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Abstract

Objectives—Extracting data from publication reports is a standard process in systematic review 

(SR) development. However, the data extraction process still relies too much on manual effort 

which is slow, costly, and subject to human error. In this study, we developed a text summarization 

system aimed at enhancing productivity and reducing errors in the traditional data extraction 

process.

Methods—We developed a computer system that used machine learning and natural language 

processing approaches to automatically generate summaries of full-text scientific publications. The 

summaries at the sentence and fragment levels were evaluated in finding common clinical SR data 

elements such as sample size, group size, and PICO values. We compared the computer-generated 

summaries with human written summaries (title and abstract) in terms of the presence of necessary 

information for the data extraction as presented in the Cochrane review’s study characteristics 

tables.

Results—At the sentence level, the computer-generated summaries covered more information 

than humans do for systematic reviews (recall 91.2% vs. 83.8%, p<0.001). They also had a better 

density of relevant sentences (precision 59% vs. 39%, p<0.001). At the fragment level, the 

ensemble approach combining rule-based, concept mapping, and dictionary-based methods 

performed better than individual methods alone, achieving an 84.7% F-measure.

Conclusion—Computer-generated summaries are potential alternative information sources for 

data extraction in systematic review development. Machine learning and natural language 

processing are promising approaches to the development of such an extractive summarization 

system.
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1. Introduction

Systematic reviews (SR) are important information sources for healthcare providers, 

researchers, and policy makers. An SR attempts to comprehensively identify, appraise, and 

synthesize the best available evidence to find reliable answers to research questions (1). The 

Cochrane Collaboration is an internationally recognized non-profit organization that 

develops SRs for health-related topics. Cochrane reviews aim to identify and synthesize the 

highest standard in evidence-based practice (2). Cochrane usage data in 2009 showed that 

“Every day someone, somewhere searches The Cochrane Library every second, reads an 

abstract every two seconds, and downloads a full-text article every three seconds.” (3).

The development of systematic reviews has been faulted as resource-intensive and slow 

(4-6). Data extraction is one of the steps in SR development whose goal is to collect relevant 

information from published reports to perform quality appraisal and data synthesis, 

including meta-analysis. Yet, studies have shown that the manual data extraction task has a 

high prevalence of errors (7, 8). This is partially because of human factors such as limited 

time and resources, inconsistency, and tedium-induced errors. Computer methods have been 

proposed as a potential solution to enhance productivity and to reduce errors in SR data 

extraction.

Boundin et al. (9), Huang et al. (10, 11), and Kim et al. (12) investigated machine learning 

approaches to classify sentences that contain PICO (Population, Intervention, Control, and 

Outcome) elements. PICO is a popular framework used to formulate and find answers to 

clinical questions. Demner-Fushman and Lin (13), Kelly and Yang (14), and Hansen et al. 

(15) employed rule-based and machine learning approaches to extract PICO and patient 

related attributes. Those studies extracted information from abstracts, which, while 

important, are not sufficient for extracting information for SRs. In fact, extraction from full-
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text reports is the standard requirement in SR development (16). Full-text extraction is more 

challenging since it has to process much larger chunks of text containing substantial 

redundancy and noise.

Kiritchenko et al. (17) and de Bruijin et al. (18) developed ExaCT to help extract clinical 

trial characteristics. ExaCT is considered as one of the most successful full-text extraction 

systems for clinical elements. Their method first uses a machine learning classifier to select 

the top five relevant sentences for each element, and then uses hand-crafted weak extraction 

rules to collect values for each element. ExaCT selects RCT studies from top five core 

clinical journals that have full-texts available in HTML format. In practice, SRs must select 

studies outside the top five clinical journals and many study publications are not available in 

HTML format. Wallace et al. conducted another notable work on extracting relevant 

sentences from full-text PDF reports to aid SR data extraction (19). The authors used the 

supervised distant supervision algorithm to rank sentences based on the relevance to PICO 

elements. Extracting short phrases (or fragments) and measuring sensitivity (or recall) were 

not their primary focus.

In the present research, we investigated an automatic extractive text summarization system 

to collect relevant data from full-text publications to support the development of systematic 

reviews. Text summarization research aims to reduce texts while keeping the most important 

information. Previous research has generally followed two main approaches: extractive and 

abstractive (20, 21). Extractive approaches obtain relevant words, phrases, or sentences from 

the original text sources to construct the summary (22, 23). Abstractive approaches attempt 

to build a common semantic model and then generate graphs or natural language summaries 

to describe the model (24, 25). We followed the extractive approach in the present study to 

automatically collect relevant sentences and phrases from the published PDF manuscripts. 

Although we focused on common clinical trial data types such as sample size, group size, 

and PICO values, the technique can be applied to other data types that are used in SR 

development.

2. Methods

Our study design consisted of three main parts: (1) development of a data extraction gold 

standard from Cochrane reviews; (2) development of a computer system that can 

automatically generate summaries at the sentence and fragment levels; and (3) evaluation of 

system performance in the summarization of clinical trial data elements and a comparison 

with the study title and abstract. The overall system architecture and study design are 

summarized in Figure 1.

2.1. Gold Standard

From the Cochrane Library, we retrieved systematic reviews on the subject “heart and 

circulation” that were published after October 2014. In each review, we identified the 

included primary studies and archived publication reports in PDF format. A clinical trial 

might report partial results in multiple publications during the course of a study. Text 

summarization of multiple documents is not this study’s primary focus; therefore, we 
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excluded those multiple-report trials from our dataset. We also excluded nonrandomized 

trials.

To develop the data extraction gold standard, we used the original Cochrane’s data 

extraction templates as references, reviewing full-text reports to validate and collect 

synonymous mentions (e.g., synonyms, abbreviations, morphological variations). For each 

document, we built an extraction template including five data elements: sample size, group 

size, population, study arm (intervention or control), and outcome. Sample size is defined as 

the total number of patients enrolled in the study as included in the statistical analysis. 

Group size is the number of participants in each study group. Sample size can be inferred by 

summing up all group sizes. Population is defined as the main characteristics of the target 

population recruited in the study. The population characteristics describe the group of 

patients sharing the same disease, the same demographics, or that underwent the same 

medical procedure. Study arm is defined as the name of an interventional or control 

treatment. We did not distinguish between intervention and control arms since this is a 

convention not always explicitly mentioned in publications and not every study has a control 

arm. For instance, groups absent of an intervention treatment or “placebo” treated groups are 

implicitly classified as control group. Outcome is defined as measurements used to assess a 

study hypothesis, such as clinical attributes and adverse events. We did not distinguish 

between the primary and secondary outcomes in individual studies since reviewers might 

have a different selection of primary outcome for a given systematic review. Table 1 shows 

examples of the extraction template with data extracted from two publication reports.

2.2. System overview

We implemented a pipeline of nine stages for data extraction. Overall, the system takes the 

PDF publication reports as input, and outputs text summaries including a list of relevant 

sentences for each data element as well as recommended key phrases in each sentence. The 

nine stages are explained below (see Figure 1):

(1) PDF Text Extraction: We used the open-source tool PDFBox (26) to extract raw 

text from PDF documents. Text extracted using PDFBox tool has characteristics 

similar to manually copying-and-pasting text from a PDF reader. Principal 

structures are lost, and texts are broken into multiple lines of text snippets. 

However, the essential text order is well-maintained and can be used for natural 

language processing (NLP) research.

(2) Text Classification & Filtering: we used a text classification algorithm (27) to 

automatically categorize text snippets into five categories (TITLE, ABSTRACT, 

BODYTEXT, SEMISTRUCTURE, and METADATA). Also from our prior 

work, we found that filtering semi-structures and publication metadata enhanced 

efficiency and effectiveness of information extraction (IE) system operating on 

full-text articles. Therefore, we discarded those non-prose texts at this stage.

(3) Text Normalization: the goal of this step is to translate texts into canonical form. 

More specifically, we find and replace all numbers in literal expression to 

numeric format (e.g., “a hundred and three patients” ➔ 103 patients). We 

developed an acronym normalization module that reads full-text documents, 
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detecting and replacing acronyms to their fully expanded form. The acronym 

normalization algorithm first checks all parenthetical expressions and the 

preceding text (e.g., “small cell lung cancer (SCLC)”) for candidate acronym 

pairs, then uses the pattern of initial letters for validation. This is the most 

frequently used acronym pattern in biomedical publications. There are 

elaborated acronym normalization algorithms which can be incorporated to our 

system (28-30). Future testing and adaptation are needed to select an optimal 

approach for RCT publications. Acronym normalization increases the clarity of 

the sentences in manual review and improves performance of the concept 

mapping approach in a subsequent stage.

(4) IMRAD Context Detection: This step attempts to assign categories of the 

common scientific article organizational structure IMRAD (i.e., introduction, 

methods, results, discussion) to text snippets. We relied on the recognition of 

common headings in text to assign the IMRAD class to the subsequent snippets 

until detecting a new heading that triggers a context change. The text snippets 

are clustered into different context nodes as illustrated in Figure 2.

(5) Sentence Segmentation: We used the Stanford NLP sentence splitter (31) to 

perform sentence segmentation in different context nodes. Performing sentence 

segmentation at this later stage has the advantage of knowing the contextual 

information of the generated sentences. In addition, noisy texts (e.g., tables, 

figures, author metadata) are filtered in previous stages, which helps to define 

correct sentence boundaries.

(6) Sentence Filtering: In this step, we attempt to filter all sentences that discuss 

background knowledge and therefore are not relevant to the extraction goal. We 

filter sentences having the context INTRODUCTION, sentences containing year 

and citation expressions, and sentences referring to other studies (e.g., 

containing phrases such as “these trials”, “et al.”, and “previous studies”).

(7) Sentence Ranking: The goal of this step is to prioritize sentences for each 

individual data element. We used the Support Vector Machine Regression 

classifier, Sequential Minimal Optimization, implemented in Weka (32) with a 

polynomial kernel and default model parameters. To train the regression model, 

we used 50% of the sentences in the gold standard as the training set. The 

response variable is set to the number of times the target element appears in a 

sentence. The predictor variables or features can be divided into three groups:

a) Bag-Of-Terms (BOT) Group: this feature group is based on words, 

terms, or patterns that appear in the sentence. First, the top 100 most 

frequent words that are present in relevant sentences (i.e., sentences 

that contain at least one target element for data extraction) were 

selected as BOT features. We used the frequency of those words in the 

sentence to generate a feature vector. Second, we used a binary 

variable determining whether the sentence contains at least a true-

positive mention in the training set. Third, we used regular expression 

features to capture text patterns that are strong indicators of relevant 
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sentences. For the scope of the present study, we maintained a small 

set of regular expression features per data element (e.g., SampleSize: 

“total of \d+ patients”, Outcome: “(end points?|endpoints?| outcomes?) 

was|were|included”).

b) Context Group: this group includes two features based on the context 

of the sentence. The document-structure feature is a nominal attribute 

that takes one of three values: TITLE, ABSTRACT, or BODYTEXT. 

The IMRAD nominal feature accepts one of four values: 

INTRODUCTION, METHODS, RESULTS, or DISCUSSION. If the 

sentence contexts were not determined from the previous steps, they 

are treated as missing values.

c) Semantic Group: This group uses 15 semantic groups from the Unified 

Medical Language System (UMLS) (33) as features. We used 

MetaMap (34) to map sentences to UMLS concepts, from which we 

map the UMLS sematic types to sematic groups. Then we aggregate 

and compute the sematic group features based on their frequency.

Based on the three feature groups above, we created four machine learning 

models for comparing and selecting the best model for each data element: BOT, 

BOT+Context, BOT+Semantic, and BOT+Context+Semantic.

(8) Key phrase Extraction: The goal of this step is to recognize key phrases from the 

sentences to help reviewers quickly identify parts of the sentence that are 

relevant to the extraction goal. Based on the type of data element we employed a 

subset of the following techniques:

a) Regular expression (regex) matching: Since numbers are normalized to 

numeric expressions, regex pattern matching is an extremely useful 

technique in the recognition of numeric values. We used a list of 

regular expressions rules (Table 2) to extract numeric values for 

sample size and group size. Each regex rule contains context 

expressions and capturing “groups” referring to target elements. Since 

each sentence might have a unique way to convey the numeric value, 

only the best match was considered.

b) Noun phrase chunking and regex matching: For literal-expression data 

elements (e.g., outcome), applying regular expression matching might 

detect very long phrases, which is less useful for key phrase 

identification. Therefore, we performed noun phrase chunking to 

restrict the matching only to noun phrases of the sentence. To perform 

the noun phrase chunking, we used the Stanford parser to generate a 

Penn tree and used the Tregex parser (35) to collect all noun phrase 

expressions.

c) Concept Mapping & Semantic type restriction: The majority of 

relevant key terms can be found in medical terminologies. Concept-

mapping was found to be an effective approach. We used MetaMap 
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(34) to detect medical terms from the sentence that can be mapped to 

UMLS concepts. To enhance precision, we restricted the mapping to a 

few semantic types (Table 2) relevant to the target elements. The 

selection of optimal sets of semantic types was based on experimental 

testing on the training set. We maintained an optimal set of semantic 

types for each data element. Some semantic types are shared by 

multiple elements.

d) Supplement Dictionary: This approach enables the inclusion of 

individual literal data element terms not otherwise available in the 

UMLS controlled terminologies. Since key terms are reused in 

multiple publication reports, maintaining a good-coverage, element-

specific dictionary improves accuracy as well as lowers computational 

overhead. We added all true positive terms in our training set to the 

dictionary and matched them against the sentence to extract the 

candidate terms. Since our training set is relatively small and not 

representative of the literature as a whole, we still need to combine this 

method with other generalizable methods.

(9) Post-processing: This step filters phrases that are lengthy (> 5 words), phrases 

contained in other phrases, and phrases contained in a stop list. The stop list was 

constructed using the top 20 most frequent false-positive terms upon evaluating 

the system on the training set, which were never recognized as true-positives in 

all training documents.

2.3. Evaluation Approach

The system creates a ranked list of sentences from which it selects the top N sentences to 

generate the summary. To evaluate the system performance at the Nth sentence, we used the 

following metrics:

We selected recall as the primary outcome to emphasize the information coverage of the 

computer suggested summary. The goal is to enable reviewers to find as much of the needed 

information in the summary as possible and to reduce the need for conducting manual full-

text review for missing information. The evaluation conducted by Wallace et al. (19) was 

focused on precision of the top ranked sentences, a popular measure in information retrieval 

and question answering systems. However, recall is the most important metric in judging the 

quality of an automatic text summarization system in the context of systematic review 

development.
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We grouped together the evaluation of sample size and group size. Sample size might not 

always be reported explicitly in texts but it can be inferred by summation of all group size 

values. To account for a true positive sample size or group size, we applied a binary rule: 

true if the sentence contains a sample size value or all of group size values, and false 
otherwise.

We tested a hypothesis that text summaries generated by the machine learning classifier 

retains more information for systematic reviews than title and abstract. Title and abstract, in 

human-written summaries, are common and popular information sources in SR 

development. However, those sources might not have sufficient information needed for 

collecting SR data. This hypothesis evaluates the computer-generated summary against title 

and abstract, to serve as a potential alternative information source for SR citation screening 

and data extraction processes.

To test the hypothesis, we collected the corresponding abstracts and titles indexed in 

MEDLINE. Titles and abstracts were processed by the normalization and segmentation steps 

described earlier. Then, the abstract/title sentences were compared with system 

recommended sentences. N is set to number of abstract/title sentences. The same evaluation 

was applied to both algorithm versions with recall selected a priori as the primary outcome. 

To test the significance of performance difference, we used the Chi-square test to assess the 

sample/group size data element, and the Wilcoxon signed rank test to assess other elements. 

The significance level was set at p < 0.05.

Evaluation at the fragment-level concerns the ability to highlight key phrases from the 

sentence. To obtain the sentence corpus, we collected all recommended relevant sentences 

using our best classifiers from the sentence-level evaluation. Standard information extraction 

metrics (recall, precision, and f-measure) were measured at the sentence unit. To consider a 

phrase recommendation as a true positive, an exact match was required for numeric elements 

(e.g., sample size, group size). Literal elements, phrases of up to five words that contain a 

correct mention or one of its synonyms, were considered as true positives. We evaluated and 

compared the performance of the following extraction methods: Regex Matching, Concept 

Mapping, Supplement Terminology, and a combination of these three methods.

3. Results

The gold standard was composed of 48 publication reports included in 8 systematic reviews. 

Although all these studies are randomized controlled trials, only 16% of them have posted 

structured results in ClinicalTrials.gov. The annotation task found 48 sample sizes, 116 

group sizes, 53 populations, 99 study arms, and 267 outcomes. Terms that co-referred to the 

same concept are counted only once. At the sentence-level, 3,166 sentences in the training 

set were used to train the regression model, and 3,404 sentences in the test set were used for 

evaluation. At the fragment level, the number of test sentences per data element was as 

follows: Sample/group size: 39; population: 133; study arm: 225; and outcome: 226. Figure 

3 shows an example of a computer-generated summary including topmost relevant sentences 

and recommended key phrases.

Bui et al. Page 8

J Biomed Inform. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ClinicalTrials.gov


Table 3 shows the results of the evaluation of computer-generated summaries by the four 

machine learning models. The best ML models were different for specific data elements. 

The BOT+Context model performed best for sample/group size and population elements; the 

BOT+Context+Semantic model performed best for the study arm element; and the BOT

+Semantic model performed best for the outcome element.

Table 4 compares computer generated summaries from our best classifiers and the manually 

written summaries (title and abstract). On average, summaries generated from our systems 

achieved 91.2% recall and 59% precision, which is significantly better than title and abstract 

(recall: +7.4%, p<0.001; precision: +20%, p<0.001).

For individual elements, precision reached statistically significant improvement on all data 

elements, while statistically significant improvement of recall was only achieved on the 

outcome element. Population and intervention are often reported in an article’s title or 

abstract. Both baseline and our methods reached perfect recall for those elements. A non-

significant difference (+8.4%, p=0.32) was found for the sample/group size element. A 

subsequent analysis showed that the ML classifier essentially retrieved a group of sentences 

similar to the abstract and title, but also retrieved relevant sentences from the body-text 

section.

On the fragment-level (Table 5), the regular expression matching approach achieved an F-

measure of 90.3% on Sample/Group Size extraction. This confirms regex matching is the 

most common and effective approach in extracting numeric values. For other literal 

elements, the ensemble approach outperformed each individual method. The F-measure was 

79.8% for Population, 86.8% for Study Arm, and 81.8% for Outcome. On average, our best 

extraction methods achieved an F-measure of 84.7%. While recall (95.2%) was satisfactory, 

the precision (76.6%) could be improved further.

4. Discussion

In this study we developed and evaluated an extractive text summarization system that can 

support data extraction in the development of systematic reviews. Instead of automatically 

generating the extraction results, the system generates summaries that humans can review 

and find relevant information. It is our contention that human involvement will always be 

necessary in SR development based on NLP methods. We attempted to locate sample size 

and PICO information from full-text PDF reports, which adds knowledge to previous IE 

research using simpler, more convenient sources (e.g., MEDLINE abstracts).

In sentence ranking, the best ML model varied for different data elements. Different data 

elements require a different set of features and optimization techniques. This finding suggest 

that future studies adopt both element-specific features and generic features to achieve 

optimal performance. The use of context features and semantic features improved the 

performance of ML models that use Bag-Of-Term features alone. This finding suggests that 

rhetorical context and semantic analysis are useful in developing text-based classification 

models in the SR context. For the primary outcome (recall), the system-generated summaries 

performed equally (Study Arm and Population) or better (Sample/Group Size and Outcome) 
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than the abstract/title summaries. The majority but not all information can be found in the 

abstract and title of the studies. Therefore, IE systems supporting the development of SRs 

need to operate at full-text scale to maximize the comprehensiveness of data extraction (16). 

In addition, precision was better in full-text reports versus title/abstract for all data elements. 

Better precision corresponds to a higher number of relevant sentences in the top ranked list. 

In full-text documents, information can be repeated in multiple sections. The ML system 

was better in collecting repeated relevant sentences, which offers reviewers multiple sources 

to confirm the extraction results.

In fragment-level extraction, we proposed three extraction methods: regular expression 

matching, mapping to UMLS concepts, and element-specific dictionary. Regular expressions 

are most useful for extracting templates or numerical values. Designing and implementing a 

regular expression approach requires considerable manual work unless regular expression 

learning techniques are effectively applied (36, 37). Mapping text to UMLS concepts is one 

of the extraction methods commonly used in clinical and biomedical NLP studies (38-40). 

MetaMap tends to perform well in the recognition of texts that can be mapped to medical 

terms. However, there are more than 3 million UMLS concepts (2015AA Release) and 

classifying them to the data element of interest is challenging. In this study, we employed a 

simple semantic type restriction approach to categorize concepts to a specific element. There 

are other approaches to categorize UMLS concepts such as heuristics using UMLS concept 

relationships (41), semantic distribution (26), or machine learning (42), which are deserving 

of additional investigation and optimization to perform well on sample size and PICO 

elements. Our element-specific dictionary approach was motivated by the fact that the 

UMLS Metathesaurus might not fully cover medical terms required for SR-specific 

extraction needs. Element-specific terms are needed to complement the UMLS concept 

mapping approach. In this study, we utilized true-positive terms that appeared in the training 

set and that achieved a good coverage (60% recall) on the test set. The experiment results 

showed that an ensemble approach combining the three methods performed better than any 

of the individual methods. For PICO elements, the system’s recall was better than precision 

(95.2% vs. 76.6%), which meets our performance goal. Recall is often more important for 

semi-automated extraction, since humans are effective at judging whether recommended 

phrases are true positives; however, humans tend to miss information when screening large 

amounts of textual contents.

In summary, we demonstrated the feasibility of using machine learning and natural language 

processing approaches to automatically generate text summaries to aid data collection in 

SRs. The machine-generated summary has the potential to replace the abstract and title 

sources when searching for specific data elements.

4.2. Limitations

This study focused on sample size and PICO elements, which are commonly reported in 

randomized controlled trial studies. There are data elements suggested by the Cochrane 

Collaboration that were not covered. Some of those elements such as funding sources, study 

design, and study authors can be easily retrieved from Medline metadata. Data elements 

such as age, sex distribution, and number of participants in each group are usually reported 
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in table structures, which require a specialized table parsing algorithm. Other elements such 

as detailed inclusion/exclusion criteria, study duration, randomization method, and blinding 

can be extracted with an extension of our proposed method. There are other machine 

learning models, such as linear regression, multilayer perceptron, and Gaussian processes 

that were not evaluated in this study and could be investigated in future research. For 

comparison of feature groups, we only used support vector machine regression given its 

popularity and effectiveness in data mining research (43-45).

4.3. Future work

To fully support the vision of computer-assisted data extraction, the summarization system 

needs to support diverse systematic review data elements and have an interactive user 

interface well-integrated into the traditional data extraction workflow. Additional innovative 

approaches in sentence ranking and phrase extraction can be explored to find optimal 

strategies for each individual data element. Studies are also needed to assess systematic 

reviewers’ interaction with the computer-generated summaries, including measures of work 

efficiency and perceived relevance, completeness, readability, comprehensibility, 

connectedness, and satisfaction with the text summaries.

5. Conclusion

We presented an extractive text summarization system that can help human reviewers in 

collecting sample size and PICO values from full-text PDF reports. The system is composed 

of two main components: sentence ranking and key phrase extraction. In sentence ranking, 

we demonstrated that using a machine learning classifier on full text to prioritize sentences 

performed equally or better than screening title and abstract. These findings highlight the 

potential of using a machine learning approach to replace the traditional abstract screening 

in searching information for systematic review development. For fragment-level extraction, 

we showed that using an ensemble approach combining three different extraction methods 

obtained the best extraction performance. Future research is needed to integrate the system 

with an effective and usable user interface.
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Highlights

• We studied an extractive text summarization system to assist data extraction 

tasks in systematic reviews.

• We extracted sample size, group size, and PICO values automatically from 

full-text PDF reports.

• In information seeking, computer generated summaries are a potential 

alternative source to human written summaries (based on abstracts and title).

• Machine learning and natural language processing approaches are useful in 

automatic text summarization in the systematic review context.
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Figure 1. 
System architecture and study design.

Bui et al. Page 15

J Biomed Inform. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
The standard structure organization of text in a scientific article.
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Figure 3. 
Example of computer generated summary for the clinical outcome element.
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Table 1

Data extraction template with examples extracted from the Cochrane review “Primary prophylaxis for venous 

thromboembolism in ambulatory cancer patients receiving chemotherapy”.

Cochrane ID Klerk 2005

Study Title The effect of low molecular weight heparin on survival in
patients with advanced malignancy

Sample Size 302

Group Size 148

154

Population Advanced Malignancy

Study Arm low molecular weight heparin|Nadroparin

Placebo

Outcome death from any cause|death as a result of any cause|death
major bleeding|non-major bleeding|bleeding

Cochrane ID Mitchell 2003

Study Title Trend to efficacy and safety using antithrombin
concentrate in prevention of thrombosis in children
receiving l-asparaginase for acute lymphoblastic
leukemia. Results of the PAARKA study.

Sample Size 85

Group Size 25

60

Population Children
acute lymphoblastic leukaemia

Study Arm antithrombin

Outcome symptomatic or asymptomatic thrombotic
event|thrombotic event
major and minor bleeding|bleeding
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Table 2

Regular expressions and semantic types used for extracting individual elements.

BOUNDARY (B) = (?: and| to| in| with| between| \.| _| ,|$)

Data element Extraction Methods

Sample Size/
Group Size

Regular expression:

• (\d+) met|meet (?: \S+){0,1} criteria

• (\d+) were (?:include|eval)

• only (\d+) completed

• only(?: \S+){0,3} (\d+)

• randomized(?: \S+)? (\d+)(?: \S+)? patient

• (\d+)(?: \w+){0,3} were randomi

• \d+ of (\d+)

• patients , (\d+) ,

• (\d+)(?: \S+){0,1} patients?

• (?i)(\d+) -LRB- (?:\d+) -RRB-

• n = (\d+)

• -LRB- n (\d+) -RRB-

• (\d+)

Population Semantic type:

• Disease or Syndrome

• Therapeutic or Preventive Procedure

• Neoplastic Process

• Medical Device

Study Arm Semantic type:

• Pharmacologic Substance

• Inorganic Chemical

• Element, Ion, or Isotope

• Therapeutic or Preventive Procedure

• Clinical Drug

• Organic Chemical

Outcome Regular expression:

• ^( the(?: \S+){1,3} rate)$

• ^((?: the)?(?: \S+){1,3} volume) + B

• outcome was((?: \S+){1,5}) + B

• differences? in((?: \S+){1,5}) or((?: \S+){1,5}) + B

• (?:differences?|reductions?|improvements?) (?:in|of)((?: \S+){1,5}) + B

• by((?: \S+){1,5}) reduction + B

• (?:prolongs?|improves?|decreases?)((?: \S+){1,5}) + B

• effects? of(?: \S+){1,5} on((?: \S+){1,5})" + B

• (anti-\S+ effects?)" + B
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Data element Extraction Methods

• (length of(?: \S+){1,3})" + B

Semantic type:

• Disease or Syndrome

• Pathologic Function

• Laboratory or Test Result

• Molecular Function

• Therapeutic or Preventive Procedure
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Table 3

Performance comparison of various machine-learning based summaries and title/abstract summaries.

Bag-Of-Term
(BOT)

BOT+Context BOT+Semantic BOT+Context
+Semantic

Recall Precision Recall Precision Recall Precision Recall Precision

Sample
/Group Size

83.3 14.7 91.7 15.1 75.0 13.3 79.2 13.1

Population 93.8 47.5 100 50.7 100.0 47.5 95.8 52.2

Study Arm 97.9 80.8 100 84.0 95.8 81.2 100 84.9

Outcome 72.4 85.0 71.9 84.2 73.1 85.3 71.9 85.5

Best performing ML models for each data element are marked in bold.
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Table 4

Performance comparison of machine-generated summaries and title/abstract summaries.

Machine-generated
summaries

Manual summaries
(abstract and title) p-value

Recall Precision Recall Precision Recall Precision

Sample
/Group Size 91.7 15.1* 83.3 9.0 0.186 0.002

Population 100 50.7* 100.0 28.7 NA 0.004

Study Arm 100 84.9* 100.0 63.4 NA <0.001

Outcome 73.1* 85.3* 51.9 54.9 <0.001 <0.001

Mean 91.2 * 59 * 83.8 39 <0.001 <0.001

*
Indicates statistically significant improvement over abstract and title. NA indicates the statistical test is not valid to compare two exactly equal 

groups.
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