that this impaired signaling contributed to disease 

pathogenesis and, in particular, inhibited melanocyte regeneration and repigmentation during 

treatment. Studies using explanted human skin ex vivo suggested that WNT activators could 

enhance melanocyte differentiation (35). Thus, therapeutic WNT activation could potentially 

serve as an adjunctive therapy for vitiligo that supports melanocyte regeneration (75).

Selective sunscreen—Despite being the most effective current treatment for vitiligo, 

patient access to phototherapy is a challenge. To receive therapy, patients typically attend a 

specialized clinic two to three times weekly for up to 1–2 years in order to achieve a 

satisfactory response. While sun exposure is an inexpensive alternative to phototherapy, it is 

difficult to monitor exposure, and non-therapeutic wavelengths of light can be 

erythematogenic and dose-limiting. Recently, a topical formulation of dimethicone 1% was 

reported to selectively block wavelengths of sunlight below 300 nm, permitting therapeutic 

wavelengths in the nbUVB range (~311–312 nm) to penetrate. A small double-blind 

placebo-controlled study found that application of this cream followed by sun exposure was 

safe and effective at inducing repigmentation in lesional skin (76). However, this needs to be 

confirmed in larger clinical trials, and as the authors acknowledged its use would be limited 

by inadequate sunlight during certain times of the year, or involvement of body areas that 

cannot be exposed in public. In addition, potentially harmful UVA light is not blocked by 

this cream, and thus this approach may not be as safe as nbUVB phototherapy.

Summary

Research to better understand the pathogenesis of vitiligo has revealed that an optimal 

treatment strategy should consider 3 key aspects of the disease: 1) normalizing melanocyte 

stress, 2) inhibiting autoimmunity, and 3) promoting melanocyte regeneration. While current 

therapies such as phototherapy, topical immunomodulators, and surgical approaches 

partially address these conditions, they do so in a general, untargeted way, resulting in 

suboptimal responses and potential side effects. Emerging therapies seek to target specific 

pathways identified through basic, translational, and clinical research studies in vitiligo, in 
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order to improve both efficacy and safety for patients (Fig. 3). While this is indeed a hopeful 

and exciting time for vitiligo patients and their physicians, this excitement should be 

balanced with caution, particularly since melanoma may take advantage of these same 

pathways to avoid immunosurveillance or promote their growth. However as with most 

medical treatments, careful patient selection and monitoring should enable us to normalize 

pathogenic responses in vitiligo to achieve homeostasis as in healthy individuals.
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Synopsis

The pathogenesis of vitiligo involves interplay between intrinsic and extrinsic melanocyte 

defects, innate immune inflammation, and T cell-mediated melanocyte destruction. The 

goal of treatment is not only to halt disease progression, but promote repigmentation 

through melanocyte regeneration, proliferation, and migration. Thus treatment strategies 

that address all aspects of disease pathogenesis and repigmentation are likely to have 

greatest efficacy, a strategy that may ultimately require combination therapies. Current 

treatments generally involve non-targeted suppression of autoimmunity, while emerging 

treatments are likely to use a more targeted approach based on an in-depth understanding 

of disease pathogenesis, which may provide higher efficacy with a good safety profile.
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Key Points

• Vitiligo results from the destruction of epidermal melanocytes by autoreactive 

cytotoxic T cells.

• Melanocyte-specific autoimmunity in vitiligo is a result of interplay among 

multiple factors, including genetic predisposition, environmental triggers, 

melanocyte stress, and innate and adaptive immune responses.

• Genome-wide association studies have identified multiple risk alleles in 

patients with vitiligo, and most are associated with immune regulation.

• Melanocyte defects contribute to initiating autoimmunity in vitiligo.

• Environmental stressors, especially chemical phenols that mimic the amino 

acid tyrosine and the products that contain them, can induce and exacerbate 

vitiligo.

• An optimal treatment strategy in vitiligo would stabilize melanocytes, 

suppress the autoimmune response and restore immune tolerance, as well as 

stimulate melanocyte regeneration, proliferation, and migration to lesional 

skin.

• A better understanding of the key pathways involved in vitiligo onset and 

progression will enable us to develop treatments that have greater efficacy and 

a good safety profile.
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Fig. 1. 
Vitiligo pathogenesis begins with altered melanocytes that exhibit an elevated cellular stress 

response. This triggers autoimmunity, which targets melanocytes for destruction, resulting in 

focal depigmentation. Repigmentation requires the growth and migration of melanocytes, 

typically from hair follicles. Thus, there are 3 goals to consider during the treatment of 

vitiligo: 1) reducing melanocyte stress, 2) suppressing autoimmune targeting of 

melanocytes, and 3) promoting melanocyte regeneration. Current treatments, including 

topical immunosuppressants, phototherapy, and surgical approaches, partially address these 

goals in overall non-targeted ways.
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Fig. 2. 
Autoimmunity in vitiligo is driven by the IFN-γ-CXCL10 cytokine signaling pathway. 

Activated melanocyte-specific CD8+ T cells secrete IFN-γ, which signals through the IFN-

γ receptor (IFN-γR) to activate JAK1/2 and STAT1. This induces the production of CXCL9 

and CXCL10, which signal through their receptor CXCR3 to recruit more autoreactive T 

cells to the epidermis, resulting in widespread melanocyte destruction. Targeting this 

cytokine pathway represents an emerging treatment strategy for vitiligo.

Rashighi and Harris Page 15

Dermatol Clin. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Current and emerging treatments address 3 major goals in vitiligo treatment. Current 

treatments are listed in black, emerging treatments in red.
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