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Abstract

Tissue stiffness is tightly controlled under normal conditions, but changes with disease. In cancer, 

tumors often tend to be stiffer than the surrounding uninvolved tissue, yet the cells themselves 

soften. Within the past decade, and particularly in the last few years, there is increasing evidence 

that the stiffness of the extracellular matrix modulates cancer and stromal cell mechanics and 

function, influencing such disease hallmarks as angiogenesis, migration, and metastasis. This 

review briefly summarizes recent studies that investigate how cancer cells and fibrosis-relevant 

stromal cells respond to ECM stiffness, the possible sensing appendages and signaling 

mechanisms involved, and the emergence of novel substrates — including substrates with scar-like 

fractal heterogeneity — that mimic the in vivo mechanical environment of the cancer cell.

Introduction

The fact that tumors are often stiffer than the surrounding uninvolved tissue has been known 

for as long as the disease has been identified. The rigid nature of tumors is the basis for 

using palpation as a diagnostic method in soft tissues like breast and abdomen, and more 

recently, as the basis for high-resolution detection of small lesions by MRI elastography [1•,

2•,3•] or ultrasound [4•]. These clinical observations, together with in vitro experiments 

which demonstrate that stiffness-sensing by cancer and stromal cells influence cell survival 

and proliferation, opened the door for many investigations that employ novel biocompatible 

materials with tunable viscoelastic properties. These in vitro systems have the potential to 

elucidate the mechanical and molecular mechanisms by which cells detect changes in their 

environment and transduce physical signals to the biochemical signals that control their 

function, biochemistry, and gene expression.
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Mechanotransduction of physical cues to initiate intracellular signaling pathways has 

recently been documented in many cancer types and a wide range of effects have been 

observed, ranging from acute changes such as activation of ion channels or protein kinases 

to long-term changes in cell phenotype that require initiation of gene transcription and 

protein production. This review summarizes some recent studies that use materials of 

tunable rigidity to identify the mechanosensing ability of cancer cells, how substrate 

stiffness affects some of the cancer hallmarks, and the possible mechanisms involved. New 

materials that mimic the viscoelasticity of normal and cancerous tissues are also highlighted.

Effects of mechanics on proliferation and apoptosis

Several studies demonstrate that mechanotransduction by cancer cells might be significantly 

blunted compared to normal cells, but others show the opposite. An important pioneering 

study by Wang et al. demonstrates that whereas normal NIH 3T3 fibroblasts are highly 

dependent on a rigid substrate for DNA synthesis and decreased apoptosis, cells transformed 

with the H-ras oncogene lose their stiffness-sensing ability [5]. More recently, a number of 

cancer cell types and Ha-RasV12-transformed cells (pancreatic, breast, and kidney) exhibit 

stiffness insensitivity, as measured by DNA synthesis rate and cell stiffness that is unaffected 

by the underlying substrate rigidity [6••]. This may be associated with decreased caveolin-1 

(cav1), which has an inhibitory function in cell proliferation through the extracellular signal-

regulated kinase 1/2, phosphoinositide 3-kinase (PI3K) or β-catenin-T-cell factor/lymphoid 

enhancer factor pathways, as well as a regulatory function in focal adhesion and integrin-

mediated actin remodeling. When Cav1 is overexpressed or re-expressed in Ha-RasV12 

transformed cells, stiffness sensing is restored; when knocked down, cells soften, their 

stiffness is not dependent upon substrate rigidity, and they are able to grow on soft 

substrates. Additionally, tumor-initiating cells or cancer stem cells are largely insensitive to 

stiffness with respect to spreading, migration, and proliferation, but can regain their stiffness 

response when myosin-dependent contractility is increased [7••]. However, the 

generalization that cancer cell proliferation is stiffness-independent cannot be applied to all 

cancer types. For example, SK-N-DZ neuroblastoma cells preferentially proliferate on softer 

substrates [8].

Concomitant with deregulated proliferation, the suppression of apoptosis is also necessary 

for the expansion and invasion of cancer cells and is influenced by substrate stiffness. As 

seen in TGF-β1-treated normal murine mammary gland epithelial cells and Madin-Darby 

canine kidney epithelial cells, soft gels induce transforming growth factor-β1 (TGF-β1) 

mediated apoptosis, nuclear fragmentation, and caspase activity [9]. In contrast, stiff gels 

trigger epithelial–mesenchymal transition (EMT) characterized by elongated morphology, 

delocalization of epithelial junctional markers zonula occludens-1 and E-cadherin, as well as 

increased N-cadherin, α-smooth muscle actin (α-SMA), and Snai1 (a TGF-β-mediated 

transcription factor that represses E-cadherin expression and can induce EMT). Interestingly, 

as substrate stiffness increases, there is a switch around 1–8 kPa where caspase-3 activity 

decreases and Snai1 expression increases. Various genetic and pharmacologic experiments 

suggest the involvement of focal adhesion kinase (FAK) and PI3K/ Akt signaling in the 

stiffness-sensitive apoptotic and EMT switch [9]. Regulation of EMT by substrate stiffness 

is supported by numerous studies [10–13].
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Effects of mechanics on angiogenesis

Angiogenesis is essential for tumor growth. Since the pioneering studies of Folkman, a 

number of proteins and factors that promote and inhibit angiogenesis have been identified. 

However, knowledge of how cellular mechanics influences new vessel growth is limited. 

Likely, cell-generated contractile forces are needed for capillary sprouting, as shown in a 3D 

co-culture model with human umbilical vein endothelial cells (HUVEC) and normal human 

lung fibroblast, where angiogenesis was inhibited by fibrin density and even more so with 

the addition of myosin inhibitors [14].

Possibly the most well-studied growth factor involved in the initiation and regulation of 

angiogenesis is vascular endothelial growth factor (VEGF). The biochemical events that 

stimulate VEGF expression have been well studied, but not mechanical cues, although there 

exists evidence that environmental cues such as hypoxia and acidosis can drive VEGF 

expression. When seeded onto stiff collagen I-coated polyacrylamide gels representative of 

rigid, cirrhotic liver tissue, highly metastatic hepatocellular carcinoma (HCC) MHCC97H 

cells and lowly metastatic Hep3B cells upregulate their VEGF expression and 

phosphorylation levels of PI3K and Akt [15•]. When the integrin β1 is blocked in both HCC 

cell lines using a specific monoclonal antibody, VEGF expression and PI3K and Akt 

phosphorylation are lower compared to control. This result suggests that integrin β1 has a 

mechanosensing role in HCC cells and can mediate VEGF expression through the PI3K/Akt 

pathway.

A splice variant of the ECM ligand fibronectin (FN) that includes the extra domain-B (EDB-

FN) is upregulated in tumors and may promote angiogenesis [16••]. When endothelial cells 

are seeded onto hard polyacrylamide gels, total FN and EDB-FN protein as well as pro-

angiogenic PKC βII expression is increased and anti-angiogenic VEGF 165b expression is 

decreased compared to soft gels. The Rho/Rho-associated kinase (ROCK) pathway appears 

to mediate expression of EDB-FN, suggesting a mechanism by which matrix stiffness can 

affect angiogenesis.

Effects of mechanics on metastasis

Studies of breast cancer cells show that a compliant ECM is non-conducive to tumor cell 

invasion [17]. Paradoxically, some tumor cores are less stiff than the periphery, presumably 

because they contain mainly cancer cells and little ECM. This feature has been observed in 

not only breast carcinoma [18], but also prostate cancer tissue (on the micro-scale, but not 

on the macro-scale) [19]. The seemingly contradictory observation that tumors are stiff 

grossly, but soft on the micro-scale or in their core, might be explained by the stiffness of the 

individual cells. Lin et al. showed that cancer cells are softer than their normal counterparts 

across several cell types, including breast, bladder, cervix, pancreas, and transformed cells 

[6••]. One caveat is that these measurements were made from cells on glass, with the 

exception of cervical cells (accessible in situ). Softer cells are associated with increased 

motility and tumor invasiveness, and the development from radial growth phase to invasive 

vertical growth phase to metastasis is characterized by decreased cell stiffness, likely 

allowing cells to move through gaps within tissues and vessels [18].
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The stiffness and integrity of endothelial cells and the vascular wall are also important 

factors in the context of extravasation. Infiltration of breast cancer cells onto pulmonary 

artery endothelial cells causes the activation of myosin light chain kinase and myosin II, 

followed by subsequent contractility of the endothelial cells, as studied in a co-culture model 

with MDA-MB-231 (breast cancer) and endothelial cells [20]. As a result, the ECM softens 

and the cytoskeleton is rearranged, leading to degradation of the endothelial cell layer which 

aids extravasation. Tumor cell contractility is needed for extravasation, as inhibition of 

ROCK and MLCK-mediated traction forces diminishes invasion through endothelial cells. 

However, actin polymerization and myosin II-mediated contractility are not required for 

cancer cell migration, as MDA-MB-231 metastatic cells can still travel toward a 

chemoattractant through narrow channels.

In culture, induction of a malignant phenotype does not necessarily require a pathologically 

stiff ECM. A number of colon and prostate cancer cells undergo a transition from an 

adhesive epithelial to a rounded dissociated phenotype on soft substrates that is reminiscent 

of metastasis, and these rounded cells express genes that are characteristic of cancer cell 

metastasis, migration, and proliferation [21]. Similarly, melanoma tumor-repopulating cells 

(TRCs) exhibit cell softening, histone 3 lysine residue 9 demethylation, and Sox2 gene 

expression — all of which are promoted in compliant 3D fibrin matrices, but not stiff ones 

[22]. Together, these studies suggest that TRCs or metastatic cells may lie dormant in stiff 

environments, but function optimally in softer ones, and such a switch may serve as a 

driving force for cancer metastasis.

Stiffened matrices as a model for tumors

The change in mechanical properties during breast cancer is relatively well-studied, and 

tissue stiffening associated with malignancy has been correlated with increased collagen 

deposition and the formation of linear patterns of collagen fibers [23•]. Also associated with 

high-risk breast cancer and metastasis is increased FN expression (reportedly threefold), 

which in normal tissue is low (~1%) [24–27]. As an arguable model for breast cancer 

associated stromal cells, 3T3-L1 preadipocytes produce a more rigid FN network with 

decreased porosity and increased fiber diameter when preconditioned with soluble tumor 

factors compared to controls [28]. These changes in FN are accompanied by decreased 

cellular adhesion and increased VEGF levels, suggesting a role for FN in migration, 

angiogenesis and growth of breast tumor.

A few studies have also shown that the ECM can be stiffened through crosslinking 

mechanisms, such as the non-enzymatic formation of advanced glycation end-products 

(AGE) and lysyl oxidase. In a prostate epithelial cell acini 3D model, AGE-dependent 

crosslinking of two major components, collagen IV and laminin, stiffens the basal lamina 

matrix and induces malignant transformation characterized by loss of cell polarity, loss of 

cell–cell junctions, and luminal infiltration [29].
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Mechanisms of mechanosensing by cancer cells

Most studies of mechanosensing in cancer cells focus on the role of integrins, cadherins and 

other transmembrane protein complexes that link cells to essentially solid material, either 

other cells or the ECM. Interestingly, primary cilia have been found on the MG63 human 

osteosarcoma cell line and on HeLa cells [30], suggesting that cells can mechanosense fluid 

from their dorsal surface. This finding is consistent with the report of a connection between 

the overexpression of polycystin 1 and 2, proteins present in the plasma membrane and cilia, 

and negative clinical outcomes and invasiveness in colorectal cancer [31].

The focal adhesion protein vinculin, a membrane-cytoskeletal protein involved in cell 

spreading and stability of focal adhesions, is upregulated in primary invasive human cancers 

[32]. Nonmalignant mammary MCF10A spheroids implanted into soft collagen/recombinant 

basement membrane gels keep their structure, as shown by spherical acini, intact adherens 

junctions, and tissue polarity, whereas in stiff gels, basal polarity and cell–cell junctions are 

disrupted. HA-ras MCF10AT premalignant mammary spheroids keep some tissue polarity 

within soft gels, but the structures are completely compromised in stiff gels. Together, these 

results show the dependence of invasion and malignancy on matrix stiffness, and 

furthermore, this is a result of integrin-mediated FAK signaling, changes in vinculin 

function, and induction of Akt signaling [32].

Transcriptional changes elicited by matrix stiffness

The Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif 

(TAZ) transcriptional regulators are the major downstream effectors of the Hippo pathway 

and are recognized as oncogenes. Increased substrate stiffness upregulates YAP in a lung 

cancer cell line, suggesting a role for YAP/TAZ and the Hippo pathway in lung cancer cell 

growth [33].

Twist1 is a transcription factor that has been implicated in cell differentiation as well as 

cancer metastasis. With respect to matrix stiffness, it has been shown that substrate rigidity 

drives translocation of Twist1 to the nucleus, inducing EMT, tumor invasion, and metastasis, 

with changes to collagen, MMPs, and lysyl oxidases [34•].

New materials and approaches for mechanobiology research

Recently, an area of intense interest is the development and characterization of 3D matrices 

with tunable physical properties as models for cell biology and also as test platforms for 

drugs and toxins. Soft and stiff alginate scaffolds with different RGD concentrations have 

been used as platforms to test the cytotoxic response of glioblastoma cells to various 

compounds. Both substrate rigidity and cell–matrix adhesions have an effect on cellular 

toxicity; cells are more sensitive to toxins when seeded onto soft substrates with stiffness 

similar to brain and these effects are lost when integrin binding is pharmacologically 

inhibited [35].

Polyethylene glycol diacrylate (PEGDA) hydrogels with compressive moduli between 2 and 

70 kPa are used to encapsulate cancer stem cells and evaluate their optimal matrix stiffness 
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for growth without any confounding environmental factors [36]. The optimal stiffness for 

cell survival and proliferation as well as YAP/TAZ expression is dependent upon the tissue 

of origin, that is, 5 kPa for breast, 25 kPa for colorectal and gastric, and 50 kPa for bone.

Instead of using chemically inert and non-physiological polyacrylamide gels, hydrogels 

made from crosslinked networks of biopolymers such as hyaluronic acid (HA) have been 

used to study cancer cell behavior to stiffness. HA, a component of the ECM is increased in 

many cancers [37••,38], including ovarian [39], non-small-cell lung adenocarcinomas [40], 

prostate cancer [41,42], gastric and colorectal [43,44], bladder [45], breast [46], and head 

and neck [47]. In many cases, in vitro HA is methylated to allow crosslinking, with the 

consequence of losing the ability to activate HA receptors such as CD44 that have been 

implicated in cancer [48]. Nonetheless, HA hydrogels elicit cellular behavior different from 

polyacrylamide or tissue culture plastic. For example, HT1080 fibrosarcoma cells 

encapsulated in HA recovered from hypoxic stress, but cells cultured on tissue culture 

plastic did not [37••]. Networks of HA that more closely resemble the native 

glycosaminoglycan can be made when the chain is sparsely modified with sulfhydryl groups 

and then crosslinked by oxidation or PEGDA. When HA gels are coupled to FN, 

proliferation of a number of cell types — including neonatal ventricular rat myocytes, 

human mesenchymal stem cells (hMSC), 3T3 fibroblasts and HUVECs — can be strongly 

enhanced even on soft substrates (200 Pa), which, if made of polyacrylamide, would halt 

proliferation [49].

In addition to variations of 2D hydrogel substrates, numerous methods are being developed 

to study how physical signals affect cancer cells in vitro. Such methods include production 

of pillar arrays that impede cell migration by trapping nuclei [50], simplified microfluidic 

methods that apply pressure to single cells [51–53], patterned type I collagen micro-tracks 

that mimic the paths by which cancer cells move in vivo [54], and optical tracking 

microrheology to measure the very soft pericellular matrix which changes in the tumor 

environment [55]. These more sophisticated techniques will hopefully provide greater 

insight into how cancer cells sense their mechanical environment.

Fibrosis models for cell culture: heterogeneous structure with 

homogeneous ligand

Although HA modifications for covalent crosslinking can at least sometimes inhibit normal 

binding to cell receptors (Figure 1a) [43], soft gels of crosslinked HA can also uniquely 

allow reorganization of some matrix macromolecules such as fibronectin into fiber-like 

regions (Figure 1b) [30]. Such observations of matrix heterogeneity are often anecdotal, but 

certainly raise questions about the effects of non-homogeneous gels on cells. Decoupling the 

effects of ligand density, which can certainly be non-homogeneous and lead to haptotaxis, 

from the effects of non-homogeneous compliance are also key to elucidating 

mechanosensing processes used by adherent cells. A heterogeneous matrix is a particularly 

distinctive feature of fibrosis, which is frequently associated with solid tumors [13]. Fibrosis 

also results from acute injury, such as a heart attack [56], as well as chronic diseases such as 

liver cirrhosis or muscular dystrophy [57], and it is often referred to as a scar. A scar forms 
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locally in most or all tissues of higher animals and is compositionally characterized by an 

abundance of crosslinked collagen-I fibers heterogeneously distributed within a fibrotic 

tissue. A scar tends to be locally stiff and long-lasting [56,57]. Focusing on the cancer 

context, cancer cells respond to matrix stiffness, which results from increased collagen and 

crosslinking (fibrosis). However, where does increased collagen come from?

Scar matrix seems to be made largely de novo, and a major role in the development of organ 

fibrosis has recently been ascribed to ubiquitous MSCs, which reside in perivascular niches 

of many organs including heart, liver, kidney, lung, and bone marrow [58]. MSCs have been 

well-known for decades to proliferate and to differentiate toward multiple tissue lineages 

(e.g. fat, bone), but genetic lineage tracing recently demonstrated that tissue-resident MSCs 

(specifically the Gli1+ MSCs), rather than circulating MSCs, proliferate after organ injury to 

generate myofibroblast-like cells typical in scars. In mouse models, genetic ablation of these 

cells ameliorates fibrosis (Figure 1c), and after induced heart failure, the heart also maintains 

ejection fraction. To better understand and perhaps control the sensitivity of human MSCs 

and other cell types to matrix heterogeneity and fibrosis, new reductionist culture models 

with scar-like heterogeneity are thus needed.

To clarify the effects of non-homogeneous matrix stiffness on cells, one recently developed 

approach for making minimal matrix models of scars (MMMS) entails mixing soluble 

collagen-I subunits with acrylamide monomers plus bis-acrylamide crosslinker and then 

polymerizing the mix into a gel [57]. Upon initiation of polymerization, collagen-I fibers 

phase separate from pre-gelation clusters of polyacrylamide, leading to highly branched 

fractal fiber bundles that segregate as islands heterogeneously entrapped at the subsurface of 

the hydrogel (Figure 1d). Importantly, collagen in the subsurface fiber bundles is not 

accessible for cell adhesion. A uniform over-coating of matrix ligand is therefore provided 

for cell attachment. Formation of this type of model scar could be viewed as a diffusion 

limited cluster aggregation process, with fractal sizes that could be easily controlled by 

varying the concentration of collagen-I. With the proper mixing ratios, a surface coverage of 

collagen fiber bundles of ~30% approximates the extent of fibrosis seen, for example, in 

muscle cross sections [59,60].

Differences in mechanoresponses have been observed when MSCs are cultured in parallel on 

homogeneous gels and MMMS. A key marker of fibrosis and scarring is the stress fiber 

associated protein α-SMA, and although α-SMA is not unique to scarring, its expression 

increases with contractility [61]. α-SMA increases in vivo in hepatic stellate cells (i.e. liver 

MSCs) in parallel with stiffening of toxin-injured liver, but preceding the detection of 

fibrotic collagen [62]. Despite the soft-stiff heterogeneity of MMMS gels, MSCs greatly 

increase expression of α-SMA compared to homogeneously low expression in MSCs on 

polyacrylamide gels that lack the fiber islands (Figure 1d). Interestingly, α-SMA expression 

was more homogeneous between cells on MMMS than seen for cells on homogeneously 

stiff gels. This has been explained by identification of a transcription factor, NKX2.5, that is, 

a strongly cooperative repressor of α-SMA, which exits the nucleus on stiff substrates 

(Figure 1d). While many applications might be considered to clarify scarring responses of 

cells, the effect of other cell types especially cancer cells could be especially interesting. As 

80% of hepatocellular carcinomas occurs against a background of cirrhosis and draws 
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increasing attention [63], MMMS could be a promising model system to study the 

mechanotransduction of HCCs in cirrhotic liver.

Conclusions

Whereas the biochemical signaling events involved in cancer progression have been largely 

investigated, there is still much to be learned about the mechanical cues provided by the 

ECM, its stiffness, other environmental factors, and their subsequent effects on cell function 

and behavior. Tumors are generally stiff, but can have soft cores consisting of cells that are 

softer than their normal counterparts. At first glance, this may seem contradictory, but it is 

hypothesized that cancer cells need to generate traction forces on stiff substrates to migrate, 

but also need to be soft to weave through tight spaces and extravasate or metastasize.

Generalizations made about cancer and mechanics cannot be applied to every cell type or to 

every cancer hallmark. Broadly, however, cancer cells often appear to have reduced 

mechanosensitivity, and substrate stiffness has less of an effect on spreading, migration, and 

proliferation. Apoptosis is preferentially promoted on soft matrices, but EMT and 

angiogenesis occur on hard matrices. Through pharmacological and genetic manipulations, 

many studies have implicated the involvement of Ras, FAK and PI3K/ Akt signaling.

A variety of platforms, such as polyacrylamide or biopolymer gels with tunable stiffness, 

have been routinely used to study how cancer cells respond to their underlying stiffness as 

measured by, but not limited to, cell spread area, proliferation, migration, invasion, and 

apoptosis. While these 2D substrates provide a simple method to elucidate the effects of 

stiffness on cellular behavior, new approaches consisting of 3D scaffolds, micropillars, 

microfluidic devices, and heterogeneous matrices which mimic the tumor environment will 

likely provide greater insight into the role of mechanotransduction in cancer.
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Figure 1. 
(a) Modifications of hyaluronic acid (HA) can affect its activity. Thiol-modified HA (HA-S) 

is not biologically active compared to native HA [64]. Bar graph shows extent of binding of 

fluorescently labeled HA (Fl-HA) to human MSCs, which is significantly reduced by adding 

HA as a competing partner, but not upon adding HA-S with its chemical modification. (b) 
Fibronectin (FN) streaks seen on soft HA substrates. Myocytes were cultured on (1000 μm2) 

square FN micro-patterned 300 Pa HA and 30 kPa PAA substrates for a period of 72 hours. 

Myocytes were unable to migrate out of the micropatterns even after attachment to HA 

substrates for a 3 day period. Arrowheads indicate formation of integrin α5 clusters. FN 

streaks seen on soft HA substrates are due to micro-contact printing on soft substrates and 

existed before cell plating [49]. (c) Mesenchymal stem cells (MSCs) are perivascular cells in 

nearly all tissues and have a major role in fibrosis. Ablation of Gli1+ MSCs by diphtheria 

toxin, DTX, reduced severity of kidney fibrosis as demonstrated by trichrome staining and 

immunostaining for α-SMA and quantification of interstitial fibrosis. Scale bars, left two 

panels, 500 μm; others, 50 μm [58]. (d) Scar in a dish reveals key role of matrix rigidity, 

even if heterogeneous. Scar-like islands of collagen-I are heterogeneously entrapped at the 

subsurface of the soft hydrogel. The heterogeneity of the MMMS was confirmed by both 

immunofluorescence and staining with the histochemical dye, Sirius Red. Human MSCs 

cultured on conventional homogeneous gels and separately on MMMS [57].
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