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Canopy near-infrared reflectance and
terrestrial photosynthesis
Grayson Badgley,1,2* Christopher B. Field,1,2 Joseph A. Berry1

Global estimates of terrestrial gross primary production (GPP) remain highly uncertain, despite decades of
satellite measurements and intensive in situ monitoring. We report a new approach for quantifying the near-
infrared reflectance of terrestrial vegetation (NIRV). NIRV provides a foundation for a new approach to estimate
GPP that consistently untangles the confounding effects of background brightness, leaf area, and the distribution
of photosynthetic capacity with depth in canopies using existing moderate spatial and spectral resolution
satellite sensors. NIRV is strongly correlated with solar-induced chlorophyll fluorescence, a direct index of photons
intercepted by chlorophyll, and with site-level and globally gridded estimates of GPP. NIRV makes it possible to
use existing and future reflectance data as a starting point for accurately estimating GPP.
INTRODUCTION
Photosynthesis by terrestrial vegetation is the primary driver of
multiple global biogeochemical cycles. As a result, quantifying photo-
synthesis [or gross primary production (GPP)] at the global scale has
implications for our understanding of global change, biodiversity, and
agriculture. Satellite remote sensing, through regular global measure-
ments, has markedly improved estimates of the productivity of the
biosphere (1, 2). While the biochemistry of photosynthesis at the leaf
scale is well characterized (3), ecosystem and regional estimates remain
highly uncertain (4).

Here,wedescribe an approach to address twoof themore vexing chal-
lenges in estimating GPP from remote sensing. The first challenge is the
mixed-pixel problem; vegetation remote sensing requires determining
the fraction of the surface that is vegetated and reconstructing the signal
attributable to vegetation (5). The spatial resolution of current sensors
(ranging from severalmeters to tens of kilometers)means that pixels are
almost always amixture of vegetated and nonvegetated surfaces (for ex-
ample, bare soil, branches, and litter). One possible strategy for dealing
withmixed pixels is increased spatial resolution, providing a strongmo-
tivation for enhancing the spatial resolution of future satellites. The sec-
ond challenge is determining the photosynthetic capacity of vegetation.
The number, organization, and chemistry of leaves within the canopy
all influence canopy photosynthetic capacity (6, 7).

The approach we present here addresses both of these challenges
and, as a consequence, provides a robust approach for estimating GPP
from remote sensing. The new index, the near-infrared reflectance of
vegetation (NIRV), is the product of total scene NIR reflectance
(NIRT) and the normalized difference vegetation index (NDVI), a com-
mon measure of vegetation cover. From a physical perspective, NIRV re-
presents the proportion of pixel reflectance attributable to the vegetation
in the pixel. We present evidence of a general NIRV-GPP relationship in
four steps (see Materials and Methods for additional details on choice of
analytical methods). First, an analysis of canopy radiation transport pro-
vides a theoretical foundation relating the product of NDVI and NIRT
to NIRV. Because NIRV isolates the vegetated signal, it eliminates much
of the mixed-pixel problem. Second, a comparison of NIRV with solar-
induced chlorophyll fluorescence (SIF), a relatively new satellite mea-
surement that is insensitive to background contamination, documents
the global-scale relationship between NIRV and canopy development.
Third, correlations between NIRV and monthly measured and globally
modeled GPP establish the generality and the strength of the NIRV-
GPP relationship. Fourth, published data from many studies help ex-
plain why NIRV addresses not only the mixed-pixel problem but also
aspects of photosynthetic capacity.
RESULTS AND DISCUSSION
Sellers and coworkers used a two-stream approximation model to
demonstrate that NDVI is a useful proxy for the fraction of photo-
synthetically active radiation (fPAR) absorbed by a canopy (8–10).
Sellers pointed out that the NIR reflectance attributable to vegetation
should be a more robust proxy of fPAR than NDVI, if it were only pos-
sible to disentangle the vegetated signal from variations in nonvegetated
background reflectance. Our results demonstrate that the product of
NIRT and NDVI better normalizes for variations in background reflec-
tance than NDVI or NIRT alone. With Sellers’ two-stream approxima-
tionmodel, NIRV has a stronger linear relationship withmodeled fPAR
across all possible soil reflectances (R2 = 0.99) than the relationship of
NDVI and fPAR (R2 = 0.95; see text S1 and fig. S1). The difference in the
two approaches is especially pronounced for low leaf areas. Results from
a simplified two-dimensional (2D) reflectance model demonstrate that
the product of NDVI andNIRT captures the fraction of NIR reflectance
attributable to vegetation (see text S2 and fig. S2).

An empirical test of this theoretical result comes from comparing
NIRV with SIF using GOME-2, a sensor capable of measuring both
SIF and NIRV simultaneously. SIF measures light emitted by chloro-
phyll, bypassing the challenge of discriminating between photons
scattered by vegetated and nonvegetated surfaces (11). If our proposed
index of NIRV captures the fraction of NIR reflectance attributable to
vegetation, then NIRV should be highly correlated with SIF across all
pixels, independent of vegetated fraction. On the basis of a global data
set, monthly values of SIF strongly correlate with monthly NIRT

measurements over highly vegetated pixels. However, the correla-
tion decreases with lower vegetated fraction (Fig. 1A). In contrast,
SIF and NIRV are highly correlated across all land sites at the
monthly time scale (Fig. 1B). This agreement corroborates our the-
oretical results, demonstrating that NIRV addresses the mixed-pixel
problem, effectively isolating the proportion of reflectance attribut-
able to vegetation. The link between SIF and NIRV is also found in
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radiation transport simulations (see text S3 and fig. S3). This further
indicates that NIRV should strongly relate to GPP, although NIRV is
likely determined solely by canopy structure. This contrasts with SIF,
which should also contain physiological information through
variations in fluorescence yield.

Much of the excitement about SIF relates to its strong correlation
with GPP (12–15). Monthly average SIF at 0.5° spatial resolution
strongly corresponds with state-of-the-art statistical estimates of
monthly GPP (R2 = 0.73, Fig. 2A) (16). However, available SIF mea-
surements have limited spatial resolution (for example, 40 × 60 km2)
and span a short duration, with measurements extending only back to
2007, limiting their potential applications. In contrast, numerous sen-
sors have measured NIRT and NDVI for the entire globe at moderate
spatial resolution and regular intervals over several decades. Monthly
NIRV, calculated from nadir-corrected Moderate Resolution Imaging
Spectroradiometer (MODIS) reflectances (17), has a higher correlation
with globally gridded GPP than GOME-2 SIF (R2 = 0.91; Fig. 2B).
This strong agreement persists across all biomes, including sparsely
vegetated ecosystems (for example, grasslands), where reflectance-
based approaches traditionally yield high uncertainty (18), further em-
phasizing that NIRV addresses the mixed-pixel problem. The ability of
NIRV to resolve the mixed-pixel problem arises from the combination
of NDVI and NIRT, as evidenced by the comparison of MODIS-
derived NIRT and NIRV against measurements of SIF (fig. S4).

To more directly test the usefulness of NIRV for estimating GPP,
we compared MODIS-based NIRV estimates with monthly observa-
tions of GPP at 105 in situ CO2 flux monitoring sites (Fig. 3A)
(19). Across all sites, the median value of monthly variance in ob-
served GPP explained by NIRV is 76% (Fig. 3B). For these sites, NIRV

explains more of the variance in monthly GPP estimates than either
MODISNDVI or fPAR.NIRV performs aswell asMODISGPP estimates,
although the MODIS GPP algorithm explicitly incorporates additional
observations, including incident photosynthetically active radiation,
temperature, and humidity, in addition to biome-specific terms, to ac-
count for the temperature sensitivity and water stress sensitivity of
photosynthesis (20). This indicates that NIRV relates to key parameters
that determine GPP. Furthermore, the tightly clustered range of values
for the slope of multiyear average monthly GPP as a function of multi-
year average monthly NIRV indicates that NIRV captures parameters
that control GPP over longer time scales as well (Fig. 3C).
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Canopies with high carbon assimilation rates (for example, crops)
display leaves with high photosynthetic capacity to maximize direct
beam radiation, resulting in higher NIRV. A conifer canopy can have
the same fPAR as a crop canopy but has a complex architecture with
clumped and shaded leaves. This canopy has both a lower photo-
synthetic capacity and lower NIRV. This pattern is evident across
the 105 CO2 monitoring sites examined in Fig. 3, with crop sites hav-
ing both 60% higher NIRV and GPP than evergreen sites during the
month of peak GPP, despite the sites sharing similar fPAR values (see
table S5). In this formulation, NIRV describes the relationship between
canopy light capture and GPP. Across the 105 sites we examined, ca-
nopies with higher NIRV have higher light-use efficiencies.

A substantial body of literature supports the hypothesis that leaves
are built and displayed in a way that matches energy absorption to
photosynthetic capacity (6, 7, 21, 22). Because plants allocate photo-
synthetic capacity to optimize resources in a way that tends to fully
exploit captured sunlight, the photochemical capacity of the complete
canopy (including shaded leaves deep in the canopy) directly relates to
the performance of the top leaves of the canopy (10). Canopies with
high photochemical capacity can more readily avoid light saturation,
meaning they should display their leaves to use a higher proportion of
direct beam radiation. This configuration, driven by whole-canopy ca-
pacity, results in higher values of NIRV. We hypothesize that NIRV

captures these variations in canopy architecture, which, in turn, are
the end product of whole-plant optimizations, from the scale of the
chloroplast upward. This theoretical interpretation of NIRV as a proxy
for photosynthetic capacity is further corroborated by a pair of studies
that related NIRT from high-resolution (17m) Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) imagerywith leaf nitrogen content, the
main determinant of photosynthetic capacity (23), and the ratio of sun-
exposed leaf area to total leaf area across broadleaf and conifer forest
plots in the northeastern United States (24). Like nitrogen content,
the ratio of sun to shaded leaves is strongly related to photosynthetic
capacity (25–27). The full extent and origin of theNIRV-photosynthesis
relationship should prove a fruitful area of future study (28).

The strong theoretical foundation of NIRV, combined with its ease
of calculation and applicability to decades of moderate-resolution,
reflectance-based remote sensing data, will facilitate the study of GPP in
natural and agricultural systems. NIRV can also help quantify eco-
system responses to global change and spatial and temporal
A B

I I
Fig. 1. SIF relates to NIRV through surface vegetated fraction. (A) The corre-
lation between NIRT and SIF increases with vegetated fraction. The upper bounds of
the NDVI quartiles are as follows: 0.17, 0.27, 0.37, and 0.72. (B) NIRV closely proxies
multiyear monthly averaged SIF. All data calculated using 2008–2010 GOME-2 data
averaged monthly and regridded to 0.5°. Shading indicates the logged number of
pixels within each bin.
A B

Fig. 2. Comparison of multiyear monthly mean (A) SIF and (B) NIRV against
global data-driven GPP estimates. SIF estimates come from GOME-2 data aver-
aged monthly and regridded to 0.5°. MODIS NIRV estimates were aggregated to
0.5° from 500-m scenes of BRDF-corrected reflectances. GPP estimates come from
the Max Planck Institute upscaling approach (16). Shading indicates the logged
number of pixels within each bin.
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environmental variations. NIRV explains a large fraction of the vari-
ance of GPP on monthly to annual time scales, paving the way toward
improving our understanding of photosynthesis at the global scale.
MATERIALS AND METHODS
Data sets and processing
GOME-2 SIF.
We generated GOME-2 0.5° fluorescence at 740 nm and reflectance at
670 and 780 nm from level 2 data taken from the Aura Validation
Data Center (AVDC) data archive (avdc.gsfc.nasa.gov) and described
by Joiner et al. (29). For each month, we gridded all retrievals to a
global 0.5° grid, excluding retrievals where the solar zenith angle ex-
ceeded 70°. All values of SIF were included in monthly estimates. After
calculating multiyear monthly means, we discarded negative values of
NDVI or SIF. We also excluded SIF retrievals exceeding the 99th
percentile of the multiyear monthly mean from our analysis.
MODIS BRDF-corrected reflectances.
MODIS reflectance data were derived from the MCD43A4.005 BRDF-
Adjusted Reflectance 16-Day L3 Global 500m product hosted on Goo-
gle Earth Engine. To calculate monthly reflectance values, we first took
the median of all available 16-day composite imagery at a 500-m scale.
We then averaged together all 500-m median composite scenes falling
within 0.5° pixels for the global analysis.We repeated this procedure for
the FLUXNET sites, taking the average of all median composite scenes
intersecting a 1-km-diameter circle centered on the latitude and longi-
tude of each site. We used NDVI values already calculated by Google
Earth Engine under the data collection entitled MCD43A4_NDVI.
MODIS vegetation indices and GPP estimates.
We calculated meanmonthly NDVI, fPAR, and GPP for all FLUXNET
sites, following the same procedure used for reflectance data (see
above). All values were calculated using data collections hosted on
Google Earth Engine. For GPP, we used 8-day L4 GPP estimates at
500-m resolution (MOD17A2H.006). For fPAR, we used 4-day L4
fPAR estimates at 500-m resolution (MCD15A3H.006).
FLUXNET data.
We used monthly GPP measurements from the July 2016 release of
the Tier 1 FLUXNET2015 data product. More specifically, we used
GPP calculated with variable USTAR filtering and daytime par-
titioning of fluxes (GPP_DT_VUT_MEAN).
Max Planck Institute GPP estimates.
We calculated the multiyear monthly mean of GPP at the 0.5° scale
from data described by Beer et al. (16). We used the May 2012 release,
downloaded from www.bgc-jena.mpg.de/geodb/projects/Data.php.
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Analysis
General rationale.
Our analyses are based on reflectance values, which is in line with the
data readily available from the satellite record. However, radiance
values (the product of reflectance and the incident light) are probably
the true basis for the correlations we describe. Because the light is ap-
proximately constant in the satellite measurements, reflectance mea-
surements suffice. However, radiances should be used in studies (e.g.,
field measurements over the diurnal cycle) where light is variable.
GOME-2 and MODIS NIRV calculation.
We calculated NIRV as the product of monthly median NDVI and
monthly median NIR reflectance. Before multiplication, we sub-
tracted 0.08 from all NDVI values in an attempt to partially ac-
count for the NDVI of bare soil.
NIRV, GOME-2 SIF, and MPI comparison.
Wecalculated themultiyearmonthlymean ofMODISNIRV, GOME-2
SIF, and MPI GPP from monthly estimates of each product, spanning
from 2008 to 2010, which is the period where we calculated global
NIRV. We excluded all NIRV values less than or equal to zero from
the final comparison under the assumption that NIRV should never
take the value of zero. Although low values ofNIRV showa strong linear
relationship with MPI GPP estimates, zero estimates exhibited almost
no relationship to MPI, suggesting a problem in excluding invalid
MODIS data.
FLUXNET comparison.
FLUXNET2015 data were compared with MODIS-derived NIRV

collected during the same month as the reported GPP measurement.
No multiyear monthly means were used in this portion of the analysis,
with the exception of Fig. 3C.
Open-source software.
All analyses, with the exception of the SCOPE simulations, were per-
formed using the Python programming language. We processed
netCDF files and tabular data using xarray (30) and pandas (31).
We used NumPy (32) and SymPy (33) for numerical simulations,
matplotlib (34) and seaborn (35) for visualization, and Jupyter note-
books for organizing analyses (36).
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/3/e1602244/DC1
text S1. Sellers’ two-stream approximation
text S2. 2D reflectance model
text S3. NIRV and SIF simulations using SCOPE
table S1. Parameter values for two-stream approximation model.
A B C

l l l

Fig. 3. Convergence of scaling between NIRV and GPP. (A) For each site (two represented here), we fit a linear regression against average monthly GPP and the
monthly value of MODIS NDVI, fPAR, GPP, and NIRV (shown). (B) NIRV explains more of the variation in monthly observed GPP than MODIS NDVI and fPAR. There is no
significant difference in the performance of NIRV and MODIS GPP across 105 FLUXNET sites. Whiskers denote the 5th and 95th percentile of site-level R2, with markers
indicating outlying sites. (C) Slope parameter of site-level regressions (normalized between 0 and 1) of annual-average monthly NIRV and annual-average monthly GPP
from FLUXNET sites. Black lines represent the slope parameters of individual sites.
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table S2. Model parameters used in 2D reflectance model.
table S3. Parameter ranges used in 2D reflectance model sensitivity test.
table S4. SCOPE parameter values.
table S5. Multiyear monthly average NIRV, fPAR, and GPP, by land cover classification for 105
FLUXNET sites.
fig. S1. NIRV more strongly predicts canopy fPAR than does NDVI.
fig. S2. NIRV as a function of NDVI and NIRT.
fig. S3. Linear relationship between modeled NIRV and SIF.
fig. S4. Comparison of the monthly MODIS-derived (A) NIRT and (B) NIRV against GOME-2
measurements of SIF.
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