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Abstract

Bone remodeling is a complex process involving cell-cell interactions, biochemical signaling and 

mechanical stimuli. Early models of the biological aspects of remodeling were non-spatial and 

focused on the local dynamics at a fixed location in the bone. Several spatial extensions of these 

models have been proposed, but they generally suffer from two limitations: first, they are not 

amenable to analysis and are computationally expensive, and second, they neglect the role played 

by bone-embedded osteocytes. To address these issues, we developed a novel model of spatial 

remodeling based on the principles of evolutionary game theory. The analytically tractable 

framework describes the spatial interactions between zones of bone resorption, bone formation and 

quiescent bone, and explicitly accounts for regulation of remodeling by bone-embedded, 

mechanotransducing osteocytes. Using tools from the theory of interacting particle systems we 

systematically classified the different dynamic regimes of the spatial model and identified regions 

of parameter space that allow for global coexistence of resorption, formation and quiescence, as 

observed in physiological remodeling. In coexistence scenarios, three-dimensional simulations 

revealed the emergence of sponge-like bone clusters. Comparison between spatial and non-spatial 

dynamics revealed substantial differences and suggested a stabilizing role of space. Our findings 

emphasize the importance of accounting for spatial structure and bone-embedded osteocytes when 

modeling the process of bone remodeling. Thanks to the lattice-based framework, the proposed 

model can easily be coupled to a mechanical model of bone loading.
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1 Introduction

Bone remodeling is a complex mechano-biological process that is critical for maintenance of 

the healthy skeleton [1]. During bone remodeling, bone-resorbing osteoclasts remove old 

and damaged bone while bone-matrix producing osteoblasts generate new bone tissue to 

restore structural integrity, see Figure 1A. The recruitment of osteoclasts, and subsequently 

osteoblasts, is mediated by bone-embedded, mechano-sensing osteocytes, which translate 

load-induced mechanical strains into signals to control the adaptive remodeling process [2]. 

Disruption of the interactions between the key cellular components of remodeling can lead 

to pathological states. Such is the case in osteoporosis, where hormonal changes during 

menopause cause imbalances in the remodeling process and can lead to fracture-prone 

bones, and in Paget’s disease, a condition where bone undergoes cycles of uncontrolled 

resorption and formation [3].

Over the past decade, there has been a surge in quantitative modeling of the cellular 

processes and signaling pathways that regulate bone remodeling. The first such models, 

developed by Lemaire [4], Komarova [5, 6], and colleagues, focused on the temporal 

dynamics of remodeling at a fixed location in the bone. Based on systems of ordinary 

differential equations (ODE), these models successfully described the interactions between 

osteoclasts and osteoblasts and the resulting bone mass balance. The original ODE models 

have since been applied and extended by various authors, see e.g. the work by Pivonka, [7], 

Buenzli [8], Ji [9], and colleagues. For further references, as well as an overview of 

modeling studies with focus on the mechanical aspects of remodeling, we refer to the review 

articles [10,11].

While ODE models provide valuable insights into the complex dynamics of physiological 

and pathological bone turnover, they are not able to capture salient spatial features of the 

remodeling process [12]. In fact, the latter takes place on the complex geometries of cortical 

and trabecular bone, and paracrine signaling between bone cells, which is mediated by 

soluble chemokines, allows for non-local regulation [13]. To model such non-local 

phenomena, our group [14–16] and others [17, 18] previously developed partial differential 

equation (PDE) models of bone remodeling. In addition, discrete agent-based models of the 

spatial remodeling dynamics were introduced to study the dynamics of individual 

remodeling units [19–21]. Spatial aspects of the remodeling biology are also captured in 

various biomechanical models of bone adaptation [22–24].

These spatial extensions of the original ODE models are endowed with high-dimensional 

parameter spaces and their analyses rely on computer simulations. In consequence, to gain 

mechanistic insights and understand which model components are relevant to regulate and 

maintain physiological remodeling, systematic and extensive parameter space explorations 

are necessary, and a complete characterization of the dynamic regimes is generally beyond 

reach. Furthermore, most spatial models focus on osteoclast and osteoblast dynamics only, 

while treating bone as a passive constituent that is either resorbed and deposited by the two 

active players of the process. Based on experimental evidence [25,26] however, it has 

become clear that quiescent bone and embedded, mechanotransducing osteocytes play a key 

role in the regulation of remodeling.
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In view of the above limitations of current spatial models, our objective was to develop a 

spatial model of bone remodeling biology that (i) is amenable to analysis and complete 

classification in the sense of the original, reductionist ODE model by Komarova and 

colleagues [5]; and (ii) treats quiescent bone and embedded osteocytes as an active part of 

the remodeling dynamics. We focused on trabecular remodeling and developed our model in 

the framework of evolutionary game theory (EGT). The latter was introduced by Maynard 

Smith in 1982 [27], and has since been used to study a wide range of systems in biology and 

ecology [28–31]. The analysis of spatial EGT models poses substantial technical difficulties 

and is a field of active research. Recent advances by Cox, Durrett and Perkins [32] and 

Durrett [33] on the weak selection limit for EGTs enabled the analyses in this article.

2 Methods

2.1 Spatial Model

We start by introducing the general idea, and then proceed to construct the formal process. 

To model physiological remodeling of trabecular bone (Figure 1A) in a discrete spatial 

setting, we partition the volume of trabecular bone into zones of bone resorption, bone 

formation and quiescent bone. Zones of resorption are populated by bone matrix degrading 

osteoclasts, and zones of formation are populated by osteoid producing osteoblasts. 

Quiescent zones on the other hand consist of bone matrix and embedded osteocytes. We then 

allow the different zones to interact in a probabilistic manner, resulting in growing and 

shrinking patches of resorption, formation and quiescence. For example, if a zone of 

formation (osteoblasts) is adjacent to a zone of quiescence (bone), then the zone of 

formation is expected to convert to a zone of quiescence, consisting of newly formed bone 

with embedded osteocytes. Conversely, if a zone of quiescence (bone) is adjacent to a zone 

of resorption (osteoclasts), the former is expected to vanish and be replaced by the 

expanding zone of resorption. The resulting process is an evolutionary competition between 

neighboring zones. Due to the complex interactions between cell types, the probability of 

each zone to invade or to be invaded depends on the make-up of its neighborhood.

To formally construct this spatial evolutionary process, we consider a fixed bone volume and 

partition it into a regular three-dimensional lattice with N elements. Each element is 

occupied by one of the three zones, and the zones are labeled as type 1 (resorption), type 2 

(formation) and type 3 (quiescence). There is flexibility with respect to the physical size 

attributed to the lattice elements. However, the side length of each element needs to be larger 

than the size of individual osteoclasts because they are the largest bone cells and measure 

approximately 50 microns in diameter [34]. In addition, the lattice elements should be small 

enough to allow for sufficient spatial resolution of the process.

Following the principles of spatial EGT, see also [33], we now introduce the dynamics of the 

system as a continuous-time Markov process on the lattice. First, we denote by ξt(x) ∈ {1, 2, 

3} the type occupying lattice element x at time t. Next, for each element x on the lattice and 

time t, we introduce an instantaneous expansion rate ψt(x) (referred to as its fitness in EGT), 

which specifies the elements’ exponentially distributed waiting time until expansion. At the 

time of expansion, the expanding element places an identical copy of itself onto a 
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neighboring element, chosen uniformly at random. The instantaneous expansion rate of x is 

determined by the make-up of its surrounding elements,

(1)

where y ~ x denotes the set of nearest neighbors of x, and Ḡ is a 3×3 matrix whose entries 

specify the stochastic expansion rates. In other words, Ḡ (i, j), also denoted as ḡij, is the 

expansion rate of a type-i zone in the presence of a type-j zone, see Figure 1B. For example, 

ḡ12 is the additive expansion rate of a resorption zone in presence of a formation zone, and 

ḡ31 is the expansion rate conferred to a quiescent zone by a formation zone. When element x 
expands, one of its nearest neighbors y is chosen uniformly at random and its resident type, 

ψt(y), is replaced by the resident type ψt(x) at element x. Each element has its own 

instantaneous expansion rate, which depends on the constituency of its neighbors through 

(1), and elements with higher expansion rates tend to take over their neighbors, whereas less 

proliferative elements in turn are eliminated by their expanding neighbors.

In order to enable systematic analyses of the spatial game, the expansion rate matrix is 

rewritten as Ḡ ≡ 1 + ωG, where 1 is the 3 × 3 matrix consisting of all 1’s, and G = (gij) is a 

real-valued matrix with possibly negative entries. As explained in section 3.1, the resulting 

dynamics are a perturbation of the standard voter model, and a rigorous analysis of the 

system is possible in the weak selection limit as ω → 0. Finally, we point out that the matrix 

G corresponds to the classical pay-off matrix of the non-spatial evolutionary game; its 

entries capture the positive and negative interactions between the model constituents as 

shown in Figure 1C.

2.2 Parameter Considerations

Taking into consideration established knowledge about the biology of bone remodeling, we 

can make a priori restrictions on the 9-dimensional parameter space defined by the pay-off 

matrix G. These constraints are summarized and justified in Table 1. Furthermore, because 

subtracting g11 from the first column in G affects neither the non-spatial replicator dynamics 

nor the weak selection limit of the spatial game [33], we will henceforth consider the 

transformed matrix G,

(2)

see Table 1 for the definitions of αi and βi in terms of the gij.
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2.3 Replicator Dynamics of Non-spatial Model

Spatial models are more difficult to analyze than their temporal counterparts and analyses 

rely on extensive simulations. Therefore, an important question in every spatial modeling 

study is the necessity to account for space explicitly. To address this issue, we introduce here 

the non-spatial version of the evolutionary game model. This version neglects spatial 

structure and assumes that the distinct trabecular zones are well-mixed and thus all equally 

likely to interact with each other. Instead of analyzing the fully stochastic system, we notice 

that the number of lattice elements in a bone is large (assuming a diameter of 50 – 100 

microns), and hence we can study the problem in the deterministic limit as N → ∞. In this 

approximation, the non-spatial EGT dynamics are described by the standard replicator 

dynamics from EGT [27]. Formally, we denote by x(t):= (x1(t), x2(t), x3(t)) ≥ (0, 0, 0) the 

densities of resorptive (x1), formative (x2) and quiescent (x3) zones, respectively, with x1 + 

x2 + x3 ≡ 1 at all times t ≥ 0. Then, as N → ∞, the non-spatial dynamics of the well-mixed 

system are described by the replicator equations

(3)

where Fi(x):= (Gx)i is the expansion rate of species i, and 〈F〉(x):= xT Gx is the average 

expansion rate of the entire population [27]. The interior fixed point for the replicator 

dynamics (3), if it exists, is given by

(4)

where D is the sum of the three numerators. The dynamics of the replicator equation (3) are 

discussed in Appendix A.

2.4 Numerics

All model simulations were performed using the software MatLab (Version 8.5.0, The 

MathWorks Inc. 2015). The built-in Runge-Kutta solver ode45 was used to solve the 

deterministic replicator equations. For the fully spatial model, we used a Gillespie algorithm 

to simulate the stochastic process on a cubic lattice with L3 nodes and periodic boundary 

conditions. Initial fields were generated using a product measure as specified in the figure 

captions.

3 Results

In this section, we first analyze the fully spatial model, classify its dynamic regimes and 

identify zones in parameter space that allow for coexistence of resorption, formation and 

quiescence. It is important to emphasize that coexistence refers to global coexistence in the 

sense that all three types are present on the lattice although only one type can be present 
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locally in one lattice element. We then study emerging spatial structure based on three-

dimensional simulations of the evolutionary process. Finally, we compare the non-spatial 

and spatial versions of the game.

3.1 The Spatial Game

The spatial game dynamics are determined by the fitness function ψt(x) in equation (1), with 

transformed pay-off matrix Ḡ = 1 + ωG, where G is the pay-off matrix (2) and ω > 0 is 

small enough so that all entries of Ḡ are positive. The resulting dynamics are a perturbation 

of the well-studied voter model, see e.g. [45]. Thanks to recent theoretical results by Cox, 

Durrett and Perkins [32] and Durrett [33], the behavior of the spatial stochastic model can be 

analyzed in the weak selection limit. More precisely, if we let ω → 0 and simultaneously 

shrink space by ~ ω2 and speed up time by ~1/ω, then the temporal evolution of the density 

of species i at location x, denoted by ui(x, t), evolves according to the PDE

(5)

Here, u = (u1, u2, u3), Δ is the Laplace operator in ℝ3, and  is the rate of change on the 

right-hand side of the replicator equation (3), with the pay-off matrix G replaced by H 
defined as [33]

The constant θ cannot be calculated exactly, but numerical simulations estimate θ ≈ 0.485 

[33]. In terms of αi and βi, the explicit expression of the H matrix is

(6)

with the following constraints imposed by (2): h13, h32 > 0, h23, h31 < 0, and h12, h21 ∈ ℝ. In 

addition to the limiting behavior of the PDE (5), there are analytic coexistence results for ω 
finite but small enough [32]. Details of the complete analysis are found in Appendix B, and 

the results are summarized in Figure 2A, where the phase diagram is projected onto the (α3, 

β3)-plane, distinguishing zones of three-species coexistence (green) and lack of coexistence 

(red). Because we were not able to determine the qualitative behavior of all 7 scenarios 

based on theoretical results, we ran representative three-dimensional simulations to confirm 

the conjectured behavior in each case, see Figure 2B.

As illustrated in Figure 2A, the phase transition from no coexistence (red) to coexistence 

(green) occurs across the boundaries between Cases 2B and 4A, and Cases 1A and 1B, 
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respectively. The slope of the linear boundary between Cases 2B and 4A is uniquely 

determined by the parameters α3 (osteoblast-derived regulation of osteoclasts) and β3 

(difference between osteoclast-derived stimulation of osteoblasts and osteoclast-derived 

autocrine stimulation). In contrast, the nonlinear shape of the boundary between Cases 1A 

and 1B depends on all model parameters, see Appendix B for details. In the regions of no 

coexistence, there is either complete takeover by resorption (Cases 2A, 2B and 3) or the 

system converges to a stable resorption-formation equilibrium (Case 1B), see Figure 2B. 

Among cases with three-species coexistence, Case 1A converges to a fixed point in the 

interior of the simplex, whereas Cases 4A and 4B exhibit irregular oscillations that are 

bounded away from the edges of the simplex, see Figure 3A. Increasing the domain size was 

found to attenuate the oscillations in Case 4B, see Figure 3B.

3.2 Emerging Spatial Structure

Next we sought to characterize the spatial structure of the evolutionary game in regimes that 

allow for three-species coexistence, i.e. Cases 1A, 4A and 4B. To this end, we performed 

stochastic simulations of the three-dimensional evolutionary process and visualized 2D 

sections as shown in Figure 4. Starting from randomly distributed initial conditions, we 

observed the emergence of spatial clustering of the three coexisting species. The resulting 

clusters of bone tissue, surrounded by zones of formation and resorption, are reminiscent of 

the sponge-like patterning in vertebrate trabecular bone.

In Section 3.1 we saw that Case 1A reaches a global equilibrium state, whereas Cases 4A 

and 4B exhibit long-time oscillatory behavior, see also Figure 3. Case 4B is particularly 

interesting with respect to emerging spatial structure. In fact, following a fixed volume 

within the same bone section over time, see the red frame in Figure 5, we found that the 

patch was cyclicly dominated by formation, quiescence and resorption. As we will see in 

Section 3.3, these local dynamics are consistent with the outward spiraling trajectories of the 

associated replicator dynamics. However, because the total volume consists of many such 

asynchronously cycling patches, the global dynamics become stabilized and exhibit the 

bounded behavior shown in Figure 3. Overall, this example illustrates how spatial structure 

can fundamentally alter the dynamics, and we turn our attention now to a systematic 

exploration of the role of spatial structure in bone remodeling.

3.3 The Role of Space in Bone Remodeling

To enable a direct comparison between the spatial game and the replicator dynamics of the 

non-spatial version, we first need to analyze the replicator dynamics.

Replicator Dynamics—Similarly to the spatial case, analysis of the replicator dynamics 

of the non-spatial game revealed seven dynamic regimes, see Appendix A for details. Figure 

6A illustrates the coexistence regions in a phase diagram projected onto the (α3, β3)-plane, 

and Figure 6B provides a concrete example for each case. As seen in Figure 6A, a necessary 

condition for coexistence is β3 = g21 − g11 > 0, which means osteoclast-derived paracrine 

stimulation of osteoblasts (g21) dominates osteoclast-derived autocrine stimulation (g11). If 

this condition is not satisfied, i.e. β3 < 0, resorption outperforms formation and the global 

bone density continues to decrease until it vanishes, see Cases 2A, 2B and 3 in Figure 6B. 
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On the other hand, if β3 > 0, then coexistence is possible for specific parameter 

combinations, namely Cases 1A and 4A. The boundaries between physiological and 

pathological regimes (dashed lines between Cases 1A/1B and 4A/4B, respectively) depend 

on the values of the remaining model parameters in a nonlinear fashion. These boundaries 

specify upper and lower bounds for α3 that allow for physiological remodeling, and 

coexistence is possible for a range of both negative and positive values. In case 4B, the 

system cycles through resorption-, formation- and quiescence-dominated regimes and spirals 

towards the boundary of the simplex, see Figure 6B.

Comparison to Spatial Dynamics—Comparing the phase diagram of the spatial game 

in Figure 2A to its non-spatial counterpart in Figure 6A, we make several observations. First, 

the four uniform quadrants corresponding to Cases 1, 2, 3 and 4 of the non-spatial game are 

transformed into two larger (Cases 3 and 4) and two smaller (Cases 1 and 2) sections in the 

spatial game. It follows that for a given parameter set, the dynamics of the non-spatial 

version can be fundamentally different from the dynamics of the spatial version. This is 

particularly striking in Case 4B, which is unstable in the non-spatial setting, but becomes 

stabilized in the spatial setting: instead of spiraling outward towards the boundary of the 

simplex in absence of spatial structure (see Case 4B in Figure 6B), the system remains 

confined to the interior of the simplex in the spatial model (see Case 4B in Figures 2B and 

3). Due to this stabilizing effect of space, the entire Case 4 allows for coexistence in the 

spatial setting. In other words, spatial structure stabilizes the dynamics.

4 Discussion

The remodeling of trabecular bone is an intrinsically spatial process regulated by complex 

cellular and biochemical processes. To date, most mathematical models of the biological and 

biochemical mechanisms of remodeling have been formulated in non-spatial settings. 

Existing spatial generalizations of these models suffer from two shortcomings: they are 

high-dimensional and not amenable to systematic analyses and they do not account for the 

the role played by bone-embedded osteocytes. In this work, we sought to overcome these 

limitations by developing a three-dimensional evolutionary game theory model of bone 

remodeling that explicitly accounts for bone-embedded osteocytes.

The proposed model describes the nonlinear interactions between zones of resorption, 

formation and quiescence in a reductionist framework and is amenable to analysis in both 

the spatial and non-spatial settings. Direct comparison between spatial (Figure 2A) and non-

spatial (Figure 6A) models revealed the existence of parameter space regions that lead to 

coexistence of resorption, formation and quiescence in the spatial setting, but not in the well-

mixed setting (see Case 4B). This emphasizes the critical role of spatial structure in enabling 

physiological remodeling regimes, and highlights the necessity to use fully spatial models 

when seeking to elucidate the biological mechanisms of the process.

Case 4B, also known as the unstable rock-paper-scissors game [27], is a particularly 

interesting scenario. In the non-spatial scenario it was found to be unstable with alternating 

periods of resorption-, formation- and quiescence-dominated states, reminiscent of the 

uncontrolled episodes of resorption and formation in Paget’s disease [3, 46]. In the spatial 
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setting on the other hand, cyclic turnover of the three types remained present within spatially 

separated patches, but due to asynchronous cycling of the patches, the overall dynamics 

became stabilized. Based on the reasoning by Durrett and Levin [47] and simulations 

(Figure 3B), we conjecture that the cyclic behavior may be a finite size effect and would 

eventually disappear for sufficiently large domain sizes. Such properties of non-hierarchical 

competition models in spatial settings, and the role of space in dynamic multi-species 

models in general, have long been acknowledged in the mathematical ecology literature [47, 

48]. To our knowledge, we are the first to directly address this issue in the context of bone 

remodeling.

By performing systematic model analyses we identified parameters critical for maintaining 

physiological remodeling in the sense of three species coexistence. As shown in the phase 

diagram in Figure 2A, two parameters are particularly important for coexistence: β3 (= g21 − 

g11), which is the balance between osteoclast-derived stimulation of osteoblasts and 

osteoclast-derived autocrine stimulation, and α3 (= g12), which represents osteoblast-derived 

regulation of osteoclasts. In the spatial game, coexistence is ensured whenever β3 > 0 and α3 

< 0, as well as a small extension of this quadrant, see Cases 4A and 4B in Figure 2A. The 

first constraint, β3 > 0, emphasizes the importance for osteoclasts to effectively recruit 

osteoblasts after resorption has been completed; deficiencies in this mechanism lead to loss 

of coexistence due to unbalanced bone resorption. The second constraint, α3 < 0, requires 

there to be a negative feedback from osteoblasts to osteoclasts in order to avoid immediate 

resorption of newly formed tissue. If this constraint is violated, osteoclasts invade zones of 

formation and trigger onset of pathological remodeling. This is in alignment with our 

previous findings regarding the critical role of the spatial expression profiles of RANKL and 

its inhibitor OPG, by which osteoblasts control resorptive activity [14–16]. Finally, a note 

about the role of the remaining model parameters. As long as α3 and β3 satisfy the Case 4 

constraints, coexistence is guaranteed independent of the values of α1, α2, β1, and β2. 

However, for α3 and β3 satisfying the Case 1 constraints, these four parameters determine 

the shape of the boundary between coexistence (1A) and lack thereof (1B), see dotted line in 

Figure 2A. Most importantly, all six model parameters play a role in determining the 

quantitative outcome of the spatial game, and hence the bone density in the stationary state 

of the system.

Previously, Dingli and colleagues [49] used a non-spatial EGT model to study the 

interactions between multiple myeloma cells, osteoclasts and osteoblasts. Their underlying 

model of bone remodeling (in absence of multiple myeloma cells) leads to different 

conclusions, even if analyzed in the spatial context. In fact, it is easy to show that the Dingli 

model allows for physiological remodeling only in Cases 1A and 1B of Figure 6A (see 

Section 6 of [33]). In particular, it exhibits pathological remodeling in the entire lower right 

quadrant, which was found to exhibit stable coexistence in the three-player game thanks to 

the presence of osteocyte regulation. While there is insufficient experimental evidence to test 

these differential predictions, recent experimental [25,26] and theoretical work [50–52] has 

emphasized the importance of osteocyte-derived regulation of remodeling.

The model developed in this study captures the dynamics of the cellular interactions 

between osteoclasts, osteoblasts, and bone-embedded osteocytes in a reductionist, low-
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dimensional framework. Importantly, in order to enable systematic analyses of the models, 

we made a number of simplifying assumptions about the model structure. In future work, it 

will be important to address the sensitivity of the model to different functional forms of the 

interaction terms. Furthermore, we only considered nearest neighbor interactions between 

lattice elements, and an investigation of the impact of long-range interactions that account 

for diffusive cytokines poses an interesting research question. Another important aspect for 

future efforts is a full mechano-biological extension of the model. In fact, we did not account 

for mechanical loading, which plays an important role in guiding the overall bone 

remodeling process [1]. However, thanks to the lattice-based formulation of the evolutionary 

game model, it can easily be coupled to a mechanical loading model, especially within the 

continuum mechanics framework developed by Hellmich and colleagues [53, 54] and 

Scheiner and colleagues [55], or the lattice-based approach by Weinkamer and colleagues 

[56]. In this context, it would be interesting to further investigate the observed clustering 

dynamics of bone tissue under different regimes of loading, and to characterize the 

clustering length scales. Finally, the current model constitutes a stepping stone to the study 

of stromal cells in physiological and pathological remodeling, and the interactions between 

bone and cancer cells in metastatic bone cancer and multiple myeloma.
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A Analysis of the Non-Spatial Game

To analyze the replicator equation (3) on the simplex defined by x(t) ≥ 0 and x1(t)+x2(t)
+x3(t) = 1, we first analyze the three subgames that take place on the edges of the simplex: 

resorption-formation, resorption-quiescence, and formation-quiescence. Denoting by G = 

(gij), i, j ∈ {a, b} the pay-off matrix of a generic two-player game with players a and b of 

densities xa and xb, respectively, the interior fixed point, if it exists, is located at

Subgame 1: Resorption (r) vs Formation (f). From (2), the subgame pay-off matrix between 

resorption and formation is

(7)

with potential interior fixed point . Since there are no a priori restrictions on α3 

and β3 (see Table 1), we distinguish between four different cases. (i) α3 > 0 and β3 > 0: in 

this case, there is an interior fixed point, and by noticing that xr evolves according to (3),

(8)

we find that x̄r is attracting. (ii) α3 < 0 and β3 < 0; in this case there is an interior fixed point, 

and by (8) it is repulsive. (iii) α3 > 0 and β3 < 0: in this case there is no interior fixed point, 

and resorption will take over. (iv) α3 < 0 and β3 > 0: in this case there is no interior fixed 

point, and formation will take over.

Subgame 2: Resorption (r) vs Quiescence (q). The pay-off matrix of this subgame is

(9)

Recalling that α2 < 0, β2 > 0 (Table 1), we find , which means there is no 

interior fixed point. In addition, the evolution equation for resorption is
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(10)

which means x̄r = 1 is globally attracting. This is consistent with the biology because as long 

as there are active osteoclasts attached to the bone matrix, the latter should be completely 

resorbed.

Subgame 3: Formation (f) vs Quiescence (q). The pay-off matrix is

(11)

and the evolution equation for formation is

(12)

Due to the parameter restrictions α1 < 0 and β2 > 0 from (2), there is no interior fixed point: 

. We note that the resulting attractive fixed point at x̄f = 0 is consistent 

with the biology which requires zones of formation to produce new bone.

Now that we have a complete understanding of the subgame dynamics, we can investigate 

the three-player game. An important concept in this analysis is the notion of invadability of 

edge fixed points [57], which ascertains whether a small addition of player 3 can invade the 

edge equilibrium between players 1 and 2 or not. Because Durrett [33] previously 

characterized the dynamic regimes relevant to this analysis, we follow his notation and refer 

to his proofs where possible. On occasion, we will also refer to the work of Bomze [58,59] 

who has provided a complete characterization of the the replicator dynamics on the simplex.

Due to the parameter restrictions listed in Table 1, there are a total of seven different 

dynamic regimes to be discussed below. The corresponding partition of parameter space in 

the plane spanned by α3 and β3, together with examples of trajectories for all seven cases, 

are shown in Figure 2.

Case 1

α3 > 0 and β3 > 0. On the resorption-formation edge of the simplex, there is an attracting 

edge equilibrium at  and . We distinguish 

two subcases depending on whether quiescence can invade this equilibrium or not. 

According to (3), invadability is possible if the expansion rate of quiescence exceeds the 

average expansion rate in the system, F3 > 〈F〉, which is equivalent to
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(13)

• Case 1A. If condition (13) is satisfied, quiescence can invade the resorption-

formation equilibrium, and there is an attracting interior fixed point, see Example 

7.3 in [33].

• Case 1B. If condition (13) is not satisfied, quiescence cannot invade the 

resorption-formation equilibrium, and there is no interior fixed point; all 

trajectories converge onto the resorption-formation equilibrium, see example 

7.3.D in [33].

Case 2

α3 < 0 and β3 < 0. There is a repelling equilibrium on the resorption-formation edge. First, 

we note that the numerator of ρ1 in (4) is positive. The numerator of ρ3 is positive if and 

only if condition (13) is satisfied, which is equivalent to

(14)

Similarly, the numerator of ρ2 is positive if and only if β2β3 + α1α2 − α2β2 > 0, which is 

equivalent to

(15)

• Case 2A. If condition (14) is satisfied, α2/β3 > 1. This implies that (15) is 

satisfied, too, and hence there is an interior fixed point. This is the time-reversed 

case 15 in [58], which means the interior fixed point is unstable and the vertex 

(1, 0, 0) is globally attracting.

• Case 2B. If condition (14) is not satisfied, the numerator of ρ3 is negative, 

whereas the one of ρ1 remains positive. In consequence, there is no interior fixed 

point. This corresponds to the time-reversal of case 41 in [58], and (1, 0, 0) is 

again the global sink.

Case 3

α3 > 0 and β3 < 0. In this case, there are no edge fixed points, and resorption will take over, 

see Example 7.4.A in [33].
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Case 4

α3 < 0 and β3 > 0. In this case, the game matrix is a generalized Rock-Paper-Scissors game. 

There is an interior fixed point, and its stability is determined by the sign of Δ = β1β2β3 + 

α1α2α3, see example 7.4 in [33].

• Case 4A. If Δ > 0, then there is an interior fixed point, and the solutions spiral 

inwards toward the fixed point.

• Case 4B. If Δ < 0, then the system is unstable and the boundary of the simplex is 

a limit cycle.

Note that if Δ = 0, there is a 1-parameter family of periodic orbits, but this is on a set of 

measure zero in parameter space, so we are not concerned with this case.

B Analysis of the Spatial Game

To characterize the dynamics of the spatial game, we need to analyze the limiting behavior 

of the system in the weak selection limit, characterized by the PDE (5). Since the behavior 

of this equation is determined by the structure of the modified pay-off matrix H, we first 

analyze the local dynamics specified by the nonlinear reaction term ϕH in (5). In other 

words, we study the behavior of equation (3) where we replace G by H. Based on these local 

analyses, and where possible, we then refer to the general theory for proofs about 

coexistence in the fully spatial equation (5). For cases where we cannot rigorously prove 

coexistence (or lack thereof), we will rely on the local analyses to make conjectures. The 

latter are then corroborated by means of extensive computer simulations, see Figure 2. 

Analyzing first the embedded two-player games as in the non-spatial scenario (see Appendix 

A), it is straightforward to establish that quiescence dominates formation, and resorption 

dominates quiescence. The outcome of the resorption-formation game depends on the 

respective signs of h12 and h21, which are determined by

and

Case 1

If h12, h21 > 0, then as in Case 1 of the non-spatial game, there is an attracting fixed point on 

the resorption-formation edge, and we are interested in the invadability of this edge 

equilibrium. The latter is determined by the invadability condition
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(16)

• Case 1A. If condition (16) is satisfied, the resorption-formation equilibrium of 

the H-matrix replicator dynamics is invadable. It follows from the theory 

developed in [33] that there is an interior attracting fixed point for the spatial 

game, see Example 7.3 in Section 8.3 of [33].

• Case 1B. If condition (16) is not satisfied, the resorption-formation equilibrium 

is not invadable, and the H-matrix replicator dynamics do not admit coexistence 

of all three species. We conjecture that the same conclusion holds for the spatial 

game, but we are not able to explicitly prove this assertion. Nevertheless, 

simulations corroborate the conjecture, see Figure 2B.

Case 2

If h12, h21 < 0, then the resorption-formation subgame has a repelling fixed point, with two 

possible cases:

• Case 2A. If (16) is satisfied, the boundary equilibrium is invadable, and there is 

no interior fixed point for the H-matrix replicator dynamics. In the spatial game, 

we conjecture takeover off resorption, and simulations support this hypothesis, 

see Figure 2B.

• Case 2B. If (16) is not satisfied, the boundary equilibrium is not invadable, and 

there is an unstable interior fixed point. Again, we conjecture takeover by 

resorption in the spatial game, and corroborate the conjecture by simulation, see 

Figure 2B.

Case 3

If h12 > 0 and h21 < 0, then the resorption-formation subgame is dominated by resorption. 

We conjecture take-over by resorption in the spatial game and corroborate this by 

simulation, see Figure 2B.

Case 4

If h12 < 0 and h21 > 0 then the H-matrix dynamics constitute a generalized Rock-Paper-

Scissor game, and the outcome of the temporal dynamics is determined by the sign of Δ:= 

h13h21h32 + h12h23h31.

• Case 4A. If Δ > 0, there is an attracting interior fixed point for the H-matrix 

replicator dynamics. While it seems intuitive that this leads to coexistence in the 

spatial case a proof is out of reach. We corroborated our hypothesis by 

simulation, see Figures 2B and 3.

• Case 4B. If Δ < 0, then the interior fixed point is unstable, and the solutions to 

the H-matrix replicator dynamics spiral outwards (with the boundary of the 

simplex as a limit-cycle). Following the discussion of non-hierarchical 
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competition models by Durrett and Levin [47], we conjecture long-time 

coexistence in the spatial game. Simulations corroborated this hypothesis, see 

Figures 2B and 3.
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Figure 1. Bone Remodeling as a Spatial Evolutionary Game
(A) Bone remodeling is a complex multicellular process necessary for maintenance and 

adaptation of a healthy skeleton. Bone resorbing osteoclasts (purple) remove old and 

damaged bone (yellow), and osteoblasts (green, round) produce new bone matrix. Once 

osteoblasts have completed their task of producing new bone, they either die or become 

embedded in the bone tissue where they differentiate into osteocytes (green, star-shaped). 

Osteocytes are connected through a complex network and are thought to play an integral role 

in sensing bio-mechanical stimuli and translating them into chemical signals to orchestrate 

the remodeling process by osteoclasts and osteoblasts. (B). In the spatial setting, the 

expansion rate of a zone (center) is determined by the constitution of its neighbors and the 

corresponding interaction strengths ḡXY. Note that ḡXY quantifies the expansion rate 

contribution of a zone of type Y to a zone of type X. The contributions are additive, see 

equation (1). (C) The pay-off matrix G = (gij) of the non-spatial evolutionary game specifies 

the interaction network between resorption (R), formation (F) and quiescence (Q). Note that 

the expansion rate and payoff matrices are related by Ḡ = 1 + ωG.
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Figure 2. Coexistence in the Spatial Model
(A) Phase diagram showing regions of coexistence (green) and lack of coexistence (red) in 

the (α3, β3)-plane. The (×) mark the parameter choices for the examples in panel B; the 

remaining model parameters were set to α1 = −0.1, α2 = −0.5, β1 = 0.6, β2 = 0.2, θ = 0.485, 

ω = 0.1. (B) For each case in panel A, a realization of the spatial stochastic process is 

simulated on a cubic lattice of side length L = 100 over 2 · 109 iterations (corresponding to ≈ 
2000 time units). At simulation Start, the field is seeded using a product measure with 

probabilities 0.2 (R), 0.3 (F) and 0.5 (Q), respectively. The resulting trajectories are 

visualized in ternary plots and terminate at the End symbol. The values of α3 and β3 are 

indicated by (×) in panel A, and all remaining parameters as specified above.
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Figure 3. Bone Density Evolution in Coexistence Regime
(A) For Cases 1A, 4A and 4B, which all exhibit long-term coexistence (see Figure 2A), the 

evolution of the global bone density is shown over time. In Case 1A, the bone density 

quickly approaches its steady state value. In Case 4A and 4B, the system undergoes bounded 

oscillations. In all simulations, θ = 0.485, ω = 0.1, and remaining parameters as follows: 

Case 1A α1 = −0.1, α2 = −0.5, α3 = 0.2, β1 = 0.6, β2 = 0.2, β3 = 0.3; Case 4A: α1 = −0.1, 

α2 = −0.5, α3 = −0.2, β1 = 0.6, β2 = 0.2, β3 = 0.4; Case 4B: α1 = −0.1, α2 = −0.5, α3 = 

−0.4, β1 = 0.6, β2 = 0.2, β3 = 0.1. (B) For Case 4B, the process is simulated for two domain 

sizes, L = 100 and L = 150, respectively. Remaining parameters: θ = 0.485, ω = 0.1, α1 = 

−0.1, α2 = −0.5, α3 = −0.4, β1 = 0.6, β2 = 0.2, β3 = 0.1.
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Figure 4. Spatial Structure of Coexistence
For each of the three cases that allow for coexistence in the spatial game (see Figure 2A), a 

realization of the stochastic process was simulated on a cubic lattice of side length L = 100. 

The initial field is seeded using a product measure with probabilities 0.2 (R), 0.3 (F) and 0.5 

(Q), respectively, and representative 2D cross sections (size: 100 × 100 elements) of the 3D 

systems are shown after reaching the stationary state. The size of individual lattice elements 

is not directly specified (see text), but expected to be of the order of 100 microns, as 

indicated by the bar in the figure. All remaining model parameters as follows. Case 1A α1 = 

−0.2, α2 = −0.1, α3 = 0.45, β1 = 0.5, β2 = 0.1, β3 = 0.6; Case 4A: α1 = −0.1, α2 = −0.5, α3 

= −0.3, β1 = 0.6, β2 = 0.3, β3 = 0.4; Case 4B: α1 = −0.6, α2 = −0.6, α3 = −0.4, β1 = 0.6, β2 

= 0.2, β3 = 0.4.
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Figure 5. The Local Dynamics of Case 4B
Successive 2D sections of the unstable rock-paper-scissors game (Case 4B, see Figure 2A) 

are shown. A realization of the stochastic process was simulated on a cubic lattice of side 

length L = 150, with initial field seeded using a product measure with probabilities 0.2 (R), 

0.3 (F) and 0.5 (Q). Identical 2D sections (size: 150 × 150 elements) of the 3D domain are 

shown at times 4978, 5096, 5215, 5333, 5452, and 5570, respectively. The size of individual 

lattice elements is not directly specified (see text), but expected to be of the order of 100 

microns, as indicated by the bar in the figure. Locally, see red frame, the system is cyclicly 

dominated as it transitions from primarily resorptive (time 4978) to primarily bone forming 

(time 5096), to primarily quiescent (time 5333) and back to primarily resorptive (time 5570). 

Because the total volume consists of asynchronously cycling patches, the global dynamics 

remain bounded, see also Figures 2B and 3. Remaining parameter values: θ = 0.485, ω = 

0.1, α1 = −0.6, α2 = −0.6, α3 = −0.4, β1 = 0.6, β2 = 0.2, β3 = 0.4.
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Figure 6. Coexistence in the Non-Spatial Model
(A) Phase diagram showing regions of coexistence (green) and lack of coexistence (red) in 

the (α3, β3)-plane. The (×) mark the parameter choices for the examples in panel B; the 

remaining parameters were fixed at α1 = −0.1, α2 = −0.5, β1 = 0.6, β2 = 0.2. (B) For each 

case in panel A, the replicator dynamics are solved up to t = 2000, with initial conditions 

(x1(0), x2(0), x3(0)) = (0.3, 0.2, 0.5). The values of α3 and β3 are indicated by (×) in panel 

A, and all remaining parameters as specified above.
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Table 1
Parameter Constraints

Top: Summary of the a priori constraints on the model parameters gij based on published biological findings. 

gij quantifies the impact of a zone of type j on a zone of type i. Bottom: The resulting constraints for αi and βi.

Parameter Constraint Justification References

g11 > 0 Autocrine stimulation by TNF-α, IL-1α [35,36]

g12 ∈ ℝ Net impact depends on RANKL/OPG balance [13,37]

g13 > 0 Release of matrix-embedded growth factors; osteocyte-derived RANKL stimulation [25,26,38]

g21 > 0 Paracrine stimulation by TGF-β, IGF [39,40]

g22 = 0 Presumed negligible [14]

g23 < 0 Wnt-Sclerostin signaling, considered inhibitory. [41,42]

g31 < 0 Osteoclasts resorb bone [38]

g32 > 0 Osteoblasts produce bone matrix and become embedded osteoctyes [43]

g33 = 0 Osteocytes are terminally differentiated and do not produce or resorb bone [44]

α1 < 0 α1 = g23 -

α2 < 0 α2 = g31 − g11 -

α3 ∈ ℝ α3 = g12 -

β1 > 0 β1 = g32 -

β2 > 0 β2 = g13 -

β3 ∈ ℝ β3 = g21 − g11 -

J Theor Biol. Author manuscript; available in PMC 2018 April 07.


	Abstract
	1 Introduction
	2 Methods
	2.1 Spatial Model
	2.2 Parameter Considerations
	2.3 Replicator Dynamics of Non-spatial Model
	2.4 Numerics

	3 Results
	3.1 The Spatial Game
	3.2 Emerging Spatial Structure
	3.3 The Role of Space in Bone Remodeling
	Replicator Dynamics
	Comparison to Spatial Dynamics


	4 Discussion
	References
	A Analysis of the Non-Spatial Game
	B Analysis of the Spatial Game
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Table 1

