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Abstract

Mobile health technology has great potential to increase healthcare quality, expand access to 

services, reduce costs, and improve personal wellness and public health. However, mHealth also 

raises significant privacy and security challenges.

With the advent of miniaturized sensors, low-power body-area wireless networks, and 

pervasive smartphones, the burgeoning field of mobile health (mHealth) technology has 

attracted tremendous commercial activity, consumer interest, and adoption by major 

healthcare providers. This technology has great potential to increase healthcare quality, 

expand access to services, reduce costs, and improve personal wellness and public health. 

These benefits will only be achieved, however, if individuals are confident in the privacy of 

their health-related information and if providers are confident in the security and integrity of 

the data collected.

The US spends more than $2.6 trillion annually on healthcare. This amount represents 

approximately 18 percent of the country’s gross domestic product, a percentage that has 

doubled over the past 30 years and is the highest of any nation in the world.1 Over 75 

percent of these costs are due to the management of chronic diseases, which currently affect 

45 percent of the US population. By 2023, the annual costs to manage chronic diseases alone 

are expected to rise to $4.2 trillion.2 Similar challenges occur in many developed nations 

with an aging citizenry, and in developing nations that strive to provide better healthcare to 

their growing populations.

Numerous countries look to IT—increasingly, to mobile technology like smartphones and 

wearable sensors— to address these problems. However, health IT faces broad software 

assurance challenges,3 and overcoming these will be critical to adopting mHealth systems 

and realizing their benefits. Privacy and security were cited as the most important concerns 

in a recent survey of 27 “key informants” from across the US healthcare and mHealth 

sectors.4 Furthermore, a year-long Washington Post study of cybersecurity revealed that 

“healthcare is among the most vulnerable industries in the country, in part because it lags 
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behind in addressing known problems.”5 The recent breaches of health-insurance giants 

Anthem6 and Premera7 underscore this point.

Here, we focus on the privacy and security challenges of mHealth technology.

HEALTH IT PRIVACY AND SECURITY CHALLENGES

Health IT systems face daunting security and privacy challenges due to six recent trends:

• The locus of care is shifting as the healthcare system seeks more efficient and 

less expensive ways to care for patients, particularly outpatients with chronic 

conditions.

• Strong economic incentives to keep patient populations healthy, rather than 

caring for patients only when ill, are motivating healthcare providers to purse 

innovative prevention plans and treatments of chronic conditions that entail more 

continuous patient monitoring outside of the clinical setting.

• Mobile consumer devices like smartphones and tablets are quickly being adopted 

by patients, caregivers, and healthcare providers for health and wellness 

applications in addition to their many other uses, making it difficult to protect 

sensitive health-related data and functions from the risks posed by general-

purpose devices connected to the Internet.

• Significant emerging threats target health IT systems, while new regulations 

strive to protect medical integrity and patient privacy.

• Rapid technology advances that enhance mobile devices’ utility— for example, 

computational models that convert wearable-sensor data into measures of 

addictive behaviors such as cocaine use or smoking— increase the range of 

potentially private events that can be inferred from seemingly innocuous sensor 

data.

• Healthcare organizations lack the technology and expertise to adequately secure 

patient data; according to a recent survey, 69 percent of clinicians said their 

organization did not address demonstrated cyber vulnerabilities in medical 

devices approved by the US Food and Drug Administration (FDA).8

These trends are driving major changes in the health IT landscape, and require research to 

develop effective security technologies that work across care settings and support continuous 

data collection in the context of multipurpose mobile devices.

Before exploring the challenges in detail, we first define our scope. Traditional approaches 

to securing healthcare systems have relied on isolation, using tools like firewalls and 

network access control. However, the trends described above make it unfeasible to simply 

“lock down” medical devices or health-records systems, especially because patients and staff 

use part of the system outside the clinical context and many of the wellness applications of 

this technology are entirely non-clinical. Instead, these trends demand “wide-spectrum” 

security technologies that can be adjusted to fit the system user’s needs and expertise. A 

major healthcare provider has professional staff that can configure and monitor security 
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settings in its electronic medical record (EMR) database, but an individual patient must have 

intuitive and hassle-free security technologies for home-based devices.

Given this scope—mHealth technology used by individuals who might be supported by 

caregivers and providers, perhaps remotely—we can specify numerous open research 

challenges that span technology, policy, and organizational domains.

DATA SHARING AND CONSENT MANAGEMENT

Most mHealth systems collect data about a person’s physiology, physical activity, or social 

behavior and are designed to store the data for later analysis by caregivers and providers. 

Data sharing raises the question of consent: how and when does the person decide whether, 

and with whom, to share what data and at what level of granularity?

In the traditional health information management model, patients consent to the collection 

and use of their personal health information (PHI) for treatment purposes. Further consent is 

often sought for additional PHI uses, such as research.

mHealth systems, however, often collect a far broader range of information, much more 

continuously and for a wider range of uses than is collected in traditional clinical settings. 

Research is needed to help individuals understand what data is being collected, where it is 

stored, who has access to which data at what granularity, and what it will be used for. 

Indeed, individuals should be given personal preferences regarding PHI collection, 

dissemination, and retention. Regulations such as HIPAA (the Health Insurance Portability 

and Accountability Act) and HITECH (Health Information Technology for Economic and 

Clinical Health) in the US provide some guidance but do not apply to much of the personal 

wellness domain, and leave wide latitude for creative abstractions and interfaces that would 

allow people to make informed choices about their PHI.

Research challenge: how can an mHealth system expose to its users, in an 

understandable way, what data is being collected, what information is being shared 

with whom, what might be inferred by that information, and where and how the 

information might be used, and then notify users of any deviations from the agreed-

upon protocol?

MOBILE HEALTH: DEFINITION AND CATEGORIES

In this article, mobile health, or mHealth, refers to the use of mobile technologies—

wearable, implantable, environmental, or portable—by individuals who monitor or 

manage their own health, perhaps with the assistance of individual caregivers or provider 

organizations. The technology might support clinical care—including diagnosis and 

disease management—or wellness goals such as losing weight, eating a healthy diet, 

quitting smoking, or becoming physically fit.

Our definition of mHealth includes four general categories:

• Physiological monitoring: measuring, recording, and reporting physiological 

parameters such as heart rate and blood pressure.
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• Activity and behavior monitoring: measuring, recording, and reporting 

movement and physical and social activity as well as health-related behaviors 

such as eating and addictive behaviors.

• Information access: accessing health-related data—for example, medical 

records, activity, or behavior data—and decision-support tools.

• Telemedicine: communication between patients and caregivers and/or 

providers—for example, a virtual doctor visit or a patient receiving personal 

encouragement from a caregiver support team.

ACCESS CONTROL AND AUTHENTICATION

User consent or policy determines who can access mHealth data, but how do mHealth 

systems confidently identify the individual(s) they are sensing or who is using the system? 

Identification is critical to attach the correct identity to the mHealth data for provenance, and 

authentication is the foundation of access control and audit logging.

Many of today’s mHealth apps are based on a smartphone, leveraging its sensors and user 

interface to collect, process, and report health-related information about the device’s owner. 

As smartphones are designed as personal devices, it is normally safe to assume that the user 

is indeed the owner. Of course, a smartphone can be stolen or borrowed by another person, 

resulting in the phone’s mHealth apps recording data about the wrong person to the owner’s 

health record or exposing the owner’s PHI via app displays and notifications. It is thus 

important for a smartphone to know when it is not in the owner’s possession. Most work on 

this problem focuses on initial authentication to unlock the user interface (most commonly 

via numeric codes, swipe patterns, or fingerprints), but there is a real need for continuous 

authentication—that is, repeatedly verifying that the phone’s holder is the person who 

initially authenticated.

Many future mHealth apps will use wearable devices to measure activity, behavior, and 

physiology and even to directly influence the body. Such devices must be able to verify the 

wearer’s identity to ensure that the collected data is posted to the correct health record and 

that any treatment applied is truly intended for the wearer. One solution is to build biometric 

sensing into the device, such as the bioimpedance approach taken by Cory Cornelius and his 

colleagues.9

Furthermore, any method for identifying and authenticating smartphone or wearable device 

users for mHealth apps must be accurate, applicable to most persons, robust to 

environmental conditions, unobtrusive, and resistant to various attacks.

Research challenge: develop continuous user authentication methods for mobile 

devices such as smartphones and smartwatches that suspend data collection, 

personal notifications, and access to personal data when the device is used by 

someone other than its owner.
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CONFIDENTIALITY AND ANONYMITY

Much of the information—whether physiological, behavioral, or social— collected by 

mHealth systems is sensitive and highly personal. The data must remain confidential, subject 

to access-control policies and mechanisms, and anonymous when used for research and 

public-health purposes where individual identities are not necessary.

Anonymization

Mobile-sensor data provides researchers with unprecedented opportunities to quantify the 

complex temporal dynamics of key physical, biological, behavioral, psychological, social, 

and environmental factors that contribute to disease. For example, GPS data makes it 

possible to collect geo-exposures (such as proximity to a tobacco point of sale for a newly 

abstinent smoker or to a fast-food restaurant for a congestive heart-failure patient) and 

movement patterns (such as driving or physical activity), and to study their impact on health.

However, mobile-sensor data can also disclose private information about the user. For 

example, GPS data can reveal not only the user’s identity but also all the places the user has 

visited, some of which might be private. Even if GPS is turned off, data collected by the 

accelerometers and gyroscopes embedded in smartphones and smartwatches for activity 

monitoring could be used to characterize a person’s movement patterns.

Sharing raw mobile-sensor data thus carries re-identification risks. Sharing only high-level 

inferences— for example, begin/end times at home or work—from the data might limit such 

risks but also significantly limits the data’s utility.

Research challenge: understand and quantify re-identification risks inherent in 

various mobile sensors, and develop data-transformation methods to limit such 

risks while retaining scientific utility.

Behavioral privacy

Measurements from mobile devices and wearable sensors can provide unique visibility into 

a user’s health status, stress, addictive behavior, eating patterns, sedentary behavior, geo-

exposures, and daily social interactions. Such data can help researchers better understand the 

etiology of complex human diseases responsible for more than half of all US deaths. 

However, sharing this data also poses new privacy challenges. For example, audio data can 

reveal conversational and emotional characteristics, exposure to TV programming and 

advertisements, and video game playing and other activities, but it can also capture private 

and intimate details.

There is a need for technologies that mitigate the risks of behavioral privacy disclosure while 

also supporting the health or wellness goals for which the data is collected. For example, 

real-time audio processing could be used to extract relevant health inferences while 

discarding sensitive content but would necessitate improved algorithms. Likewise, breathing 

patterns could be used to infer conversation episodes10 but would require wearing 

respiration sensors and would not capture either conversational content or speakers’ 

identities.
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Research challenge: understand and characterize privacy disclosure tradeoffs 

inherent in sharing behavioral data, and develop data-transformation methods to 

limit privacy risks while retaining the data’s scientific utility.

Continuous and unintended sensing

Continuous long-term data streams from various sensors entangle useful health-related data 

with information about user identity and behaviors. For example, reviewing audio recordings 

of conversions with one’s spouse (perhaps in conjunction with a therapist) could help 

improve marital life, but continuous audio recordings can also capture private conversations 

with nonconsenting persons, which is unethical and in some jurisdictions illegal. Requiring 

users to manually turn sensors on and off is burdensome as well as prone to frequent 

compliance failures.

Research challenge: develop mechanisms that can automatically turn sensors on 

and off to preserve user privacy and can be personalized to minimize user burden 

while maximizing utility.

Multiplexed sensor semantics

A key benefit of mHealth sensors is that the same sensor can be used to infer various 

behaviors. For example, electrocardiography can be used to monitor cardiovascular health, 

but ECG can also be used to infer stress level and the use of some drugs, such as cocaine. 

Similarly, smartwatches can capture activity levels but can also infer eating and smoking 

behaviors from hand gestures. Inferring behaviors and health states from sensors is a rapidly 

evolving field; each new research result increases both the utility of an existing sensor and 

its inherent privacy risks. Hence, characterizing the behavioral information content of a 

specific sensor is difficult.

Research challenge: create computational mechanisms to ensure that users can 

control the inferences made by an authorized entity receiving sensor data streams.

MHEALTH SMARTPHONE APPS

Many mHealth benefits will be delivered to users, caregivers, and providers through 

smartphone apps. These apps might

• use the phone’s sensors to record sounds, take photos, or record motion;

• communicate with other sensor devices worn on the skin or collect health-related 

information from nearby sensors that, for example, sense contaminants in the air; 

or

• collect data from the user’s EMR in a hospital or from a cloud repository.

This wide range of possibilities has aroused concerns about the techniques used to secure 

mobile devices and mHealth apps. Much of the smartphone app market lies outside 

government regulation, although the FDA and Federal Trade Commission have started to 

address these concerns in the US. The quality of implemented security measures varies 

widely.11 Some recommendations are available for mHealth app developers, and mobile 
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device management (MDM) solutions can help clinical enterprises secure smartphones and 

tablets. There is also a promising proposal to develop a “building code” for safety-critical 

medical systems.3

Research challenge: develop best practices for securing mobile devices and their 

apps, and develop platforms that will provide these benefits at low cost.

Current smartphone app architectures also raise privacy concerns. In particular, the Android 

platform, which makes up 80 percent of the smartphone OS market, has a degree of 

openness that supports strong innovation but also puts users at risk of privacy violations. 

These concerns arise from two aspects of the Android architecture. First, the degree of 

information flow between apps is worrisome because the wide range of apps likely to 

populate the average user’s smartphone creates a possibility that at least one app will gather 

information about other apps on the device and use it in ways the user might not approve of. 

Second, apps commonly incorporate advertising libraries, which means they effectively 

share their privileges with advertisers, weakening the “least privilege” principle and opening 

the threat of privacy leakage via advertising libraries.12

Research challenge: clarify threats to, and develop security and privacy protections 

for, smartphone apps that handle medical and health data—in particular, develop 

methods to isolate apps from advertisers.

POLICIES AND COMPLIANCE

Access to mHealth systems and the information they provide is typically managed by 

policies, which might emanate from consumers (as when they indicate data-use preferences), 

the operating procedures of healthcare providers or technology organizations, or government 

regulations. Policy development and enforcement results from a complex interplay of 

multiple stakeholders. Because technology is essential to help monitor and enforce these 

policies, policymakers must understand the wide and evolving range of relevant 

technologies.

Research challenge: What technical mechanisms could enforce data-management 

policies as mHealth data is collected, stored, processed, and shared? Could 

technologies developed for digital rights management (DRM) assist in ensuring that 

an individual’s personal privacy preferences remain attached to data about them, 

and that these preferences are enforced even as the data is stored and forwarded to 

providers and other healthcare system participants?

To realize the promise of mHealth devices and applications, everyone involved—from 

patients to providers to payers—must trust the system to provide high-integrity data and 

services while respecting users’ privacy. This trust is partly based on mechanisms built into 

the technology, including cryptographic protections on data at rest and in transit, access-

control policies, and authentication mechanisms. Ultimately, though, trust resides in the 

people and organizations manufacturing and distributing devices, developing software, 

operating services, and using the data. The trust relationships among these actors, and the 

legal and regulatory frameworks that support those relationships, are a critical foundation for 

the technological mechanisms.
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Research challenge: What ecosystem supports mHealth? Who are the stakeholders, 

and what are their roles? What policy and legal frameworks need to be in place for 

them to serve these roles? What standards need to be developed, and what 

certification mechanisms can encourage and ensure compliance with the standards?

Thus, there is a need to map out a conceptual trust architecture for mHealth systems that 

identifies the

• various types of actors;

• natural trust relationships, such as between patient and physician; and

• legal frameworks—for example, contractual relationships between a healthcare 

provider and a cloud provider, or a regulatory relationship between a government 

agency and device manufacturers.

A conceptual mapping would provide a clean abstraction for reasoning about the security 

and privacy properties of mHealth systems, and could guide creation of a regulatory 

framework in the real world. The World Health Organization recently reviewed key aspects 

of the current state of this regulatory framework across the globe.13 The framework, while 

progressing rapidly, is still in the earliest stages of development in most nations.

Research challenge: determine the most effective way to help develop, manage, 

monitor, and enforce consumer-directed, organizational, and government policies 

and regulations associated with data collection and use within the mHealth 

ecosystem.

ACCURACY AND DATA PROVENANCE

For mHealth systems to achieve their full potential—improving healthcare, reducing costs, 

and expanding access— those receiving information produced by these systems must be able 

to trust their accuracy and veracity.

In addition to the threats posed by common cyberattacks, the physical coupling of sensors 

and actuators make them vulnerable to attacks mounted from the physical channel, such as 

signal manipulation. To protect not only data but system inferences and decisions, solutions 

to such attacks must go beyond traditional cryptographic mechanisms and employ novel 

techniques from control theory, game theory, and other disciplines.

In our conversations with physicians and researchers, one of the most frequently cited 

concerns about mHealth data collected outside the clinical setting relates to the data’s 

authenticity and accuracy. The data must be tagged with information about the data’s 

provenance—what device collected the data and what was done to the data—as well as the 

context in which it was collected. This metadata must be securely bound to the data with a 

combination of cryptographic hashes and signatures to ensure that neither the data nor 

metadata has been tampered with.

Such methods might be feasible in simple situations where a sensing device is uploading raw 

data directly to the recipient’s health-data server. In many advanced applications, however, 

the data passes through multiple stages of processing including filtering, summarization, 
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aggregation, and combination with other data sources. What is the best way to convey 

information about all these data sources and processing steps?

Contextual information is even more difficult to define and collect because it often depends 

on the type of health data being collected. For a blood-pressure reading, for example, it is 

important to know whether the subject applied the cuff correctly to her arm, rested her arm 

on a flat surface, and remained still throughout the reading. Aarathi Prasad and her 

colleagues proposed one approach to the specification and collection of contextual evidence 

for mHealth sensor data,14 but much more needs to be done to recognize the many factors 

that affect the quality of such data.15

Research challenge: develop extensible methods for collecting, storing, and 

presenting contextual information along with health-related data collected by 

mHealth devices and apps to help data consumers verify and interpret the health 

data.

SECURITY TECHNOLOGY

Ultimately, many mHealth security and privacy approaches will rest on technological 

foundations; ideally, digital electronics for mHealth devices and apps will be designed with 

security and privacy in mind. Specifically, there is a need to

• identify hardware and software enhancements that would help enforce users’ 

privacy preferences;

• protect the contents of mobile and wearable devices including PHI, 

cryptographic keys, and software;

• preserve the privacy of user context— location, device presence, communication, 

activity, and so on;

• create a secure execution space on mobile devices for handling health-related 

data;

• allow multiple software and services to coexist on mobile devices, without 

conflict, to enable software updates to be securely installed; and

• easily manage user authentication, data collection, and manageability—for 

example, remote disable and remote updates.

FURTHER READING

For a more extensive exploration of privacy-related issues in mHealth technology, 

including a proposed privacy framework and a detailed list of research challenges, see S. 

Avancha, A. Baxi, and D. Kotz, “Privacy in Mobile Technology for Personal Healthcare,” 

ACM Computing Surveys, vol. 45, no. 1, 2012; www.cs.dartmouth.edu/~dfk/papers/

avancha-survey.pdf. For a survey of challenges in medical-device security, see J. 

Sametinger et al., “Security Challenges for Medical Devices,” Comm. ACM, vol. 58, no. 

4, 2015, pp. 74–82. Finally, for a classic discussion of the broader challenges of software 
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assurance in medical systems, see N. Leveson and C. Turner, “An Investigation of the 

Therac-25 Accidents,” Computer, vol. 26, no. 7, 1993, pp. 18–41.

Of course, any solution to these problems must consider device resource constraints such as 

memory, CPU speed, bandwidth, battery life, and the user interface.

Research challenge: How should mobile-device hardware and software architecture 

change to help inform and protect individual privacy—specifically, to secure 

critical computations and data, securely store cryptographic secrets, and identify 

and authenticate the user?

Homomorphic encryption enables cloud-based servers to store and process sensitive 

mHealth data without those servers or their operators ever handling the unencrypted 

information, allowing mobile and wearable device users to leverage the power of cloud 

computing without needing to trust cloud services with this confidential data.16

Many mHealth technologies produce a large, long-term stream of data about a person’s 

health and healthrelated behaviors that, if aggregated, presents a huge opportunity for public 

health research. Imagine, for example, the potential benefits of tracking a million-subject 

cohort for a decade or longer, as envisioned by President Obama’s Precision Medicine 

Initiative (www.nih.gov/precision-medicine-initiative-cohort-program). The challenge is 

providing researchers with scientifically robust data from such a dataset without exposing 

individuals’ private information. Emerging differential privacy methods have great promise 

to achieve this dual vision.17

Research challenge: develop efficient homomorphic encryption techniques for 

mHealth data, and limit the amount of noise that must be added to data to satisfy 

differential privacy requirements.

The increasing capability and decreasing size of mobile technology offers many 

opportunities to improve health and wellness. The same technology, however, could cause 

users harm if the hardware and software systems are not designed with security and privacy 

in mind. The research community has an important role to play in developing effective, 

efficient, and usable mechanisms to secure mHealth technology and protect users’ PHI. To 

that end, we encourage our colleagues to address the many research challenges outlined in 

this article.
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