
PREDICTIVE MODELING OF HOSPITAL READMISSION RATES 
USING ELECTRONIC MEDICAL RECORD-WIDE MACHINE 
LEARNING: A CASE-STUDY USING MOUNT SINAI HEART 
FAILURE COHORT

KHADER SHAMEER1,2, KIPP W JOHNSON1,2, ALEXANDRE YAHI7, RICCARDO MIOTTO1,2, 
LI LI1,2, DORAN RICKS3, JEBAKUMAR JEBAKARAN4, PATRICIA KOVATCH1,4, PARTHO P. 
SENGUPTA5, ANNETINE GELIJNS8, ALAN MOSKOVITZ8, BRUCE DARROW5, DAVID L 
REICH6, ANDREW KASARSKIS1, NICHOLAS P. TATONETTI7, SEAN PINNEY5, and JOEL T 
DUDLEY1,2,8,*

1Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology at 
Mount Sinai

2Institute of Next Generation Healthcare, Mount Sinai Health System at Mount Sinai

3Decision Support, Mount Sinai Health System at Mount Sinai

4Mount Sinai Data Warehouse, Icahn Institute of Genomics and Multiscale Biology at Mount Sinai

5Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai

6Department of Anesthesiology, Icahn School of Medicine at Mount Sinai

7Departments of Biomedical Informatics, Systems Biology and Medicine, Columbia University 
Medical Center, New York

8Population Health Science and Policy, Mount Sinai Health System, New York, NY

Abstract

Reduction of preventable hospital readmissions that result from chronic or acute conditions like 

stroke, heart failure, myocardial infarction and pneumonia remains a significant challenge for 

improving the outcomes and decreasing the cost of healthcare delivery in the United States. Patient 

readmission rates are relatively high for conditions like heart failure (HF) despite the 

implementation of high-quality healthcare delivery operation guidelines created by regulatory 

authorities. Multiple predictive models are currently available to evaluate potential 30-day 

readmission rates of patients. Most of these models are hypothesis driven and repetitively assess 

the predictive abilities of the same set of biomarkers as predictive features. In this manuscript, we 

discuss our attempt to develop a data-driven, electronic-medical record-wide (EMR-wide) feature 

selection approach and subsequent machine learning to predict readmission probabilities. We have 

assessed a large repertoire of variables from electronic medical records of heart failure patients in 

a single center. The cohort included 1,068 patients with 178 patients were readmitted within a 30-

day interval (16.66% readmission rate). A total of 4,205 variables were extracted from EMR 
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including diagnosis codes (n=1,763), medications (n=1,028), laboratory measurements (n=846), 

surgical procedures (n=564) and vital signs (n=4). We designed a multistep modeling strategy 

using the Naïve Bayes algorithm. In the first step, we created individual models to classify the 

cases (readmitted) and controls (non-readmitted). In the second step, features contributing to 

predictive risk from independent models were combined into a composite model using a 

correlation-based feature selection (CFS) method. All models were trained and tested using a 5-

fold cross-validation method, with 70% of the cohort used for training and the remaining 30% for 

testing. Compared to existing predictive models for HF readmission rates (AUCs in the range of 

0.6–0.7), results from our EMR-wide predictive model (AUC=0.78; Accuracy=83.19%) and 

phenome-wide feature selection strategies are encouraging and reveal the utility of such data-

driven machine learning. Fine tuning of the model, replication using multi-center cohorts and 

prospective clinical trial to evaluate the clinical utility would help the adoption of the model as a 

clinical decision system for evaluating readmission status.

1. Introduction

1.1. Hospital readmission rates – a bottleneck in delivering high value-high volume 
precision healthcare

Precision healthcare aims to ensure every patient receive optimal care throughout the onset, 

maintenance or recovery phases of a disease. Close coordination between different players in 

the health system is required to integrate and deliver high-quality care. Patients, providers 

and the care management team play a pivotal role in delivering low-cost, high value and high 

volume care for patients with diverse healthcare requirements. Improving the quality of 

healthcare delivery is a challenging task for providers and an important priority for 

regulatory agencies. As an attempt to reduce healthcare cost, lower healthcare disparities and 

increase overall quality of care, healthcare regulatory agencies including Centers for 

Medicaid and Medicare Services (CMS, https://www.cms.gov/) have proposed the Hospital 

Readmission Reduction Program (HRRP; See: https://www.cms.gov/medicare/medicare-fee-

for-service-payment/acuteinpatientpps/readmissions-reduction-program.html). Depending 

on the performance of a given provider (or hospital) with respect to the regional, state and 

federal performance rankings, penalties are levied on healthcare providers. In response, in 

order to reduce readmissions providers have used commercial or in-house readmission 

assessment tools to predict 30-day readmission rates, but the overall readmission rates still 

remain high in various provider sites. In 2015, 2,592 U. S hospitals out of 5,627 registered 

hospitals in the country received penalties from the CMS (http://khn.org/news/half-of-

nations-hospitals-fail-again-to-escape-medicares-readmission-penalties/) for not effectively 

tackling readmission rates. Despite decades of research, interventions, operational 

improvements and systems engineering methods, readmission remains a major challenge for 

patients, providers and payers alike.

1.2. Readmission rate assessment directive by CMS

The CMS (https://www.medicare.gov/hospitalcompare/Data/30-day-measures.html) 

directive on unplanned readmission grades the results of five diseases, two surgical 

procedures and a quantitative estimate of hospital-wide readmission rates. The conditions 
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that CMS evaluates for readmission rates include three specific cardiovascular diseases 

(heart attack, heart failure, and stroke), one respiratory disease (chronic obstructive 

pulmonary disease) and an infectious disease (pneumonia). The hospital-wide readmission 

rates assess the readmission status of patients admitted to internal medicine, surgery/

gynecology, pulmonary, cardiovascular, and neurology services. Further, the 30-day 

mortality measures determine death rates associated these services. Implementing data-

driven methods that consider all available clinical variables in a hypothesis-free approach 

could identify new features driving clinical outcomes. Such an approach could also provide 

insights into mechanistic or operational factors that could improve clinical outcomes 1–4. 

Heart failure is one of the first core measures by The Joint Commission to assess hospital 

quality initiatives as part of National Hospital Inpatient Quality Measures. Achieving the 

lowest readmission rates possible is thus critical to provide high-quality care and improve 

quality assessments (See: https://www.jointcommission.org/core_measure_sets.aspx).

1.3. Improving quality of healthcare delivery and outcomes using EMR-wide phenomic 
data

Implementation of precision phenotyping algorithms and development of prescriptive 

prediction models models using phenomic data could aid in the discovery of new knowledge 

from biomedical and healthcare big data generated in the hospital setting5,6. Mining of 

phenomic big data enables the identification of new or unknown features or combinatorial 

features driving clinical outcomes. Electronic medical records (EMR) provide access to 

clinical phenome data and enable better understanding of various clinical phenotypes and the 

associated outcomes in a systematic manner. Design, development, and deployment of 

predictive and prescriptive models using EMR-based methods could help to accelerate 

stratification of patients at risk for improved care. Deploying validated predictive patterns in 

a clinical setting could improve the quality of healthcare delivery and may have a positive 

impact on patient outcomes. Phenomics7 is a relatively new omics term used to define 

collectively the measurement of phenotypic characteristics of biological entities that include 

the physical and biochemical traits of organisms including humans. Human phenomics can 

benefit by leveraging EMRs as a longitudinal data source for the collection of clinical and 

health traits. While the data currently available within EMR for building a complete picture 

of a human phenomic state is limited, it is rapidly improving with the integration of genomic 

data, sensor data and other non-clinical data elements3,4. Phenome-wide association studies 

(PheWAS) studies aim to understand the role of a genetic variant identified from genome-

wide association studies (GWAS) in increasing or decreasing the likelihood of observing 

other diseases in a case-control cohort. PheWAS studies are now revealing the molecular 

architecture of the pleiotropic nature of genetic variants in mediating multiple diseases1,8.

1.4. Predictive modeling of readmission rates in heart failure and need for improvement

Heart failure is a heterogeneous condition characterized by progressive inability of the heart 

to supply sufficient blood to the organs of the body. HF is associated with high degree of 

morbidity and mortality, and 50% of patients with HF die within five years of diagnosis. 

Heart failure accounts for 43% of Medicare spending even though this patient population 

only makes up 14% of all Medicare beneficiaries. Heart failure is the top cause of 

readmission for the Medicare fee-for-service patient population and costs approximately 38 
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billion dollars annually. Several attempts have reported on the utility, accuracy and 

actionability of predictive models to model and predict potential readmission associated with 

heart failure hospitalization. Previously reported models have been built using clinical 

variables and covariates such as age, sex, race, socioeconomic factors, body mass index, 

laboratory measures, biomarkers (e.g. B-type natriuretic peptide levels), comorbidities (e.g. 

neurological disorders, type II diabetes mellitus, etc.), behavioral factors, functional 

phenotyping of cardiovascular systems (e.g. left ventricular ejection fraction), discharge 

follow-ups and medications 9–12. Some models have used billing and procedural codes 

extracted from EMR or other hospital administration databases. Continuous hemodynamic 

monitoring devices have also been used to predict readmission rates 13–15. The predictive 

power of such HF readmission models remains weak, with Area Under Curve (AUC) values 

generally in the range of 0.6–0.7. Such models provide only modest utility for predicting 

which patients may return to the hospital for readmission. There is an immediate need for 

tools that may be used at the bedside or as part of discharge disposition planning to assess 

and minimize risk for readmission. Studies led by Hosseinzadeh et.al16 leverage claims data 

to predict all-cause readmissions, and Duggal et.al17 used EMR-derived clinical and 

administrative data to predict readmission in the setting of a diabetes cohort. To the best of 

our knowledge, our study is one of the first attempts to use phenome-wide data to identify 

novel factors driving readmissions related to congestive heart failure and develop EMR-wide 

prediction models with orthogonal validation to predict the readmission event.

2. Methods

The Mount Sinai Institutional Review Board approved the study. An author (JJ) act as the 

honest data broker to ensure PHI and HIPAA adherence during the data management, 

analytics and machine learning. Data scientists and research scientists in the project received 

a deidentified database from the Mount Sinai Data Warehouse. All analyses were performed 

using the deidentified data.

2.1. Mount Sinai Heart cohort and characteristics of heart failure cohort

The study cohort consists of a database of 1,068 individuals admitted to Mount Sinai Heart 

service during the year 2014. The principal diagnosis of heart failure using the CMS 

directive was used to compile HF patients. Each patient readmitted to any service of Mount 

Sinai within 30-days after the discharge of an HF primary encounter is defined as a “case”. 

The remainder of patients who did not return to the hospital within 30-days were defined as 

“controls”. Patients admitted to other locations of Mount Sinai Health System or other 

hospitals within New York city/state or other states in country were not captured. An author 

(DR) manually phenotyped the cohort and classified the patients as part of a quality control 

initiative at Mount Sinai Hospital. As an exploratory study with low case rate, no patient 

exclusion criteria were applied to the dataset.

2.2. Clinical data analytics and EMR-wide machine learning

Data was stored in a MySQL database indexed using a unique hexadecimal identifier 

associated with the data for the visit about HF. Only data about the primary encounter 

(admission with HF as primary diagnosis) is employed in the analysis. All figures were 
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generated using Wizard for Mac (http://www.wizardmac.com/) and Weka 18–21. A Naïve 

Bayes model is used for machine learning. Exploratory data analyses were performed using 

Elasticsearch and Kibana (https://github.com/elastic/kibana). All models were independently 

created using 70% of the dataset for training and 30% of the dataset for testing. Bayesian 

models were created using features unique to each data element and feature selection was 

performed using correlation based feature subset selection across two classes. Orthogonal 

validation of machine learning models was performed with logistic regression. Principal 

component analyses to understand the variability of features were performed using the 

Python-based scikit-learn package (http://scikit-learn.org/) and visualized using matplotlib 

(http://matplotlib.org/). Testing accuracies were estimated using the 5-fold cross validation 

approach. We define the classification task as a binary classification problem, where 

RA=“Readmitted” patient and NonRA=“Not readmitted patient”. Weka provides a suite of 

state-of-the-art machine learning algorithms using a programmatic interface in Java. We 

used the native Naïve Bayesian classifier in Weka without modification in this exploratory 

analysis. The algorithm was selected as a rational choice based on prior studies on modeling 

of readmission prediction16 Feature ranking and selection22,23 was performed using a 

correlation-based feature selection (CFS) method. CFS is a widely used feature selection 

strategy that aims to find subset of features with significant discriminatory power to perform 

the classification but which are uncorrelated in feature space. Feature selection is 

implemented using the “CfsSubsetEval” method in Weka (http://weka.sourceforge.net/

doc.dev/weka/attributeSelection/CfsSubsetEval.html). Orthogonal class-specific statistical 

significance was estimated using Kolmogorov-Smirnov test (distribution estimates), t-test 

(differences across class-labels), Z-score or Mann-Whitney (median estimates) depending on 

the data type tested (lab-test, medication, procedure etc.) across the groups (RA and 

NonRA). An overview of the study design is provided in Figure 1.

3. Results

3.1. Cohort characteristics

EMR-wide data mining provides a deep view of various data elements in the cohort (Figure 

2). A total of 4,205 variables were extracted from EMR. The data from EMR was 

categorized into five data modalities as diagnosis codes (ICD-9 codes and IMO-codes), 

procedures (ICD-9, SNOMED-CT and CPT-codes), medications and vital signs. For each 

patient, the patient encounter specific data is extracted from the EMR. A patient specific 

filter is used to extract data unique to the visit; the data from the most recent visit of the 

patients with multiple admissions is incorporated.

Phenomic data extracted from EMR:

1. Diagnoses codes using ICD-9 (n=1,763): ICD-9 codes (http://www.cdc.gov/

nchs/icd/icd9.htm) were extracted from Mount Sinai Data Warehouse. The codes 

were mapped to ICD-9 or IMO codes (https://www.e-imo.com/problemit-

terminology-1); all codes were unified to ICD-9 and normalized using UMLS as 

the bridge (https://www.nlm.nih.gov/research/umls/mapping_projects/

icd9cm_to_snomedct.html).
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2. Medications (n=1,028): Medications prescribed during the hospitalization were 

compiled using Epic and extracted from Mount Sinai Data warehouse. 

Medication name, dosage, route of administration was obtained. All medication 

data was normalized using RxNorm (https://www.nlm.nih.gov/research/umls/

rxnorm/).

3. Laboratory measurements (n=846): Laboratory measures captured in the EMR 

were compiled; the raw values of the tests without normalization have been used 

as a matrix of observations with patients as rows and individual tests as columns.

4. Procedures (n=564): Procedures encoded using SNOMED-CT or ICD-9-CM 

procedures were used.

5. Vital signs (n=4): Pulse, respiration rate, systolic blood pressure, heartbeats and 

temperature were compiled from bedside monitor logs captured in a MySQL 

database. Vitals were often captured using multiple monitors and approaches. For 

example temperature was captured at the bedside as axillary temperature, 

temperature measured via catheter, oral temperature, rectal temperature, or 

tympanic temperature.

3.2. EMR-wide feature selection and predictive modeling using five different data 
modalities

The machine learning strategy utilized for our study is outlined in Figure 1. To address the 

tradeoffs in dealing with a broad range of features using a small number of samples and 

missing data, we first generated distinct models using different data elements and relevant 

features were selected. Features were also compared using orthogonal metrics including 

logistic regression and PCA to understand the variable space and their inherent relationships. 

Finally, a composite model for performing predictions is generated using features selected 

from the individual models. As a real-world machine-learning task, we had a small subset of 

cases (16.7%) compared to the controls (83.3%). We used a random subset of age and sex 

matched controls to control the bias introduced by imbalanced datasets. We first generated 

five different NB predictors using individual data elements. Medications were the most 

predictive with an accuracy of 81% and AUC of 0.615. Procedure codes encoded as binary 

variable fared poorly with AUCs of <0.50 (ICD-9 procedures) and 0.553 (CPT codes). We 

did not generate an independent model for feature selection using the four vital signs after 

accounting for the small number of features. Laboratory values also showed lower AUC 

(0.535). Exploration of the data using principal component analyses also revealed that 

procedures had low variance compared to medications. From a healthcare delivery 

standpoint, this is insightful, as most of the patients have undergone the same type of 

procedures in the cardiac units. However the medication profiles of patients may vary due to 

individualized disease comorbidities, side effect profiles, age, and gender. Details of 

individual models and features identified using feature selection method (See Table 1). 

Detailed analyses of medications could provide better insights into features driving 

readmissions (Johnson & Shameer et.al; manuscript in preparation)
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3.3. Feature reduction and model refinement

Due to the low percentage of the cases in the cohort under investigation, a high-dimension 

feature array is prone to overfitting in machine learning of binary classification tasks. To 

address this, we have used a feature reduction approach. Features were tested to assess 

predictive value using a classifier based method and regression models. Feature selection 

approach and an orthogonal validation approach provide insights into a subset of highly 

predictive variables associated with readmitted subset of patients. The AUCs of regression 

models were 0.5685, 0.6471, 0.7596 and 0.795 (ICD-9 and CPT) for vitals, diagnoses codes, 

medications, and procedures respectively (See Figure 4 and 5). The final composite model is 

developed using 105 features with an AUC=0.78 and cross-validation testing accuracy of 

83.19%.

A brief summary of features significant in feature selection method and the orthogonal 

validation approach is provided below (also see Figure 5):

a) Procedures: out of 12 procedures, codes for invasive procedures including fine needle 

aspirations with imaging guidance, intravenous catheterization, routine culture and cell 

count were significant procedures. As procedures were counted as individual events, the 

subset of readmitted patients has higher frequency of these procedures compared to patients 

not readmitted. Repetitive tests for culture and cell count could also indicate potential 

infection or other complications. b) Medications: amongst the 1,028 medications, our 

analyses indicate 28 medications as features with discriminatory power. Three medications 

(carvedilol 25 mg tablet, ethacrynic acid IVPB and isosorbide dinitrate 30 mg tablet) were 

validated using logistic regression approach. However, we noted that only 2.7% of the cohort 

received carvedilol 25 mg, and all of them were part of the readmission subset. Previous 

work has potentially indicated that increasing in carvedilol dosage may lead to better a 

outcome on readmission rate24. c) Diagnosis: chronic conditions like type 1 diabetes (ICD-9 

code 250.01), osteoarthritis; manifestations of cancer (ICD-9 code 233); neurological or 

psychiatric conditions (mood disorders, hallucinations, sleep disturbances cocaine abuse); 

cardiovascular structural conditions like rheumatic mitral insufficiency and gastrointestinal 

conditions such as enteritis were conditions significantly associated with readmission rates. 

Onco-cardiology assessment of patients may also help in reducing the readmission rates in 

high-risk patients. Assessment of cardiovascular patients for psychosocial aspects and 

careful evaluation of individual comorbidities could help to reduce the readmission rates and 

adherence to the medications 25–28. d) Laboratory values: laboratory values were least 

predictive in the individual modeling stage. During the orthogonal validation step, creatinine 

kinase, glucose-fluid, fluid triglycerides and lymphocytes were significant. Optimal 

glycemic control is a key factor in determining positive outcomes in heart failure patients, 

especially in those with diabetes mellitus 29. We noted that features identified using our 

feature selection method are concordant with earlier findings. For example, we have 

identified glucose-fluid and type-1 diabetes as predictive factors. We have also identified 

psychiatric illness, a known factor that influences readmission ratesin the setting of complex 

diseases.
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3.4. Comparison with current heart failure readmission models

In this work we use EMR-wide feature selection and machine learning to discover novel 

features and develop new predictors to predict readmission rates. One of the first predictive 

modeling of hospital readmissions using healthcare data from Quebec, Canada by 

Hosseinzadeh et.al16 showed that Naïve Bayes models (0.65) performed better than Random 

Forest models (0.64). Using a diabetes cohort from a hospital in India, Duggal et.al17 

showed that Naïve Bayes (0.67) showed higher readmission associated savings compared to 

logistic regression (0.67), Random Forests (0.68), Adaboost (0.67) and Neural Networks 

(0.62). Futoma et.al30 showed that Random Forests (0.68) and deep learning using neural 

networks (0.67) have similar accuracy rate with >1 million patients and > 3 million 

admission. However, Penalized Logistic Regression had similar accuracy rates as we have 

shown in our orthogonal validation methods. Compared to existing predictive models for HF 

readmission rates (AUCs in the range of 0.6–0.7), results from our EMR-wide predictive 

model (AUC=0.78; Accuracy=83.19%) and phenome-wide feature selection strategies are 

encouraging and reveal the utility of such data-driven, EMR-wide machine learning.

4. Discussion

Readmission rate is a quality assessment metric routinely used to infer the quality of life 

index of patient population and the quality of healthcare delivery. Irrespective of the 

advances in biomedical and healthcare research practices, hospital quality control offices 

still use traditional readmission risk algorithms and predefined sets of variables to infer the 

probability patient readmission. However, predictive modeling using big data sourced from 

different facets of healthcare operations could provide clues to improve the quality of 

healthcare delivery. Combining predictive analytics with preventive measures would also 

engage patients, physicians, and payers to participate proactively in improving the health 

and wellness. Recently we have combined EMR data and genomic data to cluster patients 

into subtypes with specific genetic variants, disease comorbidities, and medications in a 

diabetes cohort. Application of deep learning31,32 in healthcare also shows promise for 

performing EMR-wide analytics using approaches like Deep Patient33. In a recent study, we 

have created temporal models of disease trajectories that could potentially reveal how the 

population could cluster into subgroups based on age, gender, self-reported ancestry and 

comorbidities34. Further, we have shown that cognitive machine learning can be utilized for 

precise phenotyping of high volume echocardiography datasets35. We have also applied 

machine learning to understand various features driving patient satisfaction36. Our collective 

experience in large-scale, automated mining of EMR data suggests that such approaches are 

useful for both discovery research and the identification of actionable clinical parameters 

driving diseases or outcomes.

5. Limitations of the current study

In this study, we use all codes without further comprehension; for example, coding systems 

other than ICD-9 provide an easy way to combine disease. Such an approach could also lead 

to compiling of similar conditions and hence may not reveal true predictors. For example, 

we have identified enteritis as a potential diagnosis with readmission. This term would be 
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summarized under gastroenterological conditions. Grouping medication by class or category 

may also reduce the feature space at the cost of feature resolution. We attempt to capture the 

best characteristic elements from the real-world data set and hence no data imputation or 

normalization has been used in our study. The feature selection method may also influence 

the composition of the models; a systematic assessment of various feature selection 

algorithms could further enhance the robustness of the model. Healthcare datasets are highly 

sparse, for example, all patients are not being tested using same laboratory tests except for a 

few generic tests. Hence, several features may have sparse representations. Even though we 

had access to EMR-linked genomic data (See BioMe: http://icahn.mssm.edu/research/ipm/

programs/biome-biobank), genomic data was not used in this study. Due to a small number 

of cases; a dramatic increase in feature space would lead to overfitting and high error rates 

during predictive modeling. We hope to utilize genomic information in a revised version of 

the model with a larger case dataset. In the current study, we used data from one year of 

healthcare operations from a single tertiary care healthcare institution. The model should be 

tested using data from multiple sites and several data-years. Designing of harmonized 

phenotyping algorithms and data dictionaries leveraging various health information 

exchanges could help to gather a large number of samples and scale the study using large 

cohort.

6. Conclusions and Future Directions

A data-driven predictive model is developed to predict readmission rates in heart failure 

patients. Cases and controls were compiled based on 30-day readmission evidence to the 

same location. Compared to the existing repertoire of predictive models to assess 

readmission, our model shows better accuracy using one year of readmission data from a 

single site. However, the model needs to be updated and calibrated using multiple years of 

datasets from different sites across the nation. Feature selection provides insights into 

several novel factors that could help to delineate readmission rates associated with HF. 

Implementing data-driven methods that EMR-wide variables in a hypothesis-free approach 

could help us to find new features underlying clinical outcomes. Designing predictive and 

prescriptive models would help to accelerate stratification of patients at risk for improved 

care. Such findings and predictive assessments have significant implications for the quality 

of healthcare delivery and impact on patient outcomes. We envisage that our finding will 

improve the attempts to develop EMR-wide and scalable phenomics based predictive 

modeling to find critical events relevant to healthcare delivery and patient outcomes.
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Figure 1. 
EMR-wide machine learning architecture and predictive modeling strategy to find drivers of 

readmission rates
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Figure 2. 
Summary of the study cohort a) case-control ratio: cases are indicated as “1” and controls as 

“0”. Frequency charts of b) diagnoses c) medications and d) procedures.
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Figure 3. 
ROC curves a) logistic regression models and b) composite model with 105 features
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Figure 4. 
Orthogonal validation of discriminating features a) laboratory tests b) procedures and 

diagnoses c) medications d) absolute neutrophil count (P=0.051) e) platelet count (P=0.180)
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