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Abstract

The study of the N400 event-related brain potential has provided fundamental insights into the 

nature of real-time comprehension processes, and its amplitude is modulated by a wide variety of 

stimulus and context factors. It is generally thought to reflect the difficulty of semantic access, but 

formulating a precise characterization of this process has proved difficult. Laszlo and colleagues 

(Laszlo & Plaut, 2012, Brain and Language, 120, 271-281; Laszlo & Armstrong, 2014, Brain and 
Language, 132, 22-27) used physiologically constrained neural networks to model the N400 as 

transient over-activation within semantic representations, arising as a consequence of the 

distribution of excitation and inhibition within and between cortical areas. The current work 

extends this approach to successfully model effects on both N400 amplitudes and behavior of 

word frequency, semantic richness, repetition, semantic and associative priming, and orthographic 

neighborhood size. The account is argued to be preferable to one based on “implicit semantic 

prediction error” (Rabovsky & McRae, 2014, Cognition, 132, 68-98) for a number of reasons, the 

most fundamental of which is that the current model actually produces N400-like waveforms in its 

real-time activation dynamics.
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1. Introduction

The N400 is a negative deflection in event-related brain potentials (ERPs) that occurs 

approximately 400 ms post-stimulus onset in response to a wide range of meaningful or 

potentially meaningful stimuli, including written and spoken words and pseudowords, and 

drawings, photos and videos of objects and actions (for reviews, see Federmeier & Laszlo, 
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2009; Kutas & Federmeier, 2009, 2011). It was originally identified as a response to 

semantically anomalous sentence endings (e.g., “I take coffee with cream and dog”; Kutas & 

Hillyard, 1980) but, over the years, has been shown to be sensitive to a wide variety of 

stimulus and context manipulations, including cloze probability (the number of possible 

sentence endings), sentence and discourse congruity, repetition, semantic priming, lexical 

association, concreteness and semantic richness, word frequency, orthographic 

neighborhood size, and many more. On the other hand, N400 amplitude is relatively 

insensitive to manipulations that broadly preserve meaning, including physical changes (e.g., 

in font or case) and syntactic violations (e.g., in number agreement). Understanding the 

N400 is important because it offers a real-time measure linking underlying neural 

mechanisms to behavior that has provided fundamental insights into core issues in the study 

of cognitive and neural processing, including the immediacy and incrementality of 

comprehension, the integration of bottom-up and top-down sources of information, the 

organization and dynamics of semantic memory, and the bases for variability and atypicality 

in performance across individuals and in special populations (Kutas & Federmeier, 2011).

The wide range of factors that modulate the N400 is, unfortunately, matched by an equally 

wide range of theoretical accounts of the phenomena. One proposal is that the N400 reflects 

post-lexical semantic integration or unification, linking semantic information from a current 

word with meaningful information from previous words and context (Brown & Hagoort, 

1993; Hagoort, Baggio & Willems, 2009). This broad theory accounts for the N400's largely 

meaning-specific modulation, but fails to account for many of its subtleties. For instance, it 

is unclear why an N400 is generated by words in isolation, or even by pseudowords 

(Deacon, Dynowska, Ritter & Grose-Fifver, 2009; Laszlo & Federmeier, 2007, 2011), and 

why its amplitude is modulated by form-based properties such as orthographic neighborhood 

size (Laszlo & Federmeier, 2009). Other researchers (Deacon, Dynowska, Ritter & Grose-

Fifer, 2004) have suggested that the N400 reflects orthographic/phonological analysis that is 

attenuated by top-down semantic feedback. In complementary fashion, this account explains 

sensitivity to lexical and form-based factors but provides a less satisfactory account of 

sentence- and discourse-level effects (see van Berkum, 2009).

Perhaps the most common perspective falls between these two extremes: that the N400 

reflects something like the difficulty of semantic access (Kutas & Federmeier, 2000, 2011). 

This proposal is supported in part by attempts to localize the neural generators of the N400 

component (e.g., Halgren, Dhond, Christensen, Van Petten, Marinkovic, Lewine & Dale, 

2002; Lau, Phillips & Poeppel, 2008; Van Petten & Luka, 2006), which generally implicate 

brain regions involved in semantic processing, including the superior/middle temporal gyrus, 

the temporal-parietal junction, and the medial temporal lobe. It has, however, proved 

difficult to formulate a precise characterization of “semantic access” that is capable of 

accounting for the full range of empirical effects. Indeed, in an attempted synthesis from this 

perspective, Kutas & Federmeier (2011) offered only a very general characterization:

Rather than reflecting the activation of “a word's meaning,” then, the N400 region 

of the ERP is more accurately described as reflecting the activity in a multimodal 

long-term memory system that is induced by a given input stimulus during a 

delimited time window as meaning is dynamically constructed. (p. 640)
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Laszlo & Plaut (2012) put forth a very specific proposal for the basis of the N400 and 

supported their account with an explicit computational simulation using a 

neurophysiologically constrained neural network. On their view, the N400 does, in fact, 

reflect the activation of a word's meaning, but this process is sensitive to a variety of bottom-

up and top-down influences and also exhibits specific temporal dynamics due to the 

organization of excitation and inhibition within cortex. In particular, it is well established 

that the projections of pyramidal cells between cortical areas are restricted to be excitatory, 

whereas inhibitory interneurons operate locally to modulate overall activity levels within 

each area (Kandel & Schwartz, 1985). As a result, bottom-up input causes an initial over-

activation of neurons within an area, which is subsequently resolved into a coherent 

representation with lower activation through competitive (and cooperative) interactions (see 

Zheng, Luo, Harris, Kennerley, Berwick, Billings & Mayhew, 2012). Laszlo and Plaut 

proposed that the N400 deflection reflects this transient over-activation of neurons in cortical 

areas representing word meaning, and that its magnitude depends both on the nature of co-

activated information due to the similarity structure of word forms and meanings, as well as 

on pre-activated information from prior context.

To support this account, Laszlo & Plaut (2012) developed a neural network simulation of 

word comprehension that incorporated the relevant constraints on excitation and inhibition 

between and within layers. In the model, visual input mapped to orthographic, hidden, and 

semantic representations in turn. At each layer, excitatory units received positive-only 

bottom-up input from the layer below, and projected positive-only connections to the next 

layer as well as to an inhibitory unit which projected back with negative-only connections. 

The model was trained to reconstruct the visual input and to generate the semantic 

representations for 62 CVC words as well as 15 acronyms (containing a central consonant). 

Acronyms were included in order to model single-item ERP data gathered by Laszlo & 

Federmeier (2011) in which they independently varied meaningfulness and orthographic 

regularity by comparing words (e.g., HAT), pseudowords (e.g., KOF), acronyms (e.g., 

DVD), and illegal strings (e.g., NHK). Somewhat surprisingly, Laszlo and Federmeier found 

that N400 magnitude depended on orthographic regularity but not on meaningfulness (see 

Figure 1a). Moreover, across all stimulus types, there was a strong correlation between N400 

amplitude and orthographic neighborhood size, regardless of lexical status. These results are 

particularly important because they would seem to be at odds with accounts of the N400 as 

reflecting semantic access per se.

As it turns out, however, the Laszlo & Plaut (2012) comprehension model shows the same 

pattern of performance when tested on analogous stimuli (see Figure 1b). Laszlo and Plaut 

measured mean semantic activation over time as a proxy for the population-based post-

synaptic potentials thought to underlie EEG signals in general, and the N400 component in 

particular (see Fabiani, Gratton & Federmeier, 2007). Although the model ultimately settles 

to stronger semantic representations for meaningful stimuli (words and acronyms), it 

produces greater transient semantic activation—and, hence, greater N400 amplitudes—for 

orthographically regular stimuli (words and pseudowords). The reason is that orthographic 

forms provide bottom-up excitation not only for their specific semantic features but also for 

the semantic features of orthographically similar forms. Thus, words and pseudowords, with 

many orthographic neighbors, generate much greater transient semantic over-activation than 
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do acronyms and illegal strings, with few if any neighbors. Laszlo and Plaut showed that the 

separation of excitation and inhibition is essential to producing these dynamics; an otherwise 

equivalent but unconstrained network failed to exhibit the empirically observed pattern. In 

this way, the model provides a specific, neurally explicit instantiation of comprehension 

processes in which the N400 can be understood as reflecting “semantic access”, and yet can 

nonetheless explain why it occurs as strongly for pseudowords as for words, and why its 

amplitude depends on form-based properties rather than on meaningfulness. In follow-up 

simulations, Laszlo & Armstrong (2014) added a fatigue function to the excitatory units to 

account for the reduction in N400 amplitude due to stimulus repetition (e.g., Nagy & Rugg, 

1989), which can be viewed as a first step toward accounting for effects of prior context.

Recently, Rabovsky & McRae (2014) proposed an alternative account of the N400 based on 

a different type of neural network simulation, and applied it to a much broader range of 

phenomena than addressed by Laszlo & Plaut (2012) and Laszlo & Armstrong (2014). On 

their account, semantic activation forms the basis for task performance (e.g., lexical 

decision), whereas the N400 reflects “implicit prediction error” over semantics—the 

discrepancy between the semantic information derived from a stimulus and the information 

predicted or anticipated from prior context (where this “prediction” is not conscious or 

explicit). Rabovsky and McRae supported their account using an attractor network model of 

word comprehension (Cree, McNorgan & McRae, 2006). The model consists of a fully 

connected network without hidden units that was trained to map the orthographic forms of 

541 words (over 30 units) to their semantic feature representations (over 2526 units, derived 

from McRae, Cree, Seidenberg & McNorgan, 2005). Implicit semantic prediction error was 

operationalized in terms of task performance error—the discrepancy at any point in time 

between the semantics generated by the network and the correct semantic pattern for the 

target stimulus.1

Rabovsky and McRae did not attempt to reproduce the actual morphology of the N400 

deflection. Rather, they considered only the direction of changes in N400 amplitude, and of 

behavioral performance, in the context of seven empirical effects: semantic priming, 

semantic richness (i.e., number of semantic features), word frequency, repetition, and the 

interactions of repetition with richness and with frequency, and orthographic neighborhood 

size.2 They showed that, for each of these effects, the error measure is influenced in the 

same direction as N400 amplitude, whereas overall semantic activation is influenced in the 

same direction as behavior. For example, Figure 2 shows how semantic error in their model 

varies over time as a function of word frequency and repetition.

Although the Rabovsky & McRae (2014) model is impressive in its the breadth of coverage 

of phenomena relating to both N400 amplitude and behavior, a number of aspects of its 

1Rabovsky & McRae (2014, p. 70) suggest that the network's activation corresponds to the prediction, and the correct semantic targets 
(of unspecified origin) correspond to the actual outcome. However, on this view, in order for the real-time value of prediction error to 
correspond to the real-time value of the N400, the “outcome” (correct semantic targets) must be available at the very start of the 
generation of the “predictions” (network activations), which seems awkward to us. For this reason, we prefer an interpretation in 
which prior context provides the prediction that is then compared against the actual semantics generated by the word itself, and this is 
how our discussion is framed throughout the paper.
2The specific patterning of these effects will be considered in detail later, in the context of presenting the corresponding modeling 
work.
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design and performance are less than satisfactory. First and foremost, of course, is that the 

model doesn't actually produce N400 morphology. This is a fundamental limitation because 

the N400 is not simply a single-valued dependent measure like accuracy or reaction time—it 

reflects the moment-to-moment changes in activity (post-synaptic potentials) of neural 

populations that directly contribute to performance, and thus provides a wealth of 

information linking brain processes to behavior as they occur in real time. A model that fails 

to address actual N400 dynamics can provide little insight into these deeper issues.

Second, many of the effects in the Rabovsky and McRae model are very small and/or hold 

only over somewhat different ranges of processing cycles in the model; while this is less a 

concern about the behavioral measure, it is a serious issue for an account of the N400, as one 

of its hallmark characteristics is that its latency is relatively stable (Kutas & Federmeier, 

2011). Third, it is questionable how semantic prediction error could actually be computed in 

cortex, and how it would manifest as neural activity—so as to be measurable by EEG—

distinct from semantic activation. The Rabovsky & McRae (2014) simulation computed 

error using explicit targets for semantic features, but even if such targets had an actual neural 

instantiation—which seems unlikely (Crick, 1989)—they are not directly available in a 

standard lexical decision paradigm, nor is there any context from which to derive them. 

Finally, for words in unrelated contexts, such as an unordered list, it is difficult to understand 

how the system could make sensible predictions of their semantics, and it is unclear how the 

notion of semantic prediction error applies in the case of pseudowords, which have no 

semantics and yet produce N400 amplitudes as large as those for words (Laszlo & 

Federmeier, 2011).

Given these concerns, it seems preferable to us to account for the relevant empirical 

phenomena within an approach in which the N400 corresponds directly to (semantic) neural 

activity. In fact, there are reasons to believe that semantic activation in the Laszlo & Plaut 

(2012) model would behave in ways similar to what Rabovsky & McRae (2014) claim for 

implicit semantic prediction error (while avoiding its pitfalls). For example, insofar as prior 

context—including a preceding prime word—activates information that supports the features 

of the target, those features may inhibit competing features (of orthographic neighbors), 

thereby reducing N400 amplitude.

Accordingly, in the current work, we set out to account for the same breadth of phenomena 

as Rabovsky & McRae (2014), concerning effects on both the N400 and behavior, but using 

the general approach of Laszlo & Plaut (2012) and Laszlo & Armstrong (2014). In the first 

simulation, the N400 is again modeled by overall semantic activation within a 

physiologically constrained neural network. In Simulation 2, we augment this network with 

a trained response system similar to Usher & McClelland's (2001) leaky competing 

integrator model of decision making in order to model behavioral effects (in lexical 

decision).

2. Simulation 1: N400 Effects

Simulations were run using a modified version of the Lens neural network simulator 

developed by Doug Rohde (http://tedlab.mit.edu/~dr/Lens/). The code for the modified 
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simulator and all necessary training and testing files are available for download at http://

www.cnbc.cmu.edu/~plaut/CheyettePlaut-N400.

2.1. Methods

The simulation had roughly the same design as in Laszlo & Plaut (2012, hereafter LP12), 

with the following main modifications: 1) a larger vocabulary (to allow for variations in 

word frequency and semantic richness); 2) a concomitant increased in numbers of excitatory 

and inhibitory units; 3) the introduction of an activation-based decay function similar to that 

employed by Laszlo & Armstrong (2014); and 4) the introduction of a response system that 

makes lexical decisions based on semantic input. For completeness, though, we include all 

simulation details below.3 Although the new model differs from these previous ones in a 

number of detailed respects (e.g., exact ratios of excitatory-to-inhibitory units; specific 

decay function), it retains the same core theoretical commitments: a) distributed 

representations of orthography and semantics, and no localist word units; b) a separation of 

excitation and inhibition with connectivity constraints that gives rise to early excitation 

followed by late inhibition; and c) a form of neural fatigue driven by sustained activation 

(see also Gotts & Plaut, 2002).

2.1.1. Stimuli—The network was trained to map visual (orthographic) input to semantic 

output for 176 words with consonant-vowel-consonant (CVC) structure. Visual input was 

coded over 24 units (8 per letter) with each of 15 possible letters (10 consonants, 5 vowels) 

activating 2 of 8 units in each slot. Semantic representations were encoded over 70 semantic 

units, with words varying in semantic richness: half had 6 features and half had 3 features. 

This made the semantic representations highly sparse, but still allowed for some degree of 

overlap (to reflect semantic relatedness). Within each richness level, words also varied in 

frequency, with half occurring 5 times more often during training than the other half. Visual 

inputs were assigned to semantic outputs randomly to ensure that there was no systematic 

relationship between the forms of words and their meanings.

2.1.2. Network architecture—The architecture of the network is depicted in Figure 3. 

The bottom layers form an autoencoder which is trained to reconstruct each 24-element 

visual input pattern via an intermediate group of 24 hidden units (labeled “Orthographic 

Autoencoder” in the figure). These hidden units then map via another group of 90 hidden 

units to 70 semantic units. These between-layer connections are constrained to excitatory. 

Each of these groups of units has a corresponding group of inhibitory units. As in the LP12 

model, the hidden and output groups within the orthographic autoencoder each has a single 

inhibitory unit that receives excitatory connections from its corresponding excitatory layer 

and sends inhibitory connections back to it. In order to cope with the larger vocabulary, 

however, the semantic layer and the hidden layer just below it have 3 inhibitory units each 

(but with the same connectivity constraints). In addition, they each are bidirectionally 

connected with positive-only weights to their own set of “clean-up” units (35 for both the 

hidden and semantic layers) that help the network learn higher-order structure among 

3The findings to be reported are generally stable over small variations in network parameters and over initial random weight values. 
We report on a single simulation to more clearly convey the network dynamics and behavior of an individual network, which we take 
to approximate something like a modal participant.
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semantic patterns (Hinton & Shallice, 1991). Including bias connections for all non-input 

layers, the network has a total of 22,154 connections.

Each excitatory unit computes its activation as the standard logistic (sigmoid) function of its 

time-averaged net input from other units, which is then subject to multiplicative decay as a 

function of its time-averaged activation:

(1)

(2)

(3)

where wij is the weight on the connection from unit i to unit j,  is the net input of unit j at 

time t,  is the instantaneous activation of unit j at time t,  is the time-averaged activation 

of unit j at time t, τ = 0.5 is the time constant for averaging net inputs, λ = 0.06 is the time 

constant for averaging activations, β = 0.8 is the upper bound on decay, and f(x) = 1/(1 + 

e−x) is the sigmoid function. Note in Equation 3 that there is no decay if a unit's time-

averaged activation  is 0.0 but full decay of β if the time-averaged activation is 1.0. This 

type of activation-based decay is simpler than the alpha function used by Laszlo & 

Armstrong (2014) but has very similar properties.4 We chose the values of τ, β and λ 
somewhat arbitrarily, but with the intent that the decay from the peak activation of one word 

would influence that of the next. Moreover, these parameters give rise to dynamics in which 

the drop in a unit's activation is relatively rapid after one or two repetitions of a stimulus and 

then reach asymptote quickly, which agrees with empirical studies of neural repetition 

suppression (see, e.g., Miller, Gochin & Gross, 1991).

Inhibitory units employed the same multi-linear “elbow” function used in LP12 that 

approximates the combined influence of two inhibitory populations: an immediately active 

linear population, and a thresholded linear population that becomes active only under 

stronger net input. The functional consequence of this unit function is that excitatory 

activation tends to stabilize at a level that is in balance with the amount of inhibition 

produced at the inflection point (elbow) of the inhibitory function and, in this way, serves as 

a graded form of k-winner-take-all (see LP12 for further discussion).

4We chose not to employ the alpha function directly because it determines an envelope within which unit activation is constrained, and 
so—at least in principle—limits a unit's activation both early and late in the course of processing.
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2.1.3. Training procedures—As in LP12, the network was trained to take the visual 

representations of each word as input and to reconstruct this representation via the 

autoencoder units in Figure 3. However, unlike LP12, the autoencoder and the rest of the 

network are trained simultaneously. During this training, words were presented in pairs, with 

all possible 176 × 176 = 30,976 pairs occurring during training. However, certain pairs had 

elevated frequencies of occurrence relative to others. In particular, we introduced lexical 

associations between words in order to address certain aspects of the empirical findings on 

semantic priming, as will be discussed in detail in the Results section below. Specifically, 

each word had another word designated at its associate, such that the word was followed by 

its associate on 30% of its presentations, and by some other word on the remaining 70% of 

presentations (see also Plaut, 1995; Plaut & Booth, 2000). In addition, the frequency of each 

word pair was adjusted to enforce the word-specific frequency manipulation that high-

frequency words occurred 5 times more often than low-frequency words—this required that 

words and their associates were matched in frequency.

The timing of presentation of a given word pair was the same as in LP12 in that the input for 

each word was presented over the Visual Input units for 16 ticks (unit updates), with a single 

tick with zeros as input in between. Semantic targets were applied for the last 12 ticks during 

the presentation of each word. Unit activations (and the integrated activations that govern 

decay) were reinitialized between word pairs. The network was trained on 750,000 

presentations of word pairs, sampling randomly but according to their specified frequencies 

of occurrence, using back-propagation for continuous-time networks (Pearlmutter, 1989), 

cross-entropy error, a batch size of 1, no momentum, and a gradually lowering learning rate: 

0.015 for 250,000 presentations, 0.01 for 250,000, and 0.005 for 250,000.5 The clean-up 

layers used a reduced learning rate (0.001) for the first 100,000 presentations, as recurrent 

connections are often not beneficial until some training has occurred (Marr, 1971).

2.1.4. Testing procedures—Following training, we tested the network on all 176 words 

as target when preceded each of the 176 words as prime (including itself), measuring the 

total activation within semantics at every unit update during target presentation. As a proxy 

for N400 amplitude, we determined the peak in summed activation within the semantic layer 

after the presentation of each target, and then averaged the sum over a 3-tick window around 

the peak.6 The peak always occurred somewhere between 4 and 9 ticks post-onset (out of 

16), with a median occurrence at tick 6. Incidentally, assuming that the presentation of each 

word corresponds to about a second, this range of timing is roughly similar to the actual 

N400, which is known to occur somewhere between 250 and 500 milliseconds post-stimulus 

(see Kutas & Federmeier, 2011). Our analyses will consider how N400 amplitude in the 

model is influenced by the frequency, semantic richness, and orthographic neighborhood 

size of targets, as well as by whether the prime and target are identical, semantically related 

5Although back-propagation is not biologically plausible in literal form, it nonetheless can give rise to internal representations with 
substantial similarity to neural representations (Khaligh-Razavi & Kriegeskorte, 2014; Kriegeskorte, 2015; Yamins, Honga, Cadieu, 
Solomon, Seibert & DiCarlo, 2014; Zipser & Andersen, 1988), and can be thought of a computationally efficient approximation to 
more plausible error-correcting procedures (see O'Reilly, 1996).
6All of the simulated N400 results to be reported hold if only the peak itself is used as the dependent measure, but summing over a 3-
tick window around the peak provides a more stable measure of the dynamics of semantic activation, and is somewhat more analogous 
to how empirical data are analyzed. Equivalent results hold if a 5-tick window is used instead.
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(i.e., overlapping in semantic features), associatively related (i.e., the prime-target pair had 

elevated frequency during training), or unrelated.

2.2. Results and Discussion

After training, for 98.7% of target presentations, all semantic units with targets of 1 were 

more active than all those with targets of 0 on the last tick. All remaining trials involved low-

frequency targets and, of these, most involved only one or two incorrect unit activations. 

Although not perfect, we considered this level of comprehension performance sufficient to 

warrant testing N400 and behavioral effects in the model.

We will first consider the joint effects of word frequency, semantic richness, and repetition, 

and then turn to effects of semantic and associative priming and orthographic neighborhood 

size.

2.2.1. Word frequency, semantic richness, and repetition—The relevant empirical 

effects on N400 amplitudes are as follows:

Frequency: Low-frequency words produce larger N400s than do high-frequency words 

(Barber, Vergara & Carreiras, 2004; Rugg, 1990; Van Petten & Kutas, 1990).

Richness: Words with greater semantic richness—that is, with more semantic features; 

sometimes operationalized as greater concreteness—yield larger N400s (Kounios, Green, 

Payne, Fleck, Grondin & McRae, 2009; Kounios & Holcomb, 1994; West & Holcomb, 

2000) than do words with lower richness.

Repetition: Immediate repetition of a stimulus decreases N400 amplitude (Laszlo & 

Federmeier, 2007, 2011; Nagy & Rugg, 1989; Sim & Kiefer, 2005).

Frequency × Repetition: The effect of repetition in reducing N400 amplitude is greater for 

low-frequency compared to high-frequency words (Rugg, 1990; Young & Rugg, 1992).

Richness × Repetition: The effect of repetition in reducing N400 amplitude is larger for 

words with greater compared with lesser semantic richness (Rabovsky, Sommer & Abdel 

Rahman 2012; see also Kounios & Holcomb 1994).

To determine the extent to which the model shows the same pattern of effects, we carried out 

a three-factor analysis of variance (ANOVA) using the peak amplitude in overall semantic 

activation, averaged over a 3-tick window (corresponding to the N400 in the model) as the 

dependent measure. The analysis involved data for each word as target preceded by each 

word as prime, with target word as the random variable, word frequency and semantic 

richness as between-item factors, and repetition as a within-item factor.

The pattern of results is shown in Figure 4. The ANOVA revealed main effects of word 

frequency (F1,172 = 48.23, p < .001) semantic richness (F1,172 = 336.0, p < .001) and 

repetition (F1,172 = 862.4, p < .001). In accordance with empirical findings, the simulated 

N400 was greater for low-frequency words (5.95) compared to high-frequency words (5.15), 
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for high-richness words (6.60) compared to low-richness words (4.50), and for non-repeated 

words (6.47) compared to repeated words (4.64). In addition, repetition interacted with both 

frequency (F1,172 = 22.78, p < .001) and with richness (F1,172 = 7.49, p < .01) such that the 

reduction due to repetition was greater for low-frequency (2.12) than high-frequency words 

(1.53) and for high-richness (1.99) than low-richness words (1.65). These interactions are 

also in agreement with empirical findings. Neither the two-way interaction of frequency and 

richness (F1,172 = 3.66, p = 0.057) nor the three-way interaction of frequency, richness and 

repetition (F < 1) were reliable.

In a separate ANOVA using peak time as the dependent measure, there were no reliable 

effects of frequency, richness, or repetition, nor any interactions.

As many of the relevant empirical studies involved the presentation of words in isolation, 

rather than in pairs, we also examined the performance of the network on words with no 

preceding “prime” word. An ANOVA of summed semantic activity (averaged over 3 ticks 

centered on the peak) with frequency and richness as within-item factors showed reliable 

effects of both factors (frequency: high 4.70 vs. low 5.66, F1,172 = 59.07, p < .001; (richness: 

high 6.29 vs. low 4.07, F1,172 = 313.4, p < .001) but no interaction (F < 1).

To illustrate that the model, like LP12, produces semantic activation profiles that mirror 

actual N400 waveforms, as well as to convey a sense of the variability underlying the 

network's dynamics, Figure 5 shows the individual activation profiles all words presented in 

isolation, plotted separately as a function of frequency and richness.

In the model, low-frequency words produce a larger N400 because they are less well learned 

than high-frequency words and so are less effective at suppressing the features of their 

orthographic neighbors. High-richness words produce a larger N400 simply because they 

themselves activate more features than do low-richness words. Repetition reduces the N400 

because the target's features suffer decay due to being activated by the prime. This repetition 

suppression is greater for both low-frequency and high-richness words because the prime-

based activation is greater for these two stimulus types. Finally, these variables have little if 

any effect on the latencies of the N400 because the network dynamics depend far more on 

the architectural organization of excitation and inhibition than on the amount of activation 

present at any point in time.

2.2.2. Semantic and associative priming—The empirical findings related to semantic 

priming are made complicated by the fact that different types of relations can fall under the 

broad notion of “semantic” relatedness (see Moss, Ostrin, Tyler & Marslen-Wilson, 1995). 

In particular, researchers have distinguished associative relatedness, often measured by free 

association norms (e.g., DOG-BONE; Postman & Keppel, 1970) from a purely semantic 
relation in which words have similar meanings, such as category coordinates (e.g., DOG-

PIG). The problem is that these types of relatedness often co-occur (e.g., DOG-CAT) and, in 

many studies, stimulus pairs that are characterized as semantically related typically involve 

both types of relatedness (see Jones, Kintsch & Mewhort, 2006).
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In ERP research, there have been a number of demonstrations that semantic priming 

decreases N400 amplitude (see Bentin, McCarthy & Wood, 1985; Federmeier & Kutas, 

1999; Kutas, 1993; Kutas & Iragui, 1998; Kutas & Van Petten, 1988) but very few of these 

studies have attempted to dissociate semantic from associative relatedness. Interestingly, two 

specific attempts to do so (Koivisto & Revonsuo, 2001; Rhodes & Donaldson, 2008) found 

clear reductions in N400 amplitude due to associative priming but little if any reduction for 

pure semantic priming. However, widespread evidence for a modulation of N400 amplitude 

as a function of congruity of word meanings in context (e.g., “I take coffee with cream and 

dog/pizza/sugar”, Kutas & Hillyard 1980; see Kutas & Federmeier 2011 for review) would 

seem to implicate sensitivity to semantic relatedness as well.

Taken together, then, the empirical evidence from word-word priming paradigms suggests 

that both associative and semantic relatedness influence N400 amplitudes, with at least some 

suggestion that the former may be stronger. The Rabovsky & McRae (2014) model 

implemented semantic priming in terms of feature overlap between prime and target, but did 

not address associative priming. The current model includes both associative and semantic 

relatedness and so their influences can be assessed independently.

Semantic relatedness—semantic feature overlap—was not manipulated as an orthogonal 

factor in the simulation but varied randomly among word pairs (ranging from 0 to 4 features; 

with 23.2% of non-identical pairs sharing 1 feature, 2.64% sharing 2 features, and 0.162% 

sharing 3 or 4 features). Thus, to compare semantic versus associative priming, we 

calculated mean N400 values for each target when preceded by three types of primes 

(excluding repetitions): semantic primes that were not associatively related but had one or 

more shared semantic features; associative primes that were associates during training but 

had no semantic feature overlap; and unrelated primes that were neither semantically nor 

associatively related. Forty-seven associates shared one or more semantic features, leaving 

129 (pure) associated primes. As shown in Figure 6, the model shows a small but reliable 

effect of semantic relatedness on N400 magnitudes (means: 6.38 for semantic primes, 6.50 

for unrelated primes; paired t175 = 5.55, p < .001). There is also weak evidence that the 

degree of relatedness mattered: related pairs with two overlapping feature produced 

numerically smaller N400s (mean 6.29) than those with only one (mean 6.40), although the 

difference was only marginally reliable (paired t175 = 1.76, p = .08). The model also showed 

a clear and somewhat larger effect of associative relatedness (means: 6.09 for associated, 

6.35 for unrelated; paired t128 = 3.10, p < .005).

The N400 reduction due to semantic priming is essentially caused by repetition suppression 

of the shared semantic feature(s). Associative priming reduces the N400 because the prime 

pre-activates its associated target's features to some degree, causing them to suffer from 

increased decay on presentation of the target. The pre-activation also facilitates learning to 

suppress the features of the target's orthographic neighbors (much like a high-frequency 

word). It should be acknowledged, though, that the relative magnitude of semantic versus 

associative priming in the model depends on relatively unconstrained properties of the 

simulation—degree of semantic feature overlap, and prime-target dependencies during 

training—and, thus, should not be weighted too heavily in evaluating our more general 

account.
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2.2.3. Orthographic neighborhood size—Laszlo & Plaut (2012) showed that 

simulated N400 amplitudes in their model increased with orthographic neighborhood size 

for both words and pseudowords, as found empirically (Holcomb, Grainger & O'Rourke, 

2002; Laszlo & Federmeier, 2011). Rabovsky & McRae (2014) observed a small but reliable 

effect in their model as well. In the current model, as in LP12, there is a small but reliable 

correlation between orthographic neighborhood size (calculated over words in the training 

corpus) and N400 amplitude for targets (averaged over all primes; r = .18, t174 = 2.37, p < .

05). This effect is due to the feedforward excitation coming from the orthographic features 

that are shared with neighbors; words with more neighbors will thus partially activate the 

features of a larger number of other words.

2.3. Summary

When a measure of summed semantic activation is used as a proxy for N400 amplitude, the 

current model exhibits all the relevant empirical effects: a decrease in N400 amplitude for a) 

high- vs. low-frequency words; b) low- vs. high-richness words; c) repeated vs. non-repeated 

words; d) words preceded by semantically or associatively related vs. unrelated primes; and 

e) words with smaller vs. larger orthographic neighborhoods, as well as greater repetition 

effects for f) low- vs. high-frequency words, and for g) high- vs. low-richness words. The 

dynamics of summed semantic activation also provides a reasonable approximation to the 

shape of the N400 waveform.

3. Simulation 2: Behavioral Effects

Certain issues arise in the current context with regard to modeling behavior. Rabovsky & 

McRae (2014) used total semantic activation to model behavioral performance in lexical 

decision, whereas the current model uses this measure to approximate the N400. The 

problem is that some manipulations, like repetition, actually reduce neural activity while 

improving performance. Rabovsky and McRae sidestepped this issue by essentially 

dissociating model activity from neural activity. We, on the other hand, are committed to 

preserving this relationship.

The mechanism by which reduced neural activity can lead to improved behavioral 

performance is far from well understood (for discussion, see Gotts, 2015; Gotts, Chow & 

Martin, 2012; Henson, Eckstein, Waszak, Frings & Horner, 2014). A common view is that 

the overall reduction in neural activity caused by repetition reflects a “sharpening” of neural 

representations by differentially eliminating the responses of neurons that are relatively 

poorly-tuned to the stimulus (Desimone, 1996; Wiggs & Martin, 1998). However, careful 

measurements of neural suppression due to short-term repetitions (on the order of seconds) 

appear to be more consistent with proportional scaling rather than sharpening (McMahon & 

Olson, 2007; Miller et al., 1993; Weiner et al., 2010), and a recent test of this account using 

an fMRI-adaptation paradigm (Gotts, Milleville & Martin, 2014) found broadening rather 

than sharpening of representations following repetition.

An alternative possibility is that the reduction in overall neural activity is accompanied by an 

increase in spike synchrony between active neurons that make them more effective in driving 

the downstream neurons responsible for behavior (Ghuman, Bar, Dobbins & Schnyer, 2008; 
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Gilbert, Gotts, Carver & Martin, 2010). Although the precise mechanism that gives rise to 

increased synchrony under repetition has yet to be worked out in detail, there is broad 

supportive evidence for this account from single-cell recordings (Brunet, Bosman, Vinck, 

Roberts, Oostenveld, Desimone, De Weerd & Fries, 2014; Kaliukhovich & Vogels, 2012; 

Wang, Iliescu, Ma, Josić & Dragoi, 2011) MEG (Ghuman et al., 2008; Gilbert et al., 2010), 

and intracranial EEG (Engell & McCarthy, 2014).

Although our computational formalism does not have a means of expressing neural 

synchrony directly, we formulated a means of generating responses in lexical decision that 

could take advantage of the information that might drive increased synchrony—namely, the 

activity-dependent reduction in neural activity. Given that the degree of decay in our model 

is determined by the time-averaged semantic activations (see Equation 2), we made these 

values available to the response system as a proxy for the induced degree of neural 

synchrony. We recognize that the approximation is not likely to be fully adequate, but 

considered it the best approach available to us for modeling behavior under repetition 

suppression.

3.1. Methods

We trained a response network to distinguish words and pseudowords using both time-

averaged and instantaneous semantic activation as input. In some ways, the response system 

can be thought of as a trained approximation of Usher & McClelland's (2001) leaky 

competing accumulator model of decision making within our neurophysiologically 

constrained modeling formalism.

3.1.1. Network architecture—We fixed the weights in the comprehension network, and 

added a new hidden layer of 25 excitatory units and a response (output) layer of 2 excitatory 

units, corresponding to “yes” and “no” responses. These hidden units received positive-only 

connections from the semantic units and sent positive-only connections to the response 

units. The hidden units also had an associated group of 10 “clean-up” units with which it 

was bidirectionally connected with positive-only weights. The hidden units had an 

associated inhibitory group of 3 units, and the two response units had a single associated 

inhibitory unit. Each group sent positive-only connections to, and received negative-only 

connections from, their corresponding inhibitory group. We also added a copy of the 

semantic units whose activations were set to the time-averaged activations of the original 

semantic units (  in Equation 2) at every tick. Unlike in the rest of the network, however, 

the connections from these units to the new hidden layer were not constrained to be positive-

only. As discussed earlier, our intent in introducing these units was to make decay-related 

information available to the response network in whatever way may be useful for improving 

performance. Although the relationship between the resulting changes in neural synchrony 

and behavior is not well understood, it is unlikely to reduce to a standard positive-only 

projection between groups of neurons, and hence there's no reason to constrain the influence 

of decay-related information in the model in the same way.7

7Indeed, if the outgoing connections from the time-averaged semantic units are constrained to be positive-only, the model shows 
poorer rather than better performance under repetition, as expected.
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Apart from learning rate and momentum, all other parameters were the same as in the 

comprehension network.

3.1.2. Training procedures—The response network was trained on the 176 words and 

also on 176 pseudowords that were matched orthographically to the words by selecting 

randomly from the remaining 324 CVC inputs that were not used as words. Inputs consisted 

of pairs of stimuli in which a word or pseudoword was followed by a word or pseudoword, 

where targets were applied only during the last 10 ticks of the second stimulus. The same 

timing of inputs was used as for the comprehension network—and, for word presentations, 

the same frequency and associative constraints. The network was trained to activate only the 

“yes” unit in response to each word, and to activate only the “no” unit in response to each 

pseudoword.8 The network was trained for 50,000 presentations of stimulus pairs, using 

cross-entropy error, a batch size of 1, momentum of 0.8, and a gradually reducing learning 

rate (0.1 for 25,000 presentations, 0.05 for 25,000 presentations; clean-up layers were again 

trained with a reduced initial learning rate [0.001 for the first 5,000 presentations]).

3.1.3. Testing procedures—We tested the network on all words as targets preceded by 

all words as primes. As a measure of behavioral performance, we used the sum over the last 

6 ticks of the difference between the “yes” and “no” unit activations in response to the target

—positive values reflect greater “yes” than “no” activation. We chose this measure because 

it implicitly reflects both accuracy and latency, as words that activate the “yes” unit and 

deactivate the “no” unit more quickly and accurately will have higher yes-no sums than 

words that respond more slowly or less accurately. We used the last 6 ticks because they 

reflect the steady-state activations reached by the response units after the transient over-

activation of the N400-like wave (although other numbers of ticks give similar results).

3.2. Results and Discussion

3.2.1. Word frequency, semantic richness, and repetition—The relevant empirical 

effects on behavior are that lexical decision performance is better—in terms of accuracy 

and/or latency—for high- compared to low-frequency words (Gardner, Rothkopf, Lapan & 

Lafferty, 1987; Forster & Chambers, 1973), for high- compared to low-richness words 

(Pexman, Hargreaves, Siakaluk, Bodner & Pope, 2008; Yap, Pexman, Wellsby, Hargreaves 

& Huff, 2012), and for repeated compared to non-repeated words (Ratcliff, Hockley & 

McKoon, 1985; Scarborough, Cortese & Scarborough, 1977). Importantly, the effects for 

frequency and repetition are opposite to those for N400 amplitude. The benefit from 

repetition has been reported to be greater for low- versus high-frequency words (Forster & 

Davis 1984; Norris 1984; although see Versace & Nevers 2003). Similarly, the repetition 

benefit has been reported to be greater for high- versus low-richness words (Rabovsky et al. 

2012; although see Kounios & Holcomb 1994).

8We do not, of course, believe that human participants need to be explicitly trained on lexical decision in order to achieve accurate 
performance on the task, although we do believe that they base their decisions, at least in part, on semantic information (see, e.g., 
Plaut, 1997). Our use of explicit training on lexical decisions is intended solely to provide a basis for measuring the relative difficulty 
of saying “yes” to word targets as a function of their properties and relationship to prime words.
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We carried out a three-factor ANOVA using our behavioral measure (summed yes-no 

activation) as the dependent measure, target word as the random variable, word frequency 

and semantic richness as between-item factors, and repetition as a within-item factor (see 

Figure 7). The analysis revealed reliable main effects of word frequency (F1,172 = 17.98, p 
< .001) semantic richness (F1,172 = 6.968, p < .01) and repetition (F1,172 = 28.56, p < .001). 

As found empirically, the network's performance was better for high-frequency words (4.54) 

compared to low-frequency words (3.61), for high-richness words (4.37) compared to low-

richness words (3.79), and for repeated words (4.37) compared to non-repeated words 

(3.79). Moreover, repetition interacted with both frequency (F1,172 = 4.573, p < .05) and 

richness (F1,172 = 30.88, p < .001), such that the repetition benefit was greater for low- than 

high-frequency words (0.810 vs. 0.347), and greater for high- than low-richness words 

(1.1803 vs. −0.0231, with the latter not reliably different from 0.0). Frequency and richness 

did not interact, but the three-way interaction of frequency, richness and repetition was 

reliable (F1,172 = 13.24, p < .001), because the repetition-by-frequency interaction was much 

stronger for high- than low-richness words. There is no empirical evidence bearing on the 

three-way interaction, but the remaining findings are all consistent with those from empirical 

studies, with the exception of the absence of a repetition effect for low-richness words (cf. 

Rabovsky et al., 2012).

In the model, words generally activate semantics to a greater degree than pseudowords (after 

the N400), which means that they suffer from greater decay, as reflected by greater 

integrated semantic activations in the model. The network thus learns to use these integrated 

values to support making word responses, and this support is stronger for high- compared to 

low-frequency words, and for repeated compared to non-repeated words. Semantic 

activation itself is also informative, which aids high- compared to low-richness words. The 

interactions arise because the integrated values—which drive the repetition effect—are 

greater for words with larger N400s: low-frequency words and high-richness words.

3.2.2. Semantic and associative priming—When behavioral studies have tested 

priming among words that are that are semantically but not associatively related (Fischler, 

1977; Moss et al., 1995), (Seidenberg, Waters, Sanders & Langer, 1984; Shelton & Martin, 

1992), the priming effect is generally smaller than that found for purely associatively related 

words, particularly in lexical decision (see McNamara 2005; Neely 1991 for reviews; 

although see Thompson-Schill, Kurtz & Gabrieli 1998, for conflicting results).

Using the same analyses as for N400 amplitude but now applied to the behavioral measure 

(see Figure 8), the model shows reliable benefits in performance for both semantic priming 

(means: 3.909 for semantic primes, 3.735 for unrelated primes; paired t175 = 5.505, p < .001) 

and associative priming (means: 4.314 for associative primes, 3.897 for unrelated primes; 

paired t128 = 3.704, p < .001), with the latter being larger in magnitude. Thus, in behavior as 

well as in the N400, the model shows stronger associative than semantic priming, as 

observed empirically. As was true of the N400 results, semantic priming was numerically 

greater for primes with two versus one overlapping feature with the target (3.892 vs. 3.735) 

but the difference was not reliable (paired t175 = 1.356, p > .10).
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Both priming effects are driven by greater integrated semantic activations for targets 

preceded by related compared to unrelated primes.

3.2.3. Orthographic neighborhood size—The effects of orthographic neighborhood 

size on lexical decision performance are, as Rabovsky & McRae (2014) discuss, rather 

complicated (see Andrews, 1997; Carreiras, Perea & Grainger, 1997; Siakaluk, Sears & 

Lupker, 2002; Ziegler & Perry, 1998) and depend on factors outside the scope of either 

model. Interestingly, in the current model the correlation of orthographic neighborhood size 

and performance is numerically positive and reliable (r = .29, t174 = 4.0365, p < 0.001), due 

to sensitivity of word responses to greater integrated semantic activations for high-N 

compared to low-N words.

3.3. Summary

The performance of the response system is broadly successful at modeling the relevant 

empirical effects. It correctly exhibits better performance for high- versus low-frequency 

words, high- versus low-richness words, repeated versus non-repeated words, and 

semantically or associatively primed versus unprimed words, and it also exhibits the 

empirically observed interactions of repetition with frequency and richness (except that it 

failed to exhibit a repetition benefit for low-richness words).

4. General Discussion

The study of the N400 ERP component, and how it is (or isn't) influenced by various 

stimulus and context manipulations, has provided a wealth of information on the nature of 

online comprehension processes (Kutas & Federmeier, 2011), but developing a precise 

formulation of its mechanistic basis has proved elusive. Laszlo & Plaut (2012; see also 

Laszlo & Armstrong 2014) proposed that the N400 corresponds to transient over-activation 

within semantics due to the distribution of excitation and inhibition found in cortex, and 

supported their account with a neural network simulation of word comprehension that 

accounted for effects of orthographic regularity (but not meaningfulness) on single-item 

N400 amplitudes (Laszlo & Federmeier, 2011).

In contrast to this account, Rabovsky & McRae (2014) proposed that the N400 reflects 

implicit semantic prediction error, and showed that semantic error in an attractor model of 

word comprehension (Cree et al., 1999) is influenced in the same manner as is N400 

amplitude by a wide range of manipulations, involving word frequency, semantic richness, 

word repetition, semantic priming, and orthographic neighborhood size. Moreover, semantic 

activation in their model does a reasonable job of accounting for behavioral effects under the 

same manipulations. However, in our view, the model and account suffer from a number of 

shortcomings, the most notable of which are that a) semantic (prediction) error is not 

plausibly available under many of the conditions that evoke N400s (e.g., in response to 

pseudowords); and b) the dynamics of the error measure over time does not pattern at all 

similarly to the dynamics of the N400 waveform (see Figure 2 and compare with Figure 1a).

In the current work, we apply an extension of the Laszlo & Plaut (2012) model to the same 

phenomena that Rabovsky & McRae (2014) modeled—adding, among other things, a 
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variant of Laszlo & Armstrong's (2014) activation-based decay function, and an explicit 

response system. Overall, the current model provides a more satisfactory account of the 

relevant phenomena. Perhaps most critically, the model—like its predecessors (Laszlo & 

Armstrong, 2014; Laszlo & Plaut, 2012)—actually produces N400-like deflections in an 

activation-based measure that could plausibly correspond to the population post-synaptic 

potentials that underlie ERP components.

It is important to point out that this is not simply a case in which there are two models that 

both account for the same set of findings—the nature of what it means to “account” for a 

finding is fundamentally different on the two approaches. Rabovsky & McRae (2014) 

identified variables in their model—error and summed semantic activation—that are 

influenced in the same directions as empirically observed effects on N400 amplitude and 

behavioral performance, respectively. However, doing so does not provide a mechanistic 
account of the empirical phenomena—notwithstanding the use of computational modeling—

unless the model variables can be linked to participants’ neural and cognitive mechanisms in 

a plausible manner. The fact that semantic error is based on information that is unavailable 

to participants, and does not exhibit the signature temporal dynamics of the physiological 

measure to which it putatively corresponds, undermines for us the relevance of the model to 

understanding comprehension mechanisms in brain and behavior. By contrast, the current 

model—despite its many limitations (as discussed below)—provides a more direct and 

therefore more informative mapping between real-time activation processes in the model and 

real-time activation processes in the brain. In this way, the approach offers the beginning of 

an explanation of the relevant empirical phenomena.

4.1. Relation to Rabovsky & McRae (2014) Account

To be clear, we think there is much to recommend Rabovsky & McRae's (2014) theoretical 

emphasis on prediction (see also Kuperberg & Jaeger, 2015), in part because it aligns with 

our own perspective under many conditions. Consider associative priming. In terms of 

prediction error, the prime leads to an elevated expectation of the occurrence of the target's 

features, and thus when the target actually occurs there is less prediction error than when the 

target is unexpected following an unrelated prime. Note, though, that the same thing is true 

in terms of degree of over-activation of semantics (under the proper constraints on excitation 

and inhibition): the prime partially pre-activates features of the associated target, giving 

those features an advantage in—and, thus, shortening—the subsequent competition when the 

target presentation activates features of its orthographic neighbors. On this latter account, 

any source of pre-activation of appropriate semantic features, including sentence-level and 

discourse-level context, would be expected to reduce N400 amplitudes. Indeed, the word-

level effect of semantic/associative priming on the N400 is indistinguishable from the 

sentence-level effect on final words of congruent versus incongruent sentences (Kutas, 

1993). Thus, our account and one based on prediction error agree in cases where any kind of 

prior context pre-activates (or “predicts”) semantic features. We prefer our account account 

in part because it maintains a clear relationship between simulated neural activity and the 

EEG signal. Neurally explicit formulations of predictive coding (e.g., Friston, 2010; Park & 

Friston, 2013) typically employ a population of “prediction error” neurons that are separate 
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from more conventional “representational” neurons, but it is unclear why, on the RM14 

account, the EEG signal would reflect only the former (although see Friston, 2005).

Another advantage of an account based on transient over-activation is that it also applies in 

the absence of informative context and, hence, in the absence of a basis for making 

predictions. Consider the word frequency effect. In our model, low-frequency words 

generate larger N400s because they have not learned to suppress their neighbors’ features as 

well as have high-frequency words. According to Rabovsky & McRae (2014), implicit 

prediction error can explain the word frequency effect because:

An internal model should encode the fact that, in general, it is less probable to 

encounter a low frequency as compared to a high frequency word. Therefore, 

implicit prediction error would be higher for low frequency words. (p. 71)

This sounds plausible but works only if one assumes localist word representations, so that 

the units for high-frequency words can be pre-activated more than those for low-frequency 

words. It doesn't work for the distributed (semantic) representations in their model and ours: 

the features of high-frequency words are no more common (and hence would not be more 

strongly pre-activated) than those of low-frequency words. Thus, the word MILK is very 

high-frequency but “produced by cows” is certainly not; AQUIFER is very low-frequency 

but being “related to water” is relatively common. The Rabovsky & McRae (2014) model 

produces lower prediction error for high-frequency words because the stronger activations 

for such words are compared against correct semantic targets, even though these are 

unavailable from implicit prediction. Stronger semantic activation might very well produce 

higher error if compared against the type of generic predictions that are actually possible in 

random word lists.

This issue is, of course, even starker in the case of nonwords, including illegal strings and 

pseudowords, which don't have correct semantic values to compute error against. Rabovsky 

& McRae (2014) did not apply their model to any nonword stimuli, but suggested (p. 84) 

that “illegal strings presumably correctly elicit very little expectation for semantic features at 

all, so that implicit prediction error would be low”. The problem with this suggestion is that 

prediction error is low only if the presumed low levels of semantic activation are compared 

against “correct” semantic targets of all zeros, and yet the system has no way to know that 

these are the correct targets until after the stimulus has been processed and determined to be 

a nonword. The N400 itself reflects this processing, and thus an account of the N400 cannot 

presume it has already occurred.

Repetition effects are perhaps the clearest example of reduction in N400 amplitude due to 

pre-activating semantic features. On our account, though, this alone is insufficient to give 

rise to the pattern of interactions of repetition with semantic richness and, in particular, with 

word frequency. In both cases, reductions are greatest for the items that produce the largest 

initial N400—high-richness words and low-frequency words. But in the latter case, the 

source of the larger N400 is the activation of neighbors’ features, not those of the word 

itself. Pre-activation of competitors’ features gives no advantage to the features of the low-

frequency word on the second presentation (to resolve the competition more quickly)—quite 

the opposite in fact. Rather, the interactions with repetition, and much of the main effect of 
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repetition itself, are due to the operation of activation-dependent decay. Greater overall 

activation during the first presentation leads to greater decay on those active features, and 

thus a larger reduction in N400 on the second presentation.

Laszlo & Armstrong (2014) introduced the idea that activity-dependent decay formed the 

basis for reductions in N400 amplitudes following repetition. They employed an alpha 
function which is used to model fatigue effects in post-synaptic potentials (Bugmann, 1997), 

which underlie ERP signals (Fabiani et al., 2007), and related functions have been shown to 

approximate activation dynamics in actual neurons (David, Kiebel, Harrison, Mattout, 

Kilner & Friston 2006; see also Gotts & Plaut 2002, for related modeling of the relevance of 

synaptic depression to comprehension impairments). We chose to adopt a version of activity-

dependent decay that is somewhat simplified relative to the alpha function but gives rise to 

qualitatively similar effects. Although the specific decay function may not matter much, we 

do think that some form of repetition suppression is critical to accounting for repetition 

effects on the N400, and context effects more generally.

Following Rabovsky & McRae (2014), we attempted to model not just the 

electrophysiological consequences of the various factors but also their impact on behavior. 

Rabovsky and McRae assumed that greater semantic activation corresponds to better 

performance, and showed that this largely aligned with human performance for their model 

(although sometimes very weakly, and not always over the time range corresponding to 

response generation). However, this approach in untenable in our model—and, we believe, 

in any model that incorporates repetition suppression—because some conditions that give 

rise to better performance, such as repetition, actually produce weaker overall activation. As 

discussed earlier, there is as yet no clear explanation for improved performance under 

repetition suppression (see Gotts et al., 2012), but one promising possibility is that the 

reduced neural activation increases neural synchrony which, in turn, increases the efficacy of 

downstream communication (Ghuman et al., 2008; Gilbert et al., 2010).

Given these considerations, we decided against stipulating a particular measure as 

corresponding to behavioral performance, but rather provided a response system with 

potentially relevant information and allowed it to learn to produce accurate behavior. As our 

framework does not have a means of expressing neural synchrony directly, we provided the 

response system with information that is thought to govern synchrony—the degree of 

activation-based decay, as determined by each semantic unit's time-averaged activation. The 

performance of the resulting trained response system does accord with the observed 

empirical effects (apart from the repetition benefit for low-richness words; Rabovsky et al., 

2012). Even so, further work is needed to replicate these findings using better 

approximations to the effects of repetition on neural synchrony, and of neural synchrony on 

response generation.

4.2. Limitations and Future Directions

There is no question that our model of word comprehension suffers from a number of 

limitations in its design and scope, and understanding these is critical to informing the 

development of better models in the future. In addition to the issues related to neural 

synchrony just mentioned, the small size of the vocabulary, the artificiality of the semantic 
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representations, and the implausibility of the learning procedure are all aspects that could be 

improved. But perhaps more fundamental than these is the restriction to sequences of pairs 

of words, and to deriving isolated word meanings rather than sentence- or discourse-level 

interpretations. A large proportion of the literature on the N400 concerns its sensitivity, or 

lack thereof, to sentence-level contexts and manipulations. For this reason, a critical 

extension of the current work would be to apply the same computational principles and 

account within a model of sentence comprehension (e.g., McClelland, St. John & Taraban, 

1989; St. John & McClelland, 1990). It is also important to extend the approach to address 

the properties of other comprehension-related ERP components, such as the P600 and its 

apparent complementary sensitivity to syntactic but not semantic violations (Friederici 1995; 

Hagoort, Brown & Groothusen 1993; but see Brouwer, Fitz & Hoeks 2012; Brouwer & 

Hoeks 2013; Brouwer, Crocker, Venhuizen & Hoeks in press; Kuperberg 2007 for an 

interesting alternative perspective in which the relevant distinction is between lexical-level 

vs. sentence-level integration).

It is also important to acknowledge that the current treatment of the relationship between 

model activity, neural activity, and the EEG signal is highly simplified and in need of 

elaboration. We make the standard assumption that the real-valued sigmoid activation 

function approximates neural firing frequency relative to some maximal rate (Cohen & 

Servan-Schreiber, 1992), and our activation-based decay function can be interpreted as 

approximating neural adaptation due to synaptic depression (Abbott, Varela, Sen & Nelson, 

1997; Gotts & Plaut, 2002; Varela, Sen, Gibson, Fost, Abbott & Nelson, 1997). We also 

assume that summed activation within a layer of the model is a sufficient approximation of 

the population-based post-synaptic potentials underlying EEG signals (Fabiani et al., 2007). 

However, these assumptions are clearly inadequate in light of a consideration of neural 

oscillations. First, the efficacy of neural communication is not solely a function of firing rate 

but also of the degree of synchrony among incoming action potentials (see Konig, Engel & 

Singer, 1996; Salinas & Sejnowski, 2001; Singer, 1999), and our introduction of integrated 

semantic activity is, at best, a poor approximation to this. Moreover, a number of researchers 

have argued that neural oscillations are directly relevant to interpreting ERP components like 

the N400 (see Makeig, Westerfield, Jung, Enghoff, Townsend, Courchesne & Sejnowski, 

2002; Roehm, Schlesewsky, Bornkessel, Frisch & Haider, 2004; Sauseng, Klimesch, Gruber, 

Hanslmayr, Freunberger & Doppelmayr, 2007). Nonetheless, we believe it is prudent to 

explore and understand the limitations of simpler accounts (i.e., overall neural activity) 

before introducing more complexity. We see no fundamental problem with extending a 

model based on neural activity to include a consideration of neural oscillations and 

synchrony.

4.3. Conclusions

We have presented an extension of computational work by Laszlo and colleagues (Laszlo & 

Armstrong, 2014; Laszlo & Plaut, 2012) in which the N400 ERP component corresponds to 

transient over-activation within semantics, due to the intrinsic distribution of excitation and 

inhibition within and between cortical areas. The model accounts for the same range of ERP 

and behavioral findings as an alternative model based on semantic prediction error 

(Rabovsky & McRae, 2014). The two accounts broadly agree on the basis for the effects of 
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prior context on the N400. However, we believe that the current account has a number of 

important advantages, including the fact that it actually produces N400 morphology, is based 

solely on neural activation rather than implausible access to correct semantic information, 

and can explain N400 effects even for meaningless stimuli (e.g., pseudowords). Although 

considerable work remains in improving the scale of the simulation and in applying the 

approach to a broader range of phenomena, including sentence-level effects, the current 

findings further contribute to establishing the value of developing computationally explicit 

theories of the relationship between brain function and behavior.
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Highlights

• The N400 ERP component is thought to reflect difficulty of semantic access.

• A neural network model of word comprehension exhibits N400 waveforms.

• The N400 reflects transient over-activation within semantic representations.

• The model accounts for how multiple factors influence N400 amplitudes and 

behavior.

• The account has advantages over one based directly on “implicit prediction 

error”.
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Figure 1. 
(a) Empirical data from Laszlo & Federmeier (2011) showing N400 magnitudes to words, 

pseudowords, acronyms, and illegal strings; (b) Mean semantic activation over time 

exhibited by the Laszlo & Plaut (2012) simulation for the same stimulus classes. (Reprinted 

with permission from Laszlo & Plaut 2012.)
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Figure 2. 
Rabovsky & McRae's (2014) results using cross-entropy error to simulate the effects on 

N400 amplitude of (a) word frequency and (b) repetition. (Reprinted from Rabovsky & 

McRae 2014; permission pending.)
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Figure 3. 
The architecture of the network used in Simulation 1. Names of hidden layers are in square 

brackets. The bottom two layers form a feedforward autoencoder with separate input and 

output layers, but these are depicted as a single “Visual Input” layer with bidirectional 

connectivity for simplicity.
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Figure 4. 
Means (and standard errors) of simulated N400 amplitudes in the model as a function of 

word frequency (HF = high-frequency; LF = low-frequency), semantic richness, and 

repetition.
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Figure 5. 
Summed semantic activation profiles for words varying in frequency and richness when 

tested in isolation (lighter lines), along with the average of these curves (black line). Unit 

updates (ticks) are numbered from the onset of the word.
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Figure 6. 
Mean simulated N400 amplitudes in the model to targets following semantically (but not 

associatively) related versus unrelated primes, and associatively (but not semantically) 

related versus unrelated primes. The paired differences between unrelated and related 

conditions are also plotted (against the right axis). The unrelated conditions differ because 

they are based on different numbers of observations (176 vs. 129).
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Figure 7. 
Means (and standard errors) of the simulated behavioral measure in the model (summed 

difference in activation between the “yes” and “no” unit in the response system) as a 

function of word frequency (HF = high-frequency; LF = low-frequency), semantic richness, 

and repetition.
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Figure 8. 
Mean simulated behavioral measures in the model to targets following semantically (but not 

associatively) related versus unrelated primes, and associatively (but not semantically) 

related versus unrelated primes. The paired differences between unrelated and related 

conditions are also plotted (against the right axis). The unrelated conditions differ because 

they are based on different numbers of observations (176 vs. 129).
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