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Abstract

The process of cellular differentiation requires the distinct spatial organization of the microtubule 

cytoskeleton, the arrangement of which is specific to cell type. Microtubule patterning does not 

occur randomly, but is imparted by distinct subcellular sites called microtubule-organizing centers 

(MTOCs). Since the discovery of MTOCs fifty years ago, their study has largely focused on the 

centrosome. All animal cells use centrosomes as MTOCs during mitosis. However in many 

differentiated cells, MTOC function is reassigned to non-centrosomal sites to generate non-radial 

microtubule organization better suited for new cell functions, such as mechanical support or 

intracellular transport. Here, we review the current understanding of non-centrosomal MTOCs 

(ncMTOCs) and the mechanisms by which they form in differentiating animal cells.

Introduction

Microtubules adopt specific spatial arrangements in differentiated cells to perform diverse 

cellular functions. Early electron microscopy revealed distinct subcellular sites from which 

microtubules appeared to emanate which were named ‘microtubule-organizing centres’ 

(MTOCs) [1,2]. Since then, the exact nature of MTOCs has remained somewhat nebulous.

Microtubules have inherent structural polarity, with a dynamic plus end and a comparatively 

stable and slow-growing minus end [3]. These characteristics of microtubule minus ends are, 

in part, a function of microtubule structure, but can be influenced in vivo by an association 

with an MTOC. MTOCs can be broadly defined as sites that localize microtubule minus 

ends, with functions that include microtubule nucleation, stabilization, and/or anchoring.

The best-studied MTOC is the centrosome, a non-membrane bound organelle composed of 

two centrioles surrounded by pericentriolar material (PCM). The centrosome is often touted 

as ‘the major microtubule-organizing center of the cell,’ generating a radial organization of 

microtubules well suited for the division of genomic material between daughter cells. 

Microtubules are nucleated and anchored within the PCM in dividing animal cells to 

generate the classic ‘mitotic halo,’ and similar radial arrays form in migrating animal cells 
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[4] (reviewed in [5,6]). Microtubules can also be anchored at centriolar appendages; an astral 

interphase array is generated by subdistal appendages decorating the mother centriole and a 

lattice-like organization is anchored by and potentially nucleated from the basal foot of basal 

bodies in multiciliated cells for coordinated ciliary beating [7-12]. As we will discuss below, 

differentiated cells often generate alternative microtubule organization through the 

reassignment of MTOC function to non-centrosomal sites following cell division.

Non-centrosomal MTOCs (ncMTOCs)

Differentiated animal cells often establish non-centrosomal MTOCs (ncMTOCs) (Figure 1). 

In many epithelial cells, MTOC function localizes apically, generating microtubules 

organized along the apical-basal axis; specific examples include C. elegans embryonic 

intestinal cells, Drosophila tracheal, oocyte follicle, and embryonic epithelial cells, Xenopus 
neural epithelial cells, mouse cochlear supporting cells, and various mammalian epithelial 

cell lines [8,13-20]. Cortical MTOCs have also been observed in mouse and C. elegans 
epidermal cells, and C. elegans germ cells [21-24]. Epithelial microtubule arrays appear to 

be required for organelle positioning and the initiation of apical-basal polarity [13,19,24,25]. 

In contrast to in epithelia, MTOCs and microtubules in differentiated muscle cells are 

organized around nuclei and in the cytoplasm parallel to the long axis of the cell [26,27]. 

Such microtubule arrays in Drosophila are essential for nuclear positioning and anchoring 

[28]. In Drosophila oocytes, microtubules grow from the anterior/lateral cortex with plus 

ends concentrated posteriorly, an arrangement that is critical for directing the localization of 

mRNAs that establish the embryonic body axis [29] (reviewed in [30]).

In neurons, microtubules are distributed down the lengths of axons and dendrites and are 

essential for transport, regeneration, and development (reviewed in [31]). Axonal 

microtubules are uniformly arranged with their plus ends towards the tip, and dendrite 

microtubules have mixed polarity in vertebrate neurons or a minus end out orientation in C. 
elegans and Drosophila [32-34]. A specific ncMTOC in neuronal processes has been elusive. 

In Drosophila class IV dendritic arborization neurons, Golgi outposts appear to act as 

ncMTOCs in some dendrites [35]. However, removal of Golgi outposts from dendritic arbors 

had little effect on microtubule organization [36]. Interestingly, in non-neuronal cells, Golgi 

and mitochondria have also been reported as MTOCs [37,38]. Microtubules in neurons 

might also arise from the sides of pre-existing microtubules, a scenario that would provide a 

polarized template to orient newly forming microtubules [39].

Some organisms, including yeast and higher plants, lack centrosomes altogether, thus 

microtubule organization by definition is non-centrosomal (Figure 1). Yeast have an 

analogous structure to the centrosome called the spindle pole body (SPB). Although the SPB 

is the only MTOC in budding yeast, in fission yeast, ‘interphase MTOCs’ generate non-SPB 

microtubules in the cytoplasm, on the nucleus, and on other microtubules, and ‘equatorial 

MTOCs’ organize microtubules around the cell division site at the end of mitosis (reviewed 

in [40,41]). Finally, cells of higher plants completely lack centrosomes or analogous 

structures, yet have elaborate cortical microtubule arrays that appear to be largely generated 

by microtubule-based microtubule nucleation and are required for growth and 
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morphogenesis [42,43]. Despite the wide range of ncMTOCs in many diverse cell types, 

their composition and mechanisms of assembly are just beginning to be understood.

ncMTOC structure and composition

The complexity of the centrosome obscures our understanding of the specific structure or 

proteins that alone impart MTOC function. Similarly, the structure or composition of an 

ncMTOC is unclear. ncMTOCs could be layered structures composed of shells of proteins, 

similar to PCM (reviewed in [44]) or could be composed of discrete populations of 

microtubules held together by site-specific adapters (Figure 2). In either case, ncMTOCs 

should in principle contain 1) proteins that interact with microtubule minus ends, and 2) 

adapter proteins that link these proteins to specific subcellular sites.

(1) Microtubule minus end proteins

Unlike the large number of proteins that have been shown to interact with microtubule plus 

ends, only a handful of minus end-associated proteins has been identified. These proteins act 

as microtubule nucleators, stabilizers, and anchors, examples of which are discussed below.

Nucleators: γ–tubulin ring complex (γ–TuRC)—Although it is clear that 

microtubules form spontaneously in the absence of accessory proteins, nucleators help to 

enhance microtubule assembly and so are key components of MTOCs. γ–tubulin was the 

first microtubule minus end protein discovered and was shown to play a role in centrosomal 

microtubule nucleation; a γ–tubulin mutation in Aspergillus nidulans blocks mitotic spindle 

assembly and γ–tubulin depletion inhibits microtubule growth from the centrosome in vitro 
[45-48]. γ–tubulin is part of a larger complex, termed the γ–tubulin ring complex (γ–

TuRC), which nucleates microtubules and inhibits their minus end growth and 

depolymerization [49,50]. However, γ–TuRC may not be the only complex involved in 

microtubule nucleation as microtubules are still nucleated in Drosophila and C. elegans 
cycling cells after γ–tubulin depletion, albeit at a reduced rate [51-53].

The role of γ–TuRC in nucleating non-centrosomal microtubules has often been inferred 

from localization observations. For example, γ–tubulin localizes to the cell cortex of C. 
elegans germ cells, at hemidesmosomes of C. elegans epidermal cells, surrounding nuclei of 

cultured muscle cells, at the Golgi membrane in RPE1 cells, and along the apical membrane 

of Drosophila tracheal cells, C. elegans intestinal cells, and Caco-2 and WIF-B epithelial cell 

lines [13,14,20,23,24,27,37,54]. Microtubules appear to regrow from these sites following 

induced depolymerization, suggesting that γ–TuRCs might control microtubule nucleation 

there. Indeed, alterations in γ–tubulin expression suggest that γ–TuRC nucleates non-

centrosomal microtubules in the axons and dendrites of neurons, at the nuclear envelope in 

myotubes, and from Golgi membranes in RPE1 cells [27,35-37,39,55]. Altogether, these 

data suggest a microtubule nucleation function of γ–TuRC at ncMTOCs, but do not rule out 

its role in stabilization and/or capping. Regardless of the exact function of γ–TuRC in 

ncMTOCs, other microtubule minus end proteins must exist because not all minus ends 

associate with γ–TuRCs [53,55].
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Stabilizers: The CAMSAP/Patronin family—In addition to nucleating microtubules, 

MTOCs stabilize microtubules through an association with minus end stabilizing proteins. 

The CAMSAP/Nezha/Patronin family, characterized by evolutionarily conserved CKK 

domains, has been shown to specifically serve this function for non-centrosomal 

microtubules (reviewed in [56]). Like γ–tubulin, CAMSAP/Patronin has been shown to 

stabilize and protect microtubule minus ends from depolymerization [57,58]. However, 

unlike γ–tubulin, CAMSAP/Patronin does not nucleate microtubules or associate with 

centrosomes, and its depletion specifically reduces non-centrosomal microtubule number 

and/or organization in cultured cells and in living organisms [19,25,55,58,59]. CAMSAP/

Patronin is predicted to form stabilized ‘seeds’ of microtubules for microtubule outgrowth; 

more specifically, CAMSAP/Patronin stabilizes polymerizing minus ends, slowing the rate 

of minus end depolymerization and increasing the rate of microtubule plus end outgrowth 

[15,57,58]. The ability of CAMSAP/Patronin to support microtubule plus end outgrowth 

may obviate the need for microtubule nucleators at ncMTOCs, and could instead depend on 

microtubule-severing enzymes to amplify minus ends. This mechanism has been proposed 

for microtubule outgrowth from Patronin foci at ncMTOCs in Drosophila oocytes [15]. 

However, the possibility remains that CAMSAP/Patronin stabilizes microtubules nucleated 

and released by γ–TuRC, as CAMSAP2 localizes to the minus ends of microtubules 

released from the centrosome in cultured epithelial cells [58].

Anchors: Ninein—Newly nucleated and stabilized microtubules need a mechanism for 

anchorage at MTOCs. In theory, nucleators and stabilizers could themselves anchor minus 

ends, but proteins specific for anchoring likely exist. The coiled-coil protein ninein has not 

been shown to interact directly with microtubule minus ends, but appears to anchor minus 

ends in many contexts. Ninein was first identified as a centrosomal protein localizing to 

subdistal appendages of the mother centriole, and thereafter was described to have a 

microtubule anchoring function: ninein overexpression in mouse fibroblasts inhibited 

microtubule release from the centrosome and ninein inhibition in U2OS cells resulted in a 

perturbation in microtubule organization [8,60-62]. Ninein interacts directly with γ–TuRC 

and potentially recruits it to the centrosome; however, ninein's microtubule anchoring 

capacity appears to be separable from its ability to localize γ–TuRC to the centrosome [63].

Ninein is also hypothesized to anchor microtubules at non-centrosomal sites. Ninein 

localizes near microtubule minus ends at apical sites of mouse cochlear cells, at the cell 

cortex in differentiated mouse epidermal cells, and surrounding nuclei in myotubes 

[8,21,27]. A putative ninein homologue in C. elegans (NOCA-1) localizes exclusively to 

ncMTOCs and is important for microtubule organization at these sites [25,64]. Strikingly, 

noca-1 mutants exhibit severe sterility and gonad morphology defects, and microtubules in 

adult germ cells are highly disorganized [25]. In epidermal cells, NOCA-1 depletion also 

perturbs microtubule organization, but to a lesser extent due to an apparent parallel function 

of PTRN-1 in maintaining these arrays [25].

(2) Site-specific adapters

The attachment of microtubules to a specific subcellular site requires site-specific adapters 

that interact with minus end proteins (Figure 2A). Several putative adapter proteins have 
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been identified in different cell types, although in most cases a direct link to minus end 

proteins has not been demonstrated. In Drosophila tracheal cells, the transmembrane protein 

Piopio is required to localize γ–TuRC to the apical membrane [14]. CAMSAP3/Nezha was 

originally discovered because of its association with the Zonula Adherens protein 

PLEKHA7, depletion of which mislocalizes CAMSAP3 from adherens junctions [59]. In 

Drosophila oocytes, the actin binding protein Short stop recruits Patronin foci to the cortex, 

which in turn localize microtubules [15]. Finally, in differentiated keratinocytes, ninein 

localization to desmosomes requires the desmosome component desmoplakin [21].

The interplay between minus end proteins and adapters at ncMTOCs is an open and exciting 

question in the field. Pairwise localization studies of γ–TuRC, CAMSAP/Patronin, and 

ninein in vitro and in vivo suggest that their localization is independent of one another 

and/or non-overlapping, and genetic studies in C. elegans epidermal cells suggest that 

NOCA-1 and PTRN-1 operate in parallel pathways [15,21,25,59]; however, biochemical 

studies and higher resolution microscopy will be required to better clarify this issue. It is 

likely that additional minus end proteins and adapters exist, the discovery of which will 

provide significant insight into MTOC biology.

ncMTOC formation

ncMTOC formation requires the attenuation of MTOC function at the centrosome, the 

designation of a non-centrosomal site, and the proper localization of MTOC components to 

that site. The mechanisms of ncMTOC site designation are largely unknown and the 

localization of MTOC components depends on whether the ncMTOC simply anchors or both 

anchors and nucleates microtubules. Early studies predicted a division of labor between 

microtubule assembly and localization, suggesting that microtubules in differentiated cells 

might be nucleated at the centrosome, released, and then captured at non-centrosomal sites 

(reviewed in [65]) (Figure 3A). This mechanism necessitates the reassignment of anchoring 

function to a non-centrosomal site coupled with a mechanism for transporting microtubules 

there. Alternatively, nascent ncMTOCs might form at sites away from the centrosome, such 

as on residual centrosomal microtubules, which could facilitate transport to non-centrosomal 

sites (Figure 3B). Finally, ncMTOCs might form independently of centrosomes, with 

microtubules growing directly from and remaining at non-centrosomal sites (Figure 3C).

(1) Attenuation of MTOC function at the centrosome

The attenuation of MTOC function at the centrosome can generally be considered as the 

process of removing microtubule nucleation and/or anchoring potential. The degree to which 

either of these occurs depends on the cell type. For example, cells exclusively containing 

ncMTOCs completely inactivate microtubule nucleation and anchoring at the centrosome as 

is seen in myotubes, rat and Drosophila neurons, and in some C. elegans and Drosophila 
epithelial cells [27,66,67]. Centrosomes in C. elegans embryonic intestinal cells or 

Drosophila tracheal cells lose PCM association and the ability to nucleate microtubules 

[13,14,54,68]. In both cell types, γ–TuRCs move away from the centrosome, and in 

Drosophila tracheal cells, this release requires the microtubule severing protein spastin. 

Interestingly, the inactivation of MTOC function at the centrosome in C. elegans embryonic 
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intestinal cells does not appear to be permanent, since centrosomal MTOC function in a 

differentiated cell can be rapidly reactivated upon fusion with a mitotic cell [54].

Alternatively, attenuation of MTOC function at the centrosome might involve the retention 

of nucleating potential and the inactivation of anchoring function. Loss of anchoring 

function at the centrosome has been inferred from localization studies, for example in 

cochlear and epidermal cells where γ–tubulin is exclusively localized to the centrosome and 

anchoring proteins such as ninein are localized to non-centrosomal sites [8,21]. Mouse 

keratinocytes were shown to have distinct microtubule nucleating and anchoring complexes 

CDK5RAP2-γ–TuRC and Nedd1-γ–TuRC, respectively [69]. During keratinocyte 

differentiation, centrosomes inactivate anchoring function concomitant with a loss of Nedd1, 

suggesting that centrosomal MTOC attenuation is partly due to the loss of this factor [69]. 

Attenuation appears to be coupled to cell cycle exit as serum starvation or CDK inhibitor 

treatment induced loss of Nedd1–γ–TuRC from the centrosome [69].

(2) Activation of MTOC function at non-centrosomal sites

The attenuation of MTOC function at the centrosome must be paired with the designation 

and activation of MTOC function at a non-centrosomal site. This process undoubtedly 

begins with a change in cell state that is permissive for the association of microtubules with 

new sites. For example, mitotic cytoplasm can rapidly remove the apical ncMTOC in an 

intestinal epithelial cell, indicating that MTOC location is responsive to cell cycle state [54]. 

The rapidity of this switch suggests that post-translational modifications might control 

MTOC location. Activation of MTOC function at non-centrosomal sites can also be coupled 

to differentiation. For example, in Drosophila tracheal cells, a transcription factor required 

for tracheal fate specification, Trachealess, and its target, Piopio, are required for apical 

ncMTOC formation [14]. Whether this requirement for differentiation relies solely on the 

transcription of specific adaptors or might also involve changes in post-translation 

modification of MTOC components remains to be tested.

Once the cell has achieved a state permissive for ncMTOC formation, MTOC components 

need to become properly localized. Cells that use a ‘release and capture’ mechanism must 

relocate anchoring proteins (Figure 3A). For example, in differentiating mouse cochlear 

cells, ninein localization is initially restricted to the centrosome early in development, but 

later localizes to cytoplasmic, and then apical sites [70]. It is tempting to speculate that 

ninein is released from the centrosome and moved apically, however, live imaging and/or 

photomarking experiments in differentiating cells would be needed to test this hypothesis. 

Ninein has been shown to traffic along microtubules in cultured cells lines, suggesting that 

ncMTOC formation involves ninein transport along centrosomal microtubules to the apical 

surface [70]. However, this model is complicated by the fact that cells would have to both 

release anchoring factors from the centrosome and retain microtubules on which to transport 

them.

Cells with ncMTOCs capable of both microtubule nucleation and anchoring inactivate these 

functions at the centrosome and transfer them to the non-centrosomal site. Imaging studies 

in C. elegans suggest that this task is accomplished through the hand-off of a physical 

‘plume’ of γ–TuRCs and microtubules from the centrosome to the membrane, potentially 
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coupling centrosome inactivation and ncMTOC establishment [13]. Plume formation 

requires the centrosome, microtubules, and the conserved polarity protein PAR-3 [13]. 

Interestingly, γ–TuRCs and microtubules still form following PAR-3 depletion but at 

apparently random locations, indicating that in the absence of a specific ‘landing pad’, these 

factors coalesce at inappropriate sites [13,71]. γ–TuRC proteins also move from the 

centrosome to the apical surface of Drosophila tracheal cells [14]. As in C. elegans, the 

initiation of this process requires microtubules, however, in both systems microtubules 

become dispensable for apical γ–TuRC localization later in development [13,14]. The exact 

role of microtubules in ncMTOC formation is unclear. Residual centrosomal microtubules 

may serve as a site for nascent ncMTOC formation and its subsequent transport (Figure 3B). 

Consistently, microtubule-based microtubule nucleation has been observed in the mitotic 

spindle, in vitro, and in plant epidermal cells, and is postulated to occur in axons and 

dendrites of cultured mature neurons [39,42,72,73]. In these contexts, the protein complex 

augmin is thought to mediate nucleation from existing microtubules. Alternatively, 

microtubule nucleating factors might be directly recruited to non-centrosomal sites, 

nucleating microtubules, which in turn help transport additional nucleating, stabilizing, 

and/or anchoring factors (Figure 3C).

Concluding remarks

Although ncMTOCs are likely found in the majority of differentiated cells in vivo, we are 

just beginning to understand their composition and assembly. Indeed, we still have much to 

learn about how cells select and activate non-centrosomal sites as MTOCs, and about 

ncMTOC composition and function. As non-centrosomal microtubules are critically 

important for cell function, further studies of ncMTOCs will enhance our basic 

understanding of cell differentiation. Furthermore, MTOC activity is implicated in human 

disease. Hyperactive MTOC function at the centrosome has been linked to several types of 

epithelial cancers and is a hallmark of breast tumors [74-76]. Additionally, enhanced 

microtubule nucleation at the centrosome is linked to invasive cell behavior [77]. Thus, 

understanding how cells control their microtubule organization might give us new insight 

into diseases such as cancer.
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Figure 1. Organization of MTOCs and microtubules in a variety of cell types
Microtubules (red) are organized by MTOCs (blue), the arrangement and localization of 

which varies with cell type. Drawings are not to scale.
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Figure 2. ncMTOC structure and composition
(A) Cartoons depicting ncMTOC components and models for their arrangement at non-

centrosomal sites. Cell-type specific adaptors (blue) bound to non-centrosomal sites (grey) 

interact with microtubule minus end proteins that anchor (purple), nucleate (green) and/or 

stabilize (yellow) microtubules (red). (1) Minus end proteins might be layered on top of 

adapters, which function together to sustain microtubules. (2) Alternatively, different minus 

end proteins could localize to independent minus ends, distributing their function between 

different populations of microtubules. (3) Finally, minus end proteins might colocalize at the 

same microtubule ends, functioning together to promote microtubule nucleation, anchoring, 

and/or stabilization. For example, NOCA-1 and γ-tubulin colocalize on microtubules in the 

C. elegans larval epidermis, but PTRN-1 does not and functions in a parallel pathway [25]. 

(B) An electron microscopy image of ncMTOCs (blue) at the apical membrane in C. elegans 
embryonic intestinal cells. Electron dense material (blue) is visible at the apical surfaces of 

three cells from which microtubules (red) emanate (partially reproduced from [54]). Note 

that two separate electron microscopy images have been overlaid (white dotted line).
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Figure 3. Potential mechanisms for ncMTOC formation
(A) A division of labor model in which microtubules are nucleated at the centrosome, 

released, and then captured at a non-centrosomal site. Microtubules could be released with 

anchoring proteins attached or free minus ends could bind to anchoring and/or stabilizing 

proteins following their release. Microtubules are then transported to a non-centrosomal site 

via an unknown mechanism and captured by site-specific adapters. (B) Non-centrosomal 

microtubules could be nucleated, stabilized, and/or anchored from the sides of preexisting 

centrosomal microtubules and then transported along microtubules to non-centrosomal sites 

where they would interact with site specific adapters. (C) Microtubule minus end proteins 

could localize directly to non-centrosomal sites without a centrosome-based intermediate, 

where they would nucleate, stabilize, and anchor microtubules.
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