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Abstract

In this paper, a robust control approach is used to address the problem of adaptive behavioral 

treatment design. Human behavior (e.g., smoking and exercise) and reactions to treatment are 

complex and depend on many unmeasurable external stimuli, some of which are unknown. Thus, 

it is crucial to model human behavior over many subject responses. We propose a simple (low 

order) uncertain affine model subject to uncertainties whose response covers the most probable 

behavioral responses. The proposed model contains two different types of uncertainties: 

uncertainty of the dynamics and external perturbations that patients face in their daily life. Once 

the uncertain model is defined, we demonstrate how least absolute shrinkage and selection 

operator (lasso) can be used as an identification tool. The lasso algorithm provides a way to 

directly estimate a model subject to sparse perturbations. With this estimated model, a robust 

control algorithm is developed, where one relies on the special structure of the uncertainty to 

develop efficient optimization algorithms. This paper concludes by using the proposed algorithm 

in a numerical experiment that simulates treatment for the urge to smoke.

Index Terms

Adaptive treatment design; adaptive-robust intervention; behavioral treatment design; min–max 
structured robust optimization; receding horizon control

I. Introduction

Proliferation of portable devices that collect patient information very frequently (i.e., 

intensive longitudinal data) and enable timely treatment has opened the possibility of 

developing effective personalized interventions [1]. These types of interventions can be 
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behavioral or pharmacological or a combination according to the structure of the specific 

behavioral problem [2]. This is currently being investigated in smoking addiction, alcohol 

addiction, exercise behavior, and so on. Dynamical modeling of behavior is critical in 

developing control algorithms [3]–[6]. However, very little attention has been paid to the fact 

that human behavior has a significant amount of uncertainty and that this uncertainty should 

be addressed systematically. This paper provides an approach for modeling patient behavior 

and designing a robust adaptive treatment that considers both the present state of the patient 

and the probable perturbations to expected behavior.

Previous researchers have applied control concepts in behavioral research [3]–[5], [7]–[9], 

but the use of feedback is still a novel approach. In addition to feedback, additional 

constraints for patients’ limitations and measured disturbances can be easily addressed in 

controller-design-based interventions [10]. In this paper, we discuss a possible control 

engineering-based approach and explain how robust control tools can be used to design 

robust adaptive treatments. To design a robust algorithm, the first step is to define the 

uncertainties observed in the treatment responses. Therefore, we propose a class of uncertain 

affine models suitable for this task and discuss a way to identify such models using available 

tools, such as lasso [11]. The second step is to show that a robust control algorithm can be 

developed that relies on the special structure of the uncertainty in the model to develop 

efficient optimization algorithms.

Only simple affine models will be considered here, because very little is known about the 

structure of human behavior. Nevertheless, this approach can be extended to more complex 

models, such as nonlinear and time-varying models if one has better knowledge about the 

dynamics of the human behavior.

Besides the problem of choosing the right model structure, behavioral data have other 

remarkable challenges. The collection of behavioral data is often done over long periods of 

time and one cannot usually perform repeated experiments to improve the quality of the 

data. As a result, unlike most physical systems, behavioral data are generally more noisy, 

incomplete, and inconsistent. Hence, designers of treatments typically work with an 

incomplete, noisy data set from multiple patients [12]–[15]. Multiple participants are used to 

attempt to capture a more complete data set such that the gaps in one participant’s data are 

filled by another participant. Therefore, we also use data from several participants to 

determine a model that both is meaningful and can be used to design treatment for a specific 

group of individuals.

In this paper, we discuss a specific structure for model uncertainty that can be used for 

modeling human behavior. When selecting a type of uncertainty, the objective is to address: 

1) differences in the behavior of different participants modeled as white Gaussian noise and 

2) sparse external perturbations that can be used to model life events that affect the response 

to treatment. With the model structure defined earlier, lasso [11] is used for parameter 

identification and uncertainty quantification because it provides a way to directly estimate a 

model subject to sparse perturbations. Given that the models extracted from behavioral data 

usually have a large amount of uncertainty, there is a need for feedback and, especially, 
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robustness. Hence, in the second part of this paper, an algorithm is proposed for a controller 

design that is robust with respect to the specific type of uncertainties considered.

The specific control design technique used in this paper is based on a robust model 

predictive controller (MPC) approach [16]. A computationally simple cost function is used, 

namely, a quadratic one, and the corresponding robust optimization problem is formulated. 

In formulating the control problem, one considers all different combinations of treatments 

available. The resulting robust optimization problem is then solved by relying on results 

from robust optimization [17]–[19] and by exploiting the specific structure of the 

uncertainty.

Throughout this paper, the problem of designing a treatment for smoking urge is used as our 

example. Although the treatment is assumed as ON/OFF (apply treatment or no treatment) 

in this specific example, this is not always the case. There are situations where one not only 

has to decide when/which treatment to apply but also the dosage (see [20] for a more 

detailed explanation of characteristics of behavioral problems). The presented method can be 

easily modified to accommodate different types (behavioral, pharmacological, or combined) 

and levels (dosage) of treatments. Note that in this example, the term treatment is used to 

refer to an intervention where text messages are sent to the subject.

A. Previous Work

Adaptive interventions are sequences of treatments that are adapted and readapted to 

individual circumstances and behaviors in order to achieve and maintain health behavior 

change [12], [13]. These interventions may be provided many times (i.e., tens, hundreds, or 

even thousands of treatment occasions during the entire treatment period). The interventions 

are often delivered via portable devices, as intensive interventions. Since these interventions 

adapt to individual progress, it is effective to prevent insufficient response and react 

immediately against the unexpected shock on behavior. Therefore, scientists in the social 

and behavioral sciences have been working on finding systematic ways to use portable 

devices such as smart phones to change health behavior or maintain healthy behavior in real 

time. Consequently, adaptive interventions are being developed by social and behavioral 

scientists for different areas, such as hypertension [14], substance abuse [15], criminal 

justice [21], mental health [22], and Alzheimer’s disease [23].

Engineering concepts, such as dynamical modeling, have been applied to modeling and 

controlling behavior [6]. References [3]–[5] present special issues that arise in applying such 

approaches to behavioral research. These studies employ both time-invariant and time-

varying models, depending on the specific problem. Some extend studies use controller 

design methods to design adaptive interventions for special problems in behavioral science 

[7]–[9]. This paper defines uncertainties in behavior more explicitly than previous studies 

and discusses their effects on the robustness of the algorithm. In general, according to the 

intervention design problem, the MPC design method is preferred. Preliminary results of this 

paper were presented in [24]. More detailed explanations of modeling behavior and 

identification are presented in this paper. The complete proofs are also provided, along with 

simulations.
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This paper is organized as follows. In Section II, we introduce the model that will be used to 

approximate patient behavior and justify its use. In Section III, we discuss a way to identify 

the model’s parameters from patient study data. In Section IV, an MPC formulation of the 

robust control problem is introduced. In Section V, a simulation of the application of the 

proposed approach is presented with a simulated smoking cessation treatment from [25]. In 

this section, some hypothetical individual results are also given to show how a control 

algorithm works. Finally, in Section VI, we present some concluding remarks.

II. Model

As mentioned in Section I, data on human behavior usually involve several subjects with 

many gaps in information over time. Moreover, behavior might change with time and vary 

from subject to subject. Therefore, it is very unlikely that one can accurately specify a 

complex model of behavior. One can use a simple model to approximate patient behavior or 

the main dynamics of the subject and, at the same time, highlight the fact that there is a 

substantial amount of uncertainty in it. Hence, a possible model for identification is a set of 

affine difference equations. The difference model used in this paper is of the form

(1)

where yk ∞ ℝm is the measured output vector at time k, Tk ∞ ℝ, and Tk ∞  is the 

control input (i.e., treatment), where  is a set of all available treatments. In many cases, 

this set has a finite number of elements. Unmeasurable sparse exogenous perturbations are 

denoted by wk ∞ ℝ and εk ∞ ℝm, which represents uncertainty in the model. The affine 

term vector is af ∞ ℝm, and Ai ∞ ℝm×m, Bi ∞ ℝm, D ∞ ℝm×m, and E ∞ ℝm are 

coefficients matrices.

The dynamics of behavior are very complex and hard to control because of the uncertainties 

on behaviors. Therefore, the uncertain difference equation in (1) is used to model a large set 

of responses to behavioral treatment. In addition to the dynamics of behavior, which are 

contaminated by Gaussian noise, an unmeasured exogenous input is added to the model to 

represent unexpected influences.

We use as a motivating example a hypothetical study of smoking cessation. In this example, 

we address the problem of treatment design after quit day (i.e., day on which an individual 

quits smoking). Patients usually have different dynamics before and after quit day and 

different treatments should be designed for each of these cases. Since the objective of this 

paper is to develop a general design procedure, we only consider the after quit day case as an 

example of treatment design. The procedure developed can also be used for before quit day 

case.

In the smoking cessation model, there are three different variables that one can measure: 

smoking urge (denoted by su); negative affect, (na), which is a single scale indicating an 
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adverse mood state; and self-efficacy, (se), which represents an individual’s belief in their 

ability to abstain from smoking. With these variables, the following model is proposed:

(2)

Remark 1—The signs of several of these coefficients are assumed to be known in advance 

for this example. For example, negative affect (na) increases smoking urge (su), whereas 

self-efficacy (se) decreases it. More information about the dynamics of the smoking urge can 

be found in [26] and [27]. This information can be used in two different ways: 1) it can be 

given to the identification algorithm as additional constraints or 2) it can be utilized to 

validate the model.

This model also shows that smoking urge cannot be directly controlled, but if the negative 

affect can be decreased and self-efficacy can be increased by applying treatment T, the 

desired smoking urge level can be achieved under the uncertainties.

One should first note that the model above is an uncertain affine model. One of the reasons 

why this structure was chosen was the fact that a model should not be obtained just from 

data, and it should also leverage characteristics determined by prior behavioral research. For 

instance, patients smoke cigarettes to regulate the smoking urge set point (see [3], [28] for 

more detailed explanation of smoking dynamics). Therefore, an affine term (constant term in 

the model) is added to the model to represent this set point.

The model in (1) is called a structural equation model (SEM) in social science [29]. Similar 

to SEM models, an affine model for smoking cessation is preferred, because the equilibrium 

point of the uncontrolled system is often not the origin. The model is obtained by using data 

from several patients and differences in patients are typically modeled as Gaussian random 

variables ε. The external perturbation w ∞ ℒ∞ is motivated by a different kind of 

uncertainty in human behavior. The way the subjects behave is influenced by external sparse 

events that temporarily affect his/her response to treatment. Hence, one needs an uncertainty 

that is sparse, bounded in magnitude, and with limited cumulative effect. As a result, it is 

assumed that the segment of perturbation signal w ∞ ℒ∞ is bounded in the ℓ1-norm, ℓ∞-

norm, and ℓ0-norm. For this situation, a possible signal set , which is used in this paper, is 

the following. Given an MPC control window of length K and k, the set  is
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(3)

α ∞ ℕ is bound on the magnitude of the perturbation, γ ∞ ℕ is bound on cumulative 

effect, and ς ∞ ℕ enforces the sparsity constraint on vector w(k:k+K−1).

III. Identification of the Model and Perturbations

To estimate the coefficients from study data, we start by noting that the model above can be 

taken to represent the relations among the variables as

(4)

In this model, the unknown vector β contains the parameters of the model and vector w, 

vector Y is a function of the measurements, and matrix H is a function of the measurements 

and inputs (treatment). For the smoking cessation example, the structure and the dimension 

of the measurement vector Y, unknown vector β, and matrix H in (4) are given in Appendix 

A.

Algorithm 1

Lasso Iterative Identification Algorithm

1: Given μ, tolerance δ, iteration j = 0,1,…, β0 = 0, and randomly chosen β1 = βinitial ▷ Initialization

2: while |βj+1 − βj| ≤ δ do

3:

  

4:

  

  subject to

  ||w||1 ≤ μ

5:  βj+1 ← β̂

6: end while

7: σ ← σ̂ and β ← β̂

8: α, γ and ς ← Parameters of set  from statistic of vector w,

There are several ways to estimate vector β. In the examples provided in this paper, lasso 

[11] is used as an identification tool. Assuming ℘ is the number of the patients, N is the 

length of the data from each patient, and n is the order of the system, this algorithm provides 

a way to determine an estimate of the parameters that balances the size of the noise ε ∞ 

(0, σ2) and the sparsity of the exogenous perturbation w in the model. Note that there is also 
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a balance between the order of the system and the size of the perturbation (magnitude, 

sparsity, and so on). Sparsity of signal w is crucial in this context, as it represents 

perturbations that a patient faces infrequently

(5)

The optimization problem in (5) is a convex minimization of a penalized joint loss function 

with a regularization parameter μ given for the regression coefficient, noise level, and vector 

w, which is a finite dimensional signal.

The design matrix H and the response vector Y are constructed from measurements from ℘ 
different patients (see Appendix A). Since the problem is jointly convex with respect to β 
and σ, if the initial estimate of β is known or given, then σ, which minimizes the objective 

function, can be calculated by differentiating the objective function (5) with constant β 
vector (step 3 in Algorithm 1). Then, the optimization problem in step 4 in Algorithm 1 is 

solved to estimate vector β.

The following lasso algorithm shows the identification procedure in [11], where j shows the 

iteration number.

The terms in the objective function (5) aim at finding the maximum likelihood estimate of 

the parameters of the model and the variance of the noise ε while the ℓ1 constraint searches 

for a sparse exogenous input. Here, the ℓ1-norm is used as a convex approximation of the ℓ0-

norm [30]. Thus, given the data and the order of the model n, at the end of the identification 

algorithm, the parameters of the model in (2), the noise levels of ε ∞ (0, σ2), and 

unmeasurable exogenous input w ∞ ℝ℘(N−n) are estimated. Then, the statistic of identified 

vector w ∞ ℝ℘(N−n) is used to define signal set  in (3).

In the smoking cessation example, since an uncertain model is searched for all ℘ individuals 

(patients), all observations of  and  (i = 1, 2, …,℘) are used to construct the 

regression model (4). Again the mathematical details of model (1) for smoking cessation 

example are defined in Appendix A.

Finally, given a time interval of length K, output vector y is a function of uncertainties w ∞ 
ℒ∞, ε ∞ (0, σ2), and the state of the system. As mentioned earlier, w is a bounded sparse 

uncertainty and ε is Gaussian noise that models differences between different subjects. Now, 

to be able to design robust controllers, we need to have a bounded support set for ε.

Remark 2—Since Gaussian distributions have unbounded support, we choose a set of high 

probability. More precisely, given a window of size K, the density of εk:k+K−1 has 

hyperspherical contours and we take a set of high probability of the form
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(6)

where ρ is chosen based on the identified standard deviation of the noise. This has the added 

advantage of leading to a formulation of the robust treatment design that is computationally 

tractable. We refer the reader to [31] for a more detailed discussion of the advantages of 

using this approach to describe this type of noise.

IV. Robust Model Predictive Controller

The method for controller design used in this paper is based on MPC [16]. Here, the usual 

approach in robust MPC is taken: one estimates the present value of the state variable and 

determines the value of the control variables over the horizon that minimizes a given 

objective function. The first of these control signals is applied, and the process is then 

repeated. The control algorithm is summarized in Fig. 1. In step 1, initial conditions or the 

information yk−1 … yk−n that the control algorithm will use is collected. In the smoking 

cessation study, this information is suk−1 … suk−n, nak−1 … nak−n, sek−1 … sek−n. In 

addition, after consultation with a practitioner in the field, the total treatment to be given to 

the patient is limited to an allowable set [32]–[34]. Such limitations might require the 

knowledge of how much treatment was given in the recent past. As a result, recent control 

input information Tk−1 …Tk−l (l ≥ n) is used in order to enforce the constraints on the total 

treatment provided.

Consistent with the usual MPC approach, in step 2, one minimizes a given cost function 

subject to constraints on the total applied control in a certain range. Then, in step 3, the 

result of the control algorithm is applied to the patient. Thus, in this section, a decision rule 

is developed that dictates whether treatment is applied to each individual at each time point 

under the uncertainties.

The difference equation (1) is used to determine a closed-form objective function for MPC 

formulation with a given receding horizon K. In the objective function, we represent k+1 

∞ ℝKm as

(7)

where 0 ∞ ℝnm is the vector containing the state of the model. T̃ k ∞ ℝK+n−1 is the 

treatment. w̃ k ∞ ℝK is sparse disturbance and ε̃k ∞ ℝK is noise. Af, Ã, B̃, D̃, and Ẽ are 

matrices, which are calculated recursively from difference equation (1)
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Then, in this paper, the objective function of the following form is considered:

although more complex convex functions can be addressed by the framework presented here. 

For the smoking cessation example, since one minimizes smoking urge, matrix X is defined 

to choose smoking urge measure in vector k+1 as

Given the tuning parameter θ ∞ ℝ, approximation of desired average level of smoking urge, 

we aim to solve the following robust optimization problem at each step of the algorithm:

(8)

which is subject to the system dynamics described in (7). We also define k from the set 

as

(9)

The intersection of the norms in the set k forms convex polytopes. It should be noted that 

set k is a union of these convex polytopes; this fact is explored later when solving the 

robust optimization problem resulting from the MPC formulation of the control problem.

Smoking Cessation Example

We now discuss the set  of allowable treatments used for the smoking cessation example. 

In this case
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(10)

represent the fact that one can either apply or not apply treatment at each time. In addition, 

the number of treatments applied in the last K + l instances is constrained to be less than or 

equal to Ttotal. This constraint in the number of treatments is aimed at addressing the 

problem of treatment burden [32]–[34], which is decreasing effectiveness as the number of 

applied treatments increases. In this specific example, treatment T is binary; but in reality, it 

can have a different level and type of treatment.

One should note that the optimization problem described earlier is complex. Therefore, a 

problem equivalent to the original problem (8) is now presented that is suitable for 

implementation in Theorem 1. Using the results in [17]–[19] (provided in Appendix B for 

completeness), one can prove the following result.

Theorem 1—Consider the following semidefinite problem: min

(11)

for all w̃ k ∞ ext, where ext values are the extremes of the polytopes whose union is k.

The optimum of the problem above is an upper bound on the optimum of the original 

optimization problem (8) and is equal if only one of the elements in the set ext leads to an 

active constraint at the optimum.

In the LMI in (11), * is (( f −θ+Ã 0+B̃T̃
k+Ẽw̃ k)X)T.

Proof—See Appendix C.

We now characterize the set of extremes, ext.

Theorem 2—Consider set k defined in (9), where α, γ, and ς define the bounds on the 

ℓ∞-norm, ℓ1-norm, and sparsity, respectively. Let nnz = dim(w̃ k)/ς.

1. If α ≥ γ, then ext is the set of all signed permutations of

2. If nnzα ≤ γ, then ext is the set of all signed permutations of
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3. If γ < nnzα < nnzγ, then ext is the set of all signed permutations of

where

Proof—See Appendix D.

After finding the extreme points of the set k, a semidefinite programming or mixed integer 

semidefinite programming solver could be used to solve problem (11); but for a large 

receding horizon K, the number of extremes and, thus, the number of LMI constraints might 

be fairly large.

Section V presents a simulated application of the algorithm using a model that mimics data 

that might have been collected in smoking cessation studies, such as [25].

V. Simulation Results

A. Implementation

As an implementation of the adaptive treatment algorithm that is proposed for an 

intervention using portable devices, we consider individuals who wish to quit smoking, and 

we present a hypothetical algorithm for treatment via a smart phone. In addition, the quit day 

(i.e., day on which an individual quits smoking) and the time immediately following the quit 

day are extremely important on smoking cessation interventions and in the prevention of 

relapse. The simulations in this example address smoking dynamics after the quit day.

In the simulation, the participant provides information on his/her level of smoking urge, 

negative affect, and self-efficacy on the morning of day 1; the smart phone then provides the 

behavioral treatment. Robust adaptive treatment begins at midday after the participant again 

provides his/her level of smoking urge, negative affect, and self-efficacy. Right now, 

 and  are known, where  is treatment provided in the 

morning. The proposed adaptive treatment algorithm is run and decides Ti optimal and set 

. That is, if Ti optimal = 1, treatment is provided at midday; otherwise, it is not. 

Afterward, new  are collected; then by using these new values and 

, the process  is repeated to obtain . This process is repeated 

throughout the entire course of treatment.
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B. Identification Results

In order to test the performance of the approach presented in this paper, we emulate a real 

application. We develop a second-order (n = 2) model for smoking urge that approximates 

the behavior observed in empirical studies, such as [25]. Note that, in this paper, subjects 

smoke heavily. Therefore, the intervention is not expected to drive cravings to zero in this 

short-term program. Moreover, during the initial phase of treatment, the proposed algorithm 

aims to decrease smoking urge of patients as much as possible, while simultaneously 

reducing the amount of treatment. We aim to increase initial impact of treatment.

Here is the true model of smoking urge

The studies mentioned earlier do not contain treatment. Hence, we augmented the model 

with a nonlinear effect of treatment in order to represent treatment burden. In the literature, 

the treatment burden is defined as increasing the level of treatment to the extent that it may 

cause suboptimal adherence and even negative outcomes. More information about treatment 

burden in social and medical sciences can be found in [32]–[34]. More precisely, the 

following terms were introduced:

(12)

where

sig(x) represents the sigmoid function or special case of logistic function. Then, the 

following parameter values are introduced:

This model for the effect of treatment is designed to emulate the case where the treatment 

has a positive impact, but its effectiveness decreases when the treatment is applied too 

frequently.
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For this highly uncertain model, 500 different trajectories of the system are generated, with 

random initial conditions and random realizations of uncertainty. This is done to simulate 

the behavior of 500 subjects in a study where the treatment was provided at random times. 

Note that this is a reasonable surrogate for a study, since the model is designed to 

approximate real data, except for the influence of treatment. The model identification 

algorithm described in Section III is then applied, and a model to be used by the robust MPC 

algorithm was obtained. To validate the model, we can use the information in [26] and [27], 

showing that negative affect (na) increases smoking urge (se), where the sign of the 

coefficient of negative affect (na) is positive; self-efficacy (se) decreases smoking urge (su), 

where the sign of the coefficient of self-efficacy (se) is negative. These effects also can be 

seen in Fig. 3 and Table II. Moreover, the dynamical equations of negative affect and self-

efficacy indicate that the effect of treatment is very small. This results in small improvement 

in smoking urge. However, this improvement is very important for heavy smokers at the 

beginning of the treatment process.

To do this, a model of the form (2) is used with order n = 2. The model coefficients obtained 

for a randomly chosen virtual patient are

and the description of the uncertainty is, for robust MPC window of K = 8, the following: w̃k 

has 25% nonzero terms with ||w ̃k||1 ≤ 5 and ||w̃k||∞ ≤ 2.5. In order to obtain these parameters, 

the statistic of the identified w in Section III is used. As for Gaussian uncertainty, εsu ∼ 

(0, 1.3), εna ∼  (0, 0.78), and εse ∼  (0, 0.55) are identified. The sampling period here is 

8 h and, hence, data are collected three times per day. The simulation is run for 50 days, and 

150 data points are collected.

C. Experiments

We then applied the proposed controller in this paper to a nonlinear model mentioned earlier, 

again with randomly generated uncertainty/noise and the initial conditions given at Table I. 

In other words, we simulate the application of our robust MPC algorithm to a patient. The 

parameters used are specified as follows.

1. MPC window size: K = 8.

2. Constraints in control: Tk ∈ {0, 1} and
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In other words, one either applies or does not apply treatment at each time point, 

and there is a constraint of a maximum of approximately one treatment per three 

sample times. Full treatment is defined as Tk = 1 for all values of k.

3. Objective function to be minimized

where the target value 2.2 was chosen, so that one has a significant decrease in 

the mean smoking value.

4. Bound on the two-norm of the Gaussian noise: ρ = 30.

5. Initial conditions of the states and input in Table I.

D. Simulations Results for a Patient

The optimization problem to be solved here is a mixed-integer, semidefinite convex 

problem. There are many ways to solve it, but in the simulations performed here, the 

requirement  = Tk ∈ {0, 1} is relaxed to  = Tk ∈ [0, 1] to use a general, semidefinite 

programming solver. The control applied is

The simulation was run for 150 time instances corresponding to a real time interval of 50 

days. CVX is used with SeDuMi as the semidefinite programming solver to problem (11) 

[35]. The developed control law systematically improved smoking urge, since the treatment 

is only applied when needed. At the same time, our control law increased self-efficacy while 

reducing negative affect in order to reduce smoking urge. Table II represents a typical 

example of the results obtained.

Table II shows the performance of the adaptive treatment design in terms of objective 

function, average values of smoking urge, self-efficacy, negative affect, and total amount of 

treatment that the adaptive intervention applied. Moreover, to show the benefit of our robust 

adaptive intervention, the simulation is also done where controller design did not consider 

uncertainty (no robustness in Table II). Results indicated that the robust adaptive 

intervention applies the optimum amount of treatment to improve smoking urge, self-

efficacy, and negative affect. The improvement in smoking urge is small, likely because this 

is a population of heavy smokers [25]. However, this improvement is extremely important at 

the beginning of the treatment process and leads to significant benefit in long term period. 

Note that this improvement was obtained with a minimized treatment effort. Therefore, one 

can see that there is a significant improvement in smoking urge not only in terms of the 

average but also in the fact that a consistent decrease in urge is obtained. If the treatment was 

more diverse than a binary signal [see the treatment set  in (10)] (e.g., varying dosages), 

the controller benefits from adaptation would be greater.
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Fig. 2 shows decrease in smoking urge. In Fig. 2, suFull Treatment – suAdaptive Treatment is 

depicted, where suAdaptive Treatment is smoking urge measured under the adaptive treatment 

and suFull Treatment is smoking urge measured under the full treatment. Although the full 

treatment performs better than the adaptive treatment in the beginning of the treatment 

process, in the long term, the adaptive treatment works better, because the algorithm applies 

the treatment only when it is really needed, thus reducing treatment burden.

As expected, the algorithm carefully chooses when to apply treatment. It is mainly applied 

when external perturbations lead to a significant increasing trend in smoking urge. Finally, 

Fig. 3 shows the smoking urge, self-efficacy, and negative-affect measure of a virtual patient 

under both full treatment and adaptive intervention. Note that the responses shown in Fig. 3 

are reflective of long-time, post-quit behavior. While important, this only represents a subset 

of the behavior stages seen in smoking cessation. Asterisks in Fig. 3 indicate when treatment 

is provided by the adaptive treatment algorithm. Fig. 4 shows the exogenous sparse 

disturbance that is applied to this particular patient for this simulation.

Remark 3—To be able to formulate the treatment design problem (11) as a convex 

optimization problem, in the simulations above, we replaced the constraint Tk ∈ {0, 1} by 

the relaxation Tk ∈ [0, 1]. Then, the treatment applied was round (Tk). To test the 

effectiveness of such relaxation, branch and bound techniques were used to solve the 

optimization problem under the true constraint Tk ∈ {0, 1}. The results obtained were 

similar and, hence, in this example, there is no advantage in solving the more complex 

mixed integer optimization problem.

E. SDP Results of a Population

Since some of the parameters are as random in the simulation, the algorithm is run 400 times 

to estimate the average improvement in smoking urge, self-efficacy, and negative affect. The 

same parameters in Section V-C except that l = 6 in (10) are used to run the algorithm. 

Moreover, for the random parameters, the disturbances w̃k are generated uniformly, such that 

w̃k ∈ k . The Gaussian disturbances are generated under a normal distribution, such that 

εsu ∼ (0, 1.3), εna ∼  (0, 0.78), and εse ∼  (0, 0.55). For the initial conditions, su0 ∈ 

(3.6, 0), se0 ∈ (4, 0), and na0 ∈ (2, 0) are generated. Fig. 5 shows average improvement 

in smoking urge (suNo Treatment – suAdaptive or Full Treatment), self-efficacy 

(seAdaptive or Full Treatment – seNo Treatment), and negative affect (naNo Treatment – 

naAdaptive or Full Treatment). It is shown that the adaptive treatment increases self-efficacy 

while it decreases smoking urge and negative affect, even with less treatment. The average 

number of treatments provided is 54.6.

1. suno, seno, nano: Smoking urge, self-efficiency, and negative affect without 

treatment.

2. sufull, sefull, nafull: Smoking urge, self-efficiency, and negative affect under full 

treatment.

3. suadaptive, seadaptive, naadaptive: Smoking urge, self-efficiency, and negative affect 

with adaptive treatment.
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VI. Conclusion

Behavioral and social scientists have been considering the advantages of adaptive 

treatments. Research has indicated that adaptive treatment strategies might give better results 

than fixed treatment (i.e., all patients get the same type and level of treatment) [12]. Since 

adaptive treatments usually provide better results than the usual methods, in this paper, we 

argue that control engineering methods, such as feedback or adaptation and robust 

optimization, can provide a systematic way to design a personalized treatment algorithm. 

Control engineering methods can be used to design personalized behavioral interventions 

while reducing treatment burden. Existing theory for adaptive treatment design is primarily 

qualitative and thus does not provide precise guidance regarding how much of which 

treatment treatment to provide to which individuals at what times. With this adaptive 

intervention design algorithm, treatments can be adapted and readapted in response to 

individuals’ progress over a long period of time. These methods hold promise for 

maintaining desired behavior in situations where controlling behavior is challenging due to 

complex dynamics. In terms of future work, effort is being put into developing more 

efficient numerical algorithms for solving the optimization problem for MPC. This will 

allow for the consideration of a larger receding horizon and, hence, better performance.
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Nomenclature

ℕ Natural numbers.

A Matrix in ℝm×n.

A ≥ 0 Positive semidefinite matrix.

AT Transpose of the matrix A.

A:,i ith column of matrix A.

I Identity matrix in ℝm×m.

w Signal in ℒ∞.

wk kth element of signal w, wk ∞ ℝ, and k = [1, 2, …, ∞].

w(k:k+K−1) Vector w(k:k+K−1) ∞ ℝK that is segment of signal w: 

w(k:k+K−1) =[wk wk+1 … wk+K−1].

dim(w(k:k+K−1)) Dimension of vector w(k:k+K−1).
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diag(w(k:k+K−1)) Elements of vector w(k:k+K−1) ∞ ℝK to the diagonal of a 

ℝK×K matrix.

⌊y⌋ Largest integer less than or equal to y.

𝒩(μ, σ2) Standard Gaussian distribution with mean μ and variance 

σ2.

||w(k:k+K−1)||p p-norm of vector w(k:k+K−1) that is: 

.

||w(k:k+K−1)||0 Number of the nonzero element of vector w(k:k+K−1) that is 

||w(k:k+K−1) ||0 ≐ #{i : wi ≠ = 0}.
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Appendix A. Formulation of the Identification Problem

In this section, we show how general equation (4) can be reorganized for the lasso algorithm. 

Start with the data set (su, na, se) of ℘ patients. Assume that for each i th patient, we have 

collected data set  for k = 1, 2, . . . , N and i = 1, 2, . . . , ℘. Also assume that the 

order of the model n is given. Then, for each patient i , build the matrices in (13) and (14), 

shown at the bottom of this page.

Also, define
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and

(13)

(14)

where SU ∈ ℝ℘(N–n), NA ∈ ℝ℘(N–n), and SE ∈ ℝ℘(N–n)

Finally, let

Bekiroglu et al. Page 21

IEEE Trans Control Syst Technol. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where w is a w ∈ ℝ℘(N–n) dimensional vector. Then, if all the patients satisfy the model 

provided in (2), we have

(15)

where Y ∈ ℝ3℘(N–n), H ∈ ℝ3℘(N–n)×3(3n+1)+N, and coefficient vector β ∈ ℝ(11n+3+℘(N–n))

and ε is a vector containing all noise.

Appendix B. Theorem in [17]–[19]

Theorem 3 [17]–[19]

Assume that the following problem is defined:

(16)

Given A0, . . . , Ap ∈ Rn×m, b0, . . . , bp ∈ Rn, and ε ∈ Rp, the following uncertainty structure 

can be defined:

(17)

Then, for ρ ≥ 0, define

(18)

The solution of the structured robust least square problem (16) can be calculated by solving 

the following semidefinite problem:

(19)
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Appendix C. Proof of Theorem 1

Proof

We use the structure of k+1 in (7) to analyze the robustness of the optimization problem. 

Thus, k+1 in the objective function in (8) is replaced by k+1 in (7) as

(20)

Given objective function in (20), we can define vectors and matrix in (17) as

and bi = D̃
:,i .

Then, for fixed T̃
k and w̃k, worst case residual is defined by using the methods in [18, Sec. 

4] as

and from (18), define

Then, without loss of generality, assuming ρ = 1 yields

(21)

Given τ ≥ 0, using the -procedure [18, Lemma 2.1], (21) can be converted as

(22)
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for every ε, εT ε ≤ 1 if and only if there exists a scalar λ ≥ 0, such that

(23)

for every ε ∈ ℝp and fixed T̃
k and w̃k .

Using the fact that λ ≥ 0 is implied by λI ≥ M, then the above condition can be rewritten as

Then, the upper bound on the residual such that rs (A, b, T̃
k,w̃k)2 ≤ τ can be obtained by 

solving the following optimization problem [18, Th. 4.1]:

(24)

for all w̃k ∈ k .

In addition, instead of checking all w̃k ∈ k in LMI constraint (24), one can use the result in 

[36], which states that all the members of a polytope of matrices are positive semidefinite if 

and only if all extremes of the polytope are positive semidefinite. Furthermore, the set k is 

a union of sets bounded by polytopes. Using the same reasoning as in [36], it suffices for the 

LMI to be satisfied at the extremes of each of the polytopes. Therefore, we need to check all 

extremes of these polytopes. The LMI in (24) is satisfied in the convex hull of these 

extremes. It is just a consequence of the fact that an LMI is satisfied in a set of points; it is 

also satisfied in the convex hull of these points. Then, we have the following result:

(25)

for all w̃k ∈ ext and forfixed T̃
k, where ext values are the extremes of the polytopes 

whose union is k . Hence, τ* is an upper bound on the robust performance for fixed T̃
k .

For the optimality, assume that there is only one extreme w̃* ∈ ext, such that one of the 

eigenvalues of LMI in (25) is equal to zero for some τ* and λ*, and LMI is positive definite 

for the rest of the extremes. Then, if the τ* is not optimum, we can perturb τ* or decrease it 

for this specific w*̃ ∈ ext while keeping the LMI still positive definite for the rest of the 

extreme points. This contradicts the assumption that τ* is optimum. As a result, this 
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optimization problem gives the optimum τ* if only one of the extremes is an active 

constraint.

Thus, for every fixed T̃
k and for all w̃k ∈ ext, the results in [18, Th. 4.2] or Theorem 3 can 

be used to convert problem (25) to (26) for ellipsoid uncertainty ||ε̃k||2 ≤ ρ and w̃k ∈ k .

Finally, problem in (25) is modified as follows:

(26)

for all w̃k ∈ ext where again ext values are the extremes of the polytopes, whose union is 

k .

In this LMI, * is (( f – θ; + Ã 0 + B̃ T̃
k + Ẽw̃k)X)T.

Appendix D. Proof of Theorem 2

The first two cases (α ≥ γ and nnzα ≤ γ) are immediate, since they correspond to the cases 

where either ℓ1 or ℓ∞ is the only binding constraints. Hence, in this proof, we concentrate on 

the third case (γ < nnzα < nnzγ).

Note that, given the symmetry of the problem, we can concentrate on the subset of the 

elements of k that are positive and satisfy

All other extremes will be obtained from this by permutations and sign changes of the 

entries. Recall that, in this case, we are considering

and the elements of vector w̃k are in a nonincreasing order. Therefore, the extreme of the set 

is given by pushing as many of the first few elements as possible to their maximum value. 

Given that ||w̃k||∞ ≤ α and ||w̃k||1 ≤ γ, one can only have the first

elements of vector w̃k equal to α. To reach the extreme and recalling that the entries of the 

vector w are in a nonincreasing order, the (n+ + 1)th element of the vector must be at its 

maximum value. Given that ||w̃k||1 ≤ γ and the first N+ terms are equal to α
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Hence, for vectors with entries in a decreasing order, the extreme of the set is attained by a 

vector of the form
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Fig. 1. 
Adaptive intervention algorithm.
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Fig. 2. 
Performance of adaptive intensive intervention.
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Fig. 3. 
Smoking urge, negative affect, and self-efficacy under adaptive intervention.
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Fig. 4. 
Sparse disturbance.
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Fig. 5. 
Adaptive and full treatment intervention results.

Bekiroglu et al. Page 31

IEEE Trans Control Syst Technol. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bekiroglu et al. Page 32

TA
B

L
E

 I

In
iti

al
 C

on
di

tio
n 

of
 S

ta
te

s 
an

d 
In

pu
t

su
(0

)
su

(1
)

se
(0

)
se

(l
)

na
(0

)
na

(1
)

T
(0

)
T

(1
)

3.
52

1
0.

34
6

4.
42

8
4.

32
4

−
0.

35
4

1.
08

2
0

0

IEEE Trans Control Syst Technol. Author manuscript; available in PMC 2018 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bekiroglu et al. Page 33

TABLE II

Intervention Performance of SDP

Adaptive Treatment No Robustness Treatment Full Treatment No Treatment

Mean(su) 1.31 1.36 1.46 1.51

Mean(se) 3.8412 3.76 3.6424 3.4863

Mean(na) 0.3096 0.3662 0.4571 0.5698

||su||2 22.55 23.32 24.48 25.15

43 34 150 0
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 is(3)α ∞ ℕ is bound on the magnitude of the perturbation, γ ∞ ℕ is bound on cumulative effect, and ς ∞ ℕ enforces the sparsity constraint on vector w(k:k+K−1).
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