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Abstract

Quantitative and qualitative knowledge of metabolic rates (i.e. fluxes) over a metabolic network 

and in specific cellular compartments gives insights into the regulation of metabolism and helps to 

understand the contribution of metabolic alterations to pathology. In this review we introduce 

methodology to resolve metabolic fluxes from stable isotope labeling and relevant techniques in 

model development, model simplification, flux uncertainty analysis and experimental design that 

together is termed metabolic flux analysis. Finally we discuss applications using metabolic flux 

analysis to elucidate mechanisms pertinent to tumor cell metabolism. We hope that this review 

gives the readers a brief introduction of how flux analysis is conducted, how technical issues 

related to it are addressed, and how its application has contributed to our knowledge of tumor cell 

metabolism.
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1. Introduction

Metabolism is essential to cell physiology by providing energy, building blocks, signaling 

molecules and redox reagents that together are indispensable for cell survival and growth. 

Metabolic networks for multiple organisms, including human tissues, have been annotated 

(Thiele et al., 2013; Thiele and Palsson, 2010) and other ‘omics’ datasets, including 

genomics, transcriptomics, proteomics and metabolomics, have expanded rapidly in the last 

decade (Yizhak et al., 2015). However, the most biologically and physically relevant aspects 

of metabolism, metabolic fluxes, cannot be completely determined directly from other omics 

data. In analogy to the traffic condition in a city (Hiller and Metallo, 2013; Sauer and 

Zamboni, 2008), the city is in a traffic jam if its streets are filled with slowly moving cars. 

Knowing how many cars are on the road (concentration of metabolites), how many people 

are driving on each road (abundance of transcripts or proteins), the reasons for why people 
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would be driving at a certain time (genetic events and environmental factors) are insufficient 

to know exactly whether the cars are stalled or are able to move freely (flux configuration in 

the metabolic network).

Due to the inability of molecular measurements to completely determine metabolic fluxes, 

technical approaches towards resolving metabolic fluxes are indispensable. Here we refer to 

metabolic flux analysis as the collective set of techniques and information related to rates of 

metabolic reactions taking place inside a cell and exchange of metabolites between the cell 

and the extracellular environment or between intercellular compartments. For exchange 

fluxes through which metabolites are absorbed or released by the cells, the fluxes can be 

determined by time-dependent profiles of metabolites in the media since the exchange flux 

is the only factor contributing to the dynamics of metabolites in media (Jain et al., 2012). 

However, in the case of intracellular fluxes, metabolite kinetics are determined by multiple 

chemical reactions producing or consuming the metabolite or by its exchange into and out of 

numerous cellular compartments, which hinders direct evaluation of fluxes from isolated 

metabolite dynamics alone. On the other hand, most metabolic network models contain 

more fluxes than metabolites, resulting in an underdetermined system if only information on 

the level of metabolites is considered.

Stable isotope labeling experiments, or often referred to as tracing experiments, in which 

incorporation of labeled substrates into intermediates of the metabolic network is utilized to 

resolve the fluxes, afford a solution. Most frequently used tracers in tracing experiments 

are 13C-labeled substrates, but other tracers including 2H, 15N and 18O are also used (Klein 

and Heinzle, 2012). Besides its application in quantitatively determining the flux 

configuration in a metabolic network, tracing experiments are also applicable in qualitative 

evaluation of metabolic fluxes such as the dependence of metabolic pathways on certain 

carbon sources and the partitioning of fluxes into diverging pathways at a branch point 

(Buescher et al., 2015). At the most descriptive level, a pathway's activity that originates 

from a substrate is implied if intermediates in this pathway become significantly enriched 

with when that labeled substrate is supplemented. This strategy is widely applied in 

identifying nutrient dependencies of metabolic pathways in cancer, which will be discussed 

further in Section 4. Partitioning of metabolic flux into multiple pathways at a branch point 

could also be qualitatively evaluated if the products of the alternative pathways have 

different labeling patterns. Examples include the glycolysis versus oxidative branch of 

pentose phosphate pathway traced by [1-13C]-glucose (Zhao et al., 2016), oxidative versus 

reductive metabolism of glutamine through the TCA cycle traced by [U-13C]-glutamine 

(Mullen et al., 2012), and pyruvate entering TCA cycle through pyruvate dehydrogenase 

(PDH) versus through pyruvate carboxylase (PC) traced by [U-13C]-glucose (Sellers et al., 

2015) or [1-13C]-pyruvate (Cheng et al., 2011). In order to achieve a quantitative evaluation 

of fluxes, labeling patterns obtained from tracing experiments must be combined with 

detailed information of the metabolic network including both stoichiometry and atom-

transition matrices. There are several techniques that vary in model, algorithm and 

experimental data used, which have been introduced by previous reviews and protocols 

(Buescher et al., 2015; Niedenführ et al., 2015; Shestov et al., 2013; Yuan et al., 2008; 

Zamboni, 2011; Zamboni et al., 2009) and will be discussed in detail in the next section.
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2. Overview of methods

2.1 Isotopic steady-state methods

Among the myriad of techniques for flux analysis, isotopic stationary metabolic flux 

analysis, or 13C metabolic flux analysis (13C MFA), is the most commonly used method 

(Buescher et al., 2015; Wiechert et al., 1999, 1997; Wiechert and de Graaf, 1997; Zamboni 

et al., 2009). By feeding cells with 13C labeled substrates, different distributions of carbon 

fluxes into branched and convergent metabolic pathways result in different steady state 

distribution of isotopomers for intermediate metabolites, which can be determined by 

techniques like mass spectrometry (MS), or nuclear magnetic resonance (NMR) 

spectroscopy and utilized in inferring the flux ratio at branching points or absolute fluxes, 

with the supplementary knowledge of absolute exchange fluxes with the extracellular 

environment. Here we refer to isotopomers as metabolites that only differ in isotope 

distribution. For a molecule with N carbon atoms, there are 2N isotopomers in total. Two 

points regarding the metabolic network are essential considerations: the stoichiometry and 

atom mapping information for each reaction. With this knowledge and under the assumption 

of metabolic steady state (metabolite concentrations do not change with time) and isotopic 

steady state (isotopomer distributions do not change with time), algebraic equations 

connecting metabolic fluxes and steady state isotopomer distributions can be derived by 

balancing the rate of production and consumption of each isotopomer:

(1).

In this equation, Mij is the abundance of the jth isotopomer of metabolite Mi, In(i) and Out(i) 

are the sets containing all indexes of fluxes producing and consuming Mij, respectively. 

Gen(k,i,j) is the set containing all substrate isotopomer combinations that produce Mij via 

the flux vk, rij is the fraction of isotopomer Mij, v is the flux vector which is also constrained 

by the metabolic steady state assumption and nonnegative constraints:

(2).

Here, S is the stoichiometric matrix describing a metabolic network.

By solving the algebraic equations, the flux vector v can be calculated from the isotopomer 

distribution r = {rij}. With efficient algorithms for simulating profiles of steady state 

isotopomer distributions available, the unknown flux variables can be evaluated by solving a 

large-scale constrained non-linear least squares problem, in which the difference between 

isotopomer distribution profiles simulated from assumed flux configurations and measured 

by experiments is minimized (Fig 1):

(3).
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The non-linear least squares problem could be solved using optimization algorithms such as 

sequential quadratic programming, the Levenberg-Marquardt algorithm and so on (Boggs 

and Tolle, 1995; Marquardt, 1963; Wiechert et al., 1997). Note that since the algebraic 

equations (1) and the metabolic steady state constraints (2) are both linear to the flux 

variables, solutions of the equations (1) and (2) form a convex cone, that is, all linear 

combinations of some feasible flux configurations with nonnegative coefficients will still be 

feasible solutions. Thus, absolute flux rates cannot be determined solely by solving (1) and 

(2). In order to infer absolute fluxes, tracing experiments must be combined with metabolite 

exchange rates measured by other techniques or assumptions on metabolic objective 

functions, which are commonly used in flux balance analysis.

A simpler alternative of 13C-MFA, flux ratio (FR) analysis, has some practical advantages 

over 13C-MFA when the goal is to determine relative forward fluxes of converging 

pathways. Mass isotopomer balance equations that have very simple forms are easily written 

at branch points of the metabolic network, which enables direct calculation of the relative 

fluxes from mass isotopomer distribution vectors (MDVs) of the product and the alternative 

substrates (Fischer and Sauer, 2003; Zamboni et al., 2009). Besides its simplicity in 

computation, FR doesn't require the complete topology of metabolic network to be 

constructed, thus facilitating application where there is incomplete knowledge of the 

metabolic reaction network.

2.2 Isotopic non-steady state methods

A limitation of 13C-MFA is that it is based on the assumption of isotopic steady state, which 

is hard to determine and can take several hours upon addition of the labeled substrate in a 

mammalian system. This analysis is also difficult to interpret when cells are undergoing a 

response to a perturbation such as a drug treatment or growth factor withdrawal. By relaxing 

the assumption of isotopic steady state while keeping the assumption of metabolic steady 

state, we have isotopically non-stationary metabolic flux analysis (INST-MFA), which 

essentially treats the metabolic network as a dynamical system. Instead of isotopomer 

balance equations at the steady state which are solved in 13C-MFA, ordinary differential 

equations (ODEs) describing how the isotopomer distributions change with time are solved 

to simulate the dynamical isotopic profile, which is fit to corresponding experimental data 

(Wiechert and Nöh, 2013). In INST-MFA, since isotopomer distribution is measured on 

multiple time points and isotopomer dynamics is simulated by solving ODEs instead of 

making measurements on only one time point and solving linear equations, it is apparently 

more demanding in computational time than 13C-MFA.

A special case of INST-MFA, termed kinetic flux profiling (KFP), is also applied in 

resolving metabolic fluxes due to its simplicity in data analysis (Munger et al., 2008; Yuan et 

al., 2008, 2006). In KFP time-dependent profile of unlabeled fraction of a metabolite is 

measured after switching to labeled substrate, which leads to exponential decay of the 

unlabeled form, in which the rate is determined by flux through the metabolite. This explicit 

form enables direct parameter estimation instead of fitting a complex ODE-based model, 

which is the case of general INST-MFA. For mammalian cells, KFP has been applied in 

quantifying flux through oxidative pentose phosphate pathway (oxPPP), in which 
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[U-13C]glucose was used as the tracer and the exponential decay of unlabeled 6-

phosphogluconate was analyzed to infer the oxPPP flux (Fan et al., 2014). Another study 

applying KFP to mammalian cells profiled the flux configuration in central carbon 

metabolism to characterize metabolic reprogramming caused by virus infection, thus 

identifying upregulated fatty acid synthesis in the infected cells as potential antiviral target 

(Munger et al., 2008). Furthermore, flux ratio analysis could also be extended to flux 

analysis in isotopic non-steady state (Hörl et al., 2013), but the relative fluxes are evaluated 

by iterative fitting instead of direct calculation, which is the case of isotopically stationary 

flux ratio analysis. Also these methods can be extended to evaluate fold changes in 

metabolic fluxes that occur in the more common setting of comparing two conditions such 

as wild type and knockout or vehicle vs. drug treated (Huang et al., 2014). Other strategies 

for improving efficiency of isotopically non-stationary flux analysis include parallel 

measurements of intracellular and extracellular metabolite pools (Shlomi et al., 2014), using 

hybrid model containing both isotopically stationary and non-stationary dynamics of 

metabolites (Tedeschi et al., 2015).

It is worth noting that the assumption of metabolic steady state is still necessary in INST-

MFA, or the fluxes, which then vary with time, could not be treated as model parameters. In 

the case of a non-stationary metabolic system, other techniques are needed to resolve the 

metabolic fluxes. One approach is to introduce kinetic parameters (e.g. Vmax and Km of 

enzymes) and functional forms (e.g. Michaelis-Menten mechanism) of the reactions to the 

metabolic model and solving the corresponding parameter estimation problem instead of 

inferring the fluxes. Fluxes can be calculated from kinetic parameters and metabolite 

concentrations based on the function form of the kinetics (Wahl et al., 2008). An alternative 

is a discretization-based approach, in which the time-dependent fluxes are approximated by 

a step function and solved from the change in isotopomer profile in a time interval using 

linear regression (Baxter et al., 2007). A similar discretization-based approach is also 

applied in dynamic metabolic flux analysis, in which fluxes are inferred from the kinetic 

profile of metabolites instead of the isotopomer distribution (Leighty and Antoniewicz, 

2011).

3. Advanced issues for 13C-MFA

Although the framework of 13C-MFA has been well defined in the last section, several 

factors may affect the reliability of the calculated flux configuration, including the 

experimental scheme, the metabolic model and the biological system of interest. 

Identifiability of fluxes may be impaired due to noisiness in measurements, redundancy of 

the metabolic network, and compartmentalization of the intracellular space that are 

unaccounted for, hence calling for techniques addressing these problems. Difficulties in 

computation arise from both non-linear terms in the equations caused by bi- or tri- molecular 

reactions and the extremely larger number of isotopomers resulting in high-dimensional 

non-linear equations. The choice of advanced representation of the isotopomer balancing 

system provides can simplify some of these issues (Wiechert et al., 1999). Techniques to 

evaluate flux uncertainty (Wiechert et al., 1997), to optimize the experimental scheme 

(Möllney et al., 1999) and to resolve metabolic fluxes of compartmentalized systems 

(Wahrheit et al., 2011) have been developed to improve accuracy of metabolic flux analysis. 
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These techniques are implemented as modules in several software packages for metabolic 

flux analysis of both isotopic stationary and non-stationary systems (Table 1) and applied in 

an integrated workflow of metabolic flux analysis (Fig 2). Here these topics will be 

discussed in detail.

3.1. Simplifying the isotopomer equations

Two major difficulties in solving the isotopomer balance equations arise from the 

nonlinearity caused by bi- or tri-molecular reactions and the extremely large number of 

isotopomers. To overcome the difficulties, several techniques have been developed to 

simplify the equations by both reducing the number of variables needed in simulating the 

isotopomer distribution and eliminating the nonlinearity, including cumomers (Wiechert et 

al., 1999), bondomers (Sriram and Shanks, 2004), cumulative bondomers (Van Winden et 

al., 2002) and elementary metabolite units (EMUs) (Antoniewicz et al., 2007). Among the 

variety of equation-simplifying techniques, the EMU approach can for example reduce the 

number of equations by 95% in a tricarboxylic acid (TCA) cycle model, as well as eliminate 

the bilinear terms (Antoniewicz et al., 2007). Using advanced representations of the flux-

isotopomer system, all of these methods are able to transform the coupled non-linear 

equations in equation (1) to several subsets containing only linear equations, which can be 

solved successively in a much more efficient way than directly solving the nonlinear 

equations (Fig 3). The bondomers and cumulative bondomer approaches are specially 

designed to resolve metabolic fluxes from 2D [13C, 1H] COSY NMR spectroscopy obtained 

from bond labeling experiments (Szyperski, 1995), in which the cells are cultured on a 

mixture of uniformly labeled and naturally labeled substrate to track the breaking and re-

forming of carbon-carbon bonds, while the cumomers and EMU approaches are suitable for 

both mass isotopomer distributions (MIDs) detected by MS and positional enrichment 

detected by NMR (Fig 1C). There are also techniques specifically designed for tandem mass 

spectrometry measurements to extract more precise information of isotopomer distribution 

and reduce computational cost, including the tandemer approach (Tepper and Shlomi, 2015) 

and mass isotopomer multi-ordinate spectral analysis (MIMOSA) (Alves et al., 2015). The 

Jacobian matrix of the isotopomer fractions with respect to the flux variables are also 

analytically determined, which is further applicable in the following flux uncertainty 

analysis and experimental design.

3.2. Flux uncertainty analysis

Non-linear least squares problems have been shown to be ‘sloppy’; that is, the cost function 

is very insensitive to variation along certain directions in parameter space (Gutenkunst et al., 

2007; Transtrum et al., 2010). In other words, the flux configurations resulting in similar 

isotopic profiles are not unique. Moreover, noise in isotopomer distributions measured from 

experiments propagate to the inferred flux configuration, which further impairs the 

identifiability of fluxes. Thus, proper tools to identify confidence or credibility intervals for 

each flux variable is indispensable for a reliable estimation of the fluxes. The simplest 

method to evaluate the confidence region of flux configurations is based on linear statistics, 

in which the covariance matrix of flux variables, Cov(v), which could be directly calculated 

from the covariance matrix of measurements, Cov(M) and the Jacobian matrix, 

(Wiechert et al., 1997), is used. This approach has the lowest computational complexity 
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since it only needs a finite number of matrix calculations, but the confidence region of fluxes 

estimated in this way are limited due to the non-linear relationship between flux variables 

and steady state isotopomer distributions (Antoniewicz et al., 2006). One solution to achieve 

a more accurate estimation of the confidence region is based on a Monte Carlo method, in 

which the experimental measurements are perturbed many times to simulate the distribution 

of noise, thus enabling evaluation of the confidence region by inferring flux configurations 

from the perturbed measurements. A Markov Chain Monte Carlo (MCMC) approach can 

also be applied in sampling the joint probability distribution of fluxes and isotopomer 

measurements under the assumption of Gaussian noise (Kadirkamanathan et al., 2006; Yang 

et al., 2005). For determination of confidence intervals of a single flux, an iterative one-

dimensional search strategy was shown to achieve accuracy close to that of a Monte Carlo 

strategy and a brute-force search (Antoniewicz et al., 2006). All strategies, except for 

MCMC, are implemented in several software packages for 13C-MFA to facilitate application 

by non-expert users (Table 1).

3.3. Experimental design

As we mentioned, since fluxes cannot be uniquely determined, assessment of flux 

identifiability is indispensable for metabolic flux analysis. Uncertainty in calculated fluxes is 

also affected by the experimental procedures, including selection of tracers and 

measurements. A good choice of experimental scheme will dramatically improve the quality 

of flux evaluation, as studies on experimental design have shown (Antoniewicz, 2013). One 

purpose of experimental design is to determine what choice of labeled substrate and 

measurements is able to achieve lowest flux uncertainty; that is, to narrow the confidence 

region as much as possible. Hence, a metric to quantify the size of the confidence region is 

necessary. A commonly used metric is the D-value, which approximates the volume of the 

confidence region by an ellipsoid according to the covariance of flux variables (Möllney et 

al., 1999):

(4)

In which T and M denote the labeled tracer used and the measurements chosen. An optimal 

experimental scheme can be determined by searching for T and M that minimize the D-

value. Note that the D-value depends on the true flux vector, hence an initial guess of it is 

necessary for the experimental design. As an alternative of the D-value, a precision metric 

based on confidence intervals of individual fluxes is also used to assess different 13C tracers’ 

ability to provide information in flux analysis (Metallo et al., 2009). One strategy to improve 

the tracer selection is to consider a mixture of several tracers and then search for the optimal 

fraction of each tracer which minimizes the flux uncertainty metric (Bouvin et al., 2015; 

Crown and Antoniewicz, 2012; Möllney et al., 1999; Nöh and Wiechert, 2006; Walther et 

al., 2012). Other factors including the cost of the tracer (U-13C glucose is relatively cheap) 

and number of experiments possible are also taken into consideration. An example software 

package, IsoDesign, is available for selecting the input tracers for 13C-MFA (Millard et al., 

2014). Another task in experimental design is to choose the smallest set of metabolites to be 

measured which affords the same amount of information as the full set of metabolites. A 
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mixed integer linear programming strategy has been applied to identify such minimal 

measurement sets (Chang et al., 2008; Rantanen et al., 2006).

3.4. Extending the scope of 13C metabolic flux analysis
13C metabolic flux analysis techniques have been widely applied in resolving central carbon 

metabolism in unicellular organisms like Escherichia coli, Corynebacterium glutamicum, 

Saccharomyces cerevisiae and Bacillus subtilis, which are species with richest resource of 

flux analysis data according to a recently published database (Zhang et al., 2015). However, 

application of 13C metabolic flux analysis in mammalian cells is complicated due to 

existence of different subcellular compartments in eukaryotic cells, while in most cases only 

the average 13C labeling pattern could be measured. In some cases compartmentalized 

metabolism could be resolved by using labeling patterns of metabolites whose synthesis 

takes place in different compartments (Allen et al., 2007) or experimental techniques 

allowing separation of subcellular compartments (Wahrheit et al., 2011), but it is unlikely to 

be practical for resolving compartmentalized fluxes under all conditions. In the 

computational analysis, there are three ways to address this problem: (i) using a simplified 

model which only contains metabolic reactions in a single compartment or ignores the 

compartmentalization (Fan et al., 2014); (ii) treating metabolite pool sizes in different 

compartments as additional parameters which are evaluated simultaneously with the fluxes 

(Davidson et al., 2016; Ma et al., 2014; Murphy et al., 2013); (iii) generating multi-

compartment models with parameters that estimate exchange fluxes across intercellular 

compartments (Jiang et al., 2016; Mehrmohamadi et al., 2014). Also in qualitative flux 

analysis, specially designed tracers yielding labeled products only in one compartment could 

be used to probe compartmentalized metabolism. An interesting application of this strategy 

is enabling propagation of deuterium from NADPH to 2-HG only in cytoplasm or 

mitochondria by expressing compartment-specific mutant isocitrate dehydrogenase (Lewis 

et al., 2014).

Besides applications in more complicated mammalian cells, 13C metabolic flux analysis can 

be extended to cover larger metabolic networks. One strategy combining 13C-MFA and 

GSMM is using isotope labeling in fitting flux configurations on a smaller metabolic 

network, then utilizing the inferred flux rates in constraining flux configuration in the whole 

GSMM (García Martín et al., 2015). The first study directly applying 13C-MFA in a 

genome-scale metabolic model (GSMM) of E. coli was published in 2015, showing high 

consistency between MFA using the GSMM and a small core model as well as increased 

flux uncertainty associated with the GSMM (Gopalakrishnan and Maranas, 2015). In spite 

of the extremely large size of metabolic model used, this study utilized labeling patterns of 

10 intracellular amino acids to resolve metabolic fluxes, which is likely to be further 

improved by additional measurements.

4. Applications in cancer cell metabolism

Cancer cells alter their metabolism in order to survive in the microenvironment in which 

nutrients and oxygen supplies are limited (Gatenby and Gillies, 2004) and to satisfy the 

demands of cell proliferation (Pavlova and Thompson, 2016). Reprogramming of cancer 
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metabolism is an essential component of basic cancer biology and a therapeutic target 

(Galluzzi et al., 2013). With 13C metabolic flux analysis techniques, multiple mechanisms of 

metabolic abnormality in cancer cells have been identified (Hiller and Metallo, 2013)), 

including altered dependence on nutrients, metabolic reprogramming in response to 

oncogenic mutations, enhanced glycolysis and biosynthetic pathways.

It is known as the ‘Warburg Effect’ that cancer cells increase glucose uptake and ferment the 

glucose to make lactate even in presence of oxygen. This phenomenon was discovered based 

on the enhanced glucose uptake and lactate production of tumors compared to normal 

tissues, which was the earliest, to our knowledge, contribution of flux measurements to our 

understanding of cancer metabolism (Koppenol et al., 2011; Liberti and Locasale, 2016; 

Warburg, 1956; Warburg et al., 1924). Studies applying metabolic flux analysis techniques 

to construct flux configurations in central carbon metabolism for cells under different 

genetic contexts showed that activation of oncogenes is able to drive the enhancement of 

glycolysis as well as active oxidative metabolism in mitochondria, which is dependent on 

glutamine and other nutrients (Fan et al., 2014; Murphy et al., 2013). Similar up-regulation 

of glycolysis (Ying et al., 2012) and glutamine-dependent TCA cycle (DeBerardinis et al., 

2007) in cancer cell lines was supported by numerous studies utilizing qualitative isotope 

labeling techniques or 13C-MFA, providing evidence for pathways of glutamine metabolism 

including glutaminolysis (DeBerardinis et al., 2007; Le et al., 2012) and reductive 

carboxylation (Jiang et al., 2016; Metallo et al., 2011; Mullen et al., 2012; Zhao et al., 2016), 

which is associated with malignancy-related factors including hypoxia, oncogenic 

mutations, detachment from the extracellular matrix. However, the importance of glutamine 

in supplying cancer cell growth was questioned by two recent studies applying in vivo 13C-

MFA to evaluate nutrient dependence of tumors. Despite the evidence suggesting a major 

contribution of glutamine to active TCA cycle in cultured cancer cells, certain tumor models 

were shown to rely less on glutamine for anaplerosis (i.e. replenishing of intermediates of 

TCA cycle) and be insensitive to GLS inhibition (Davidson et al., 2016). Moreover, the 

nutrient dependence was shown to be affected by tissue perfusion in human lung tumors, 

thus highlighting the profound impact of microenvironment on cancer metabolism (Hensley 

et al., 2016). In addition, application of isotope labeling based metabolic flux analysis in 

these two studies identified pyruvate dehydrogenase as the enzyme carrying the majority of 

pyruvate entering the TCA cycle (Davidson et al., 2016; Hensley et al., 2016). Besides 

glucose and glutamine, other amino acids also play important roles in proliferation in cancer 

cells. Tracing experiments showed significant contribution to biomass of amino acids other 

than glutamine, as well as considerable contribution of other carbon sources including lipids 

and acetate (Hosios et al., 2016; Kamphorst et al., 2014; Yao et al., 2016).

Among the non-essential amino acids consumed by cancer cells, serine is one of particular 

interest. In addition to uptake of exogenous serine, some cancer cells exhibit upregulated de 

novo synthesis of serine from glucose, especially in serine deprivation conditions (Maddocks 

et al., 2013; Possemato et al., 2011). Stable isotope labeling experiments have shown that in 

mammalian cells the carbon flux from glucose diverted by serine synthesis pathway is 

comparable to that of lactate production (Locasale et al., 2011). However, the estimated 

fraction of glucose utilized in serine synthesis varies, thus indicating a context-dependent 

manner of glucose contribution in de novo serine synthesis (DeNicola et al., 2015). Serving 
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as a building block of protein is not the only function of serine in cell physiology (Locasale, 

2013). Using [2H]-labeled tracers to probe NADPH production, serine-fueled folate 

metabolism was shown to have substantial contribution to NADPH production which is 

comparable to that of oxidative phosphate pathway, indicating potential role of serine 

metabolism in keeping redox balancing (Fan et al., 2014; Liu et al., 2016). Notably a similar 

conclusion was found in a study using 13C serine as a tracer. This study also revealed a 

coordinate portioning of serine derived flux into nucleotides and glutathione synthesis 

(Mehrmohamadi et al., 2014). To summarize, stable isotope labeling experiments affords a 

powerful tool to identify crucial factors for functioning of metabolic pathways and to 

quantitatively characterize metabolic alterations in cancer cells.

Concluding Remarks

Metabolic flux analysis of stable isotope labeling data, in combination with advanced 

analytical approaches to measure the isotope labeling pattern, is a powerful tool to evaluate 

rates of metabolic reactions. Application of such techniques, although still in its nascent 

stage, is beginning to advance our knowledge of cancer metabolism. However, there is still a 

significant gap between the theory and application. Although computational frameworks of 

metabolic flux analysis for both stationary and dynamic systems have been well-established 

and multiple software packages implementing the algorithms have been developed, most 

studies are still restricted to the simpler qualitative flux analysis strategy or central carbon 

metabolism to study cancer cells whose metabolic network is more complicated than that of 

unicellular organisms. Furthermore, large-scale fluxomics datasets for human cells are still 

unavailable, thus hindering more accurate integrated computational modeling of context-

dependent cancer metabolism, for which the most frequently used strategy currently is 

integrating metabolic network model with tissue-specific transcriptomics or proteomics 

datasets (Agren et al., 2014; Folger et al., 2011; Yizhak et al., 2014). We expect more 

attempts of applying quantitative metabolic flux analysis to human cells in greater detail and 

with larger networks to emerge in the future, which will surely result in a better 

understanding of complexity associated with cancer metabolism.
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Highlights

• Metabolic reaction rates can be resolved by flux analysis techniques that use 

data from stable isotope labeling experiments

• Accuracy and efficiency of flux analysis are improved by advanced 

mathematical techniques for equation simplification, statistical analysis and 

experimental design

• Several software packages implementing these methods are available

• Application of flux analysis techniques is starting to bring new insights to our 

understanding of cancer metabolism

Dai and Locasale Page 17

Metab Eng. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 1. Metabolic flux analysis as an inverse problem
Inferring metabolic fluxes from isotope labeling profiles is typically done by minimizing the 

difference between isotope labeling patterns simulated from fluxes and measured by 

experiments.
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Fig 2. An integrated workflow of metabolic flux analysis
Isotope labeling data obtained from isotope labeling or bond labeling experiments and 

detected by mass spectrometry or nuclear magnetic resonance are used to determine the 

fluxes by iterative fitting and confidence region of the flux configuration, which provides a 

metric of flux uncertainty. The flux uncertainty is minimized in the optimal experimental 

design procedure to achieve a more accurate evaluation of the fluxes.
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Fig 3. Different representations of the isotopomer system
By transforming the basic isotopomers and mass isotopomers to cumomers, bondomers, 

cumulative or mass isotopomers of EMUs, the high dimensional non-linear equations 

connecting isotopomer distribution and fluxes could be transformed to a simpler form 

containing several subsets consisting of linear equations only, which could be solved easily. 

The number of equations to be solved could also be reduced by the bondomers, cumulative 

bondomers and EMUs approaches.
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Table 1

Summary of software for metabolic flux analysis

Software Isotopomer Balancing Model Statistical Analysis Optimal Experimental Design Discription

13CFLUX(Wiechert et 
al., 2001)

Isotopomer Linear Supported C++ software 
for 13C-MFA

13CFLUX2(Weitzel et 
al., 2013)

Cumomer/EMU Linear/Monte Carlo Supported C++ software 
for 13C-MFA

FiatFlux(Zamboni et 
al., 2005)

Flux ratio analysis Linear Not supported Matlab 
software for 
flux ratio 
analysis

OpenFlux(Quek et al., 
2009)

EMU Non-linear search/Monte Carlo Supported Matlab 
software 
for 13C-MFA

OpenFlux2(Shupletsov 
et al., 2014)

EMU Non-linear search/Monte Carlo Supported Matlab 
software 
for 13C-MFA

influx_s(Sokol et al., 
2012)

Cumomer/EMU Linear/Monte Carlo Not supported Software 
package 
for 13C-MFA 
implementing 
an efficient 
algorithm for 
iterative 
fitting, 
programmed 
in R and 
Python

INCA(Young, 2014) EMU Linear/Non-linear search/Monte Carlo Supported Matlab 
software 
for 13C-MFA 
and INST-
MFA

OpenMebius(Kajihata 
et al., 2014)

EMU Non-linear search Matlab 
software 
for 13C-MFA 
and INST-
MFA

C13(Cvijovic et al., 
2010; Garcia-
Albornoz et al., 2014)

Isotopomer Not Supported Not Supported A module 
for 13C-MFA 
in the 
software 
packages 
BioMet 
Toolbox and 
BioMet 
Toolbox 2.0
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