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Adenosine has an important role in inflammation and tissue remodeling and promotes dermal fibrosis by
adenosine receptor (A2AR) activation. Adenosine may be formed intracellularly from adenine nucleotides or
extracellularly through sequential phosphohydrolysis of released ATP by nucleoside triphosphate diphos-
phohydrolase (CD39) and ecto-50-nucleotidase (CD73). Because the role of these ecto-enzymes in fibrosis
appears to be tissue specific, we determined whether these ectonucleotidases were directly involved in
diffuse dermal fibrosis. Wild-type and mice globally deficient in CD39 knockout (CD39KO), CD73 (CD73KO),
or both (CD39/CD73DKO) were challenged with bleomycin. Extracellular adenosine levels and dermal fibrosis
were quantitated. Adenosine release from skin cultured ex vivo was increased in wild-type mice after
bleomycin treatment but remained low in skin from CD39KO, CD73KO, or CD39/CD73DKO bleomycin-treated
mice. Deletion of CD39 and/or CD73 decreased the collagen content, and prevented skin thickening and
tensile strength increase after bleomycin challenge. Decreased dermal fibrotic features were associated with
reduced expression of the profibrotic mediators, transforming growth factor-b1 and connective tissue
growth factor, and diminished myofibroblast population in CD39- and/or CD73-deficient mice. Our work
supports the hypothesis that extracellular adenosine, generated in tandemby ecto-enzymes CD39 and CD73,
promotes dermal fibrogenesis. We suggest that biochemical or biological inhibitors of CD39 and/or CD73
may hold promise in the treatment of dermal fibrosis in diseases such as scleroderma. (Am J Pathol 2013,
183: 1740e1746; http://dx.doi.org/10.1016/j.ajpath.2013.08.024)
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Tissue damage leads to the release of the signaling nucleoside
adenosine, which, by engaging specific adenosine receptors
(A1R, A2AR, A2BR, and A3R), exhibits both tissue-protective
and tissue-destructive effects.1e4 In particular, adenosine is a
potent regulator of tissue repair, and we have previously re-
ported that adenosine promotes dermal fibrosis via the A2AR
receptor, as shown in vitro,5 in a bleomycin-induced dermal
injury model of scleroderma,6 and in a model of elevated
tissue adenosine.7 Similarly, we found that pharmacological
blockade of A2AR diminishes skin scarring.8

Elevations in extracellular adenosine can result from either
an increase in intracellular adenosine, followed by release
into the extracellular space, or the release of adenine nucle-
otides, followed by their extracellular catabolism into aden-
osine.9 The main source of extracellular adenosine stems
from the enzymatic phosphohydrolysis of precursor nucleo-
tides to adenosine.10e13 This is achieved by a two-step
stigative Pathology.
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CD39 and CD73 Promote Dermal Fibrosis
enzymatic process involving the ecto-apyrase, CD39 (con-
version of ATP/ADP to AMP) and the ecto-50-nucleotidase,
CD73 (conversion of AMP to adenosine).14 It is widely
accepted that CD39 and CD73 promote anti-inflammatory
effects of adenosine in the immune system,15e17 and both
enzymes have been previously shown to attenuate acute
injury and inflammation in models of ambient hypoxia,18,19

cyclic mechanical stretch,20 and bleomycin-induced lung
injury.2 However, CD39 and CD73 promote fibrosis in mu-
rine models of pancreatitis21 and hepatic fibrosis,22 respec-
tively, suggesting an important role for CD39 and CD73 in
the regulation of fibrogenesis in vivo.

We hypothesized that limiting extracellular adenosine
levels by CD39 and/or CD73 gene deletion may protect
against bleomycin-induced dermal fibrosis, a model of
scleroderma. CD39-deficient, CD73-deficient, and CD39/73
double-deficient mice were subjected to bleomycin-induced
skin injury, and the extent of skin fibrosis was compared
with the wild-type (WT) mice. Our results show that, after
bleomycin injection, mice globally null for CD39 and/or
CD79 released lower levels of adenosine and concurrently
developed less dermal fibrosis, indicating that adenosine
generation by CD39 and CD73 is highly likely to be a
critical regulator of fibrogenesis in skin.

Materials and Methods

Animals

The WT C57BL/6 mice were purchased from Jackson
Laboratory (Bar Harbor, ME). CD39 (ENTPD1) knockout
mice (CD39KO) and ecto-50-nucleotidase knockout mice
(CD73KO) were generated as described previously23e25 and
backcrossed >10 generations onto a C57BL/6 background.
Double-knockout mice null for both CD39 and CD73 were
generated by intercrossing the single knockouts.

Animals were bred in the animal facilities of the School
of Medicine of New York University (New York City). All
experimental mice used were 6- to 8-week-old male mice.
All experimental procedures were approved by and per-
formed in accordance with the guidelines of the Institutional
Animal Care and Use Committee of the School of Medicine
of New York University.

Morphometric Dermal Measurements in
Bleomycin-Treated Mice

Mice were injected with either 0.1 mL PBS or 10 mg/mL
bleomycin (0.1 mL s.c. on alternate days) for 21 days, and
were sacrificed at the end of the experimental period. The
backs of the animals were shaved before morphometric
measurements. Skinfold (pinch) thickness was measured
using skin calipers on the same area over the middle to
upper back of the mice. Breaking strength of the skin was
measured on the 6-mm punch biopsy specimens using a
tensiometer (Series EG Digital Force Gauge; Mark-10,
The American Journal of Pathology - ajp.amjpathol.org
Copiague, NY), and the point of maximal stress before
tearing of the biopsy specimen was recorded, as we have
previously reported.6 All measurements were taken in a
blinded manner.

Quantification of Adenosine Levels by
High-Performance Liquid Chromatography

Skin biopsy specimens were washed in PBS containing
antibiotics (penicillin, 200 U/L; streptomycin, 200 mg/L;
and amphotericin B 50 mg/L), cut into small pieces, and
incubated in Dulbecco’s modified Eagle’s medium (con-
taining the same antibiotic concentration as before) at 37�C,
5% CO2. After 2 hours of incubation, supernatants were
collected and adenosine was extracted and quantified by
high-performance liquid chromatography, as previously
described.26 Results were expressed as pmol adenosine/mg
tissue.

Quantification of Dermal Hydroxyproline Content

Hydroxyproline content in tissue specimens was measured
colorimetrically, as described previously.7 Results were
expressed as mg hydroxyproline/mg tissue.

Western Blot Analysis

Skin biopsy specimens were lysed in T-PER tissue protein
extraction reagent (Pierce Biotechnology, Rockford, IL).
Total protein was determined spectrophotometrically by a
bicinchoninic acid assay kit (Pierce Biotechnology), using
bovine serum albumin as standard protein. Skin homoge-
nates (20 mg protein/lane) were electrophoresed (4% to 20%
SDS Tris-glycine) and transferred onto nitrocellulose
membranes. The nitrocellulose membranes were blocked for
2 hours at 4�C in blocking solution [3% bovine serum al-
bumin in 1� Tween 20 Tris-buffered saline (TTBS), which
consists of 20 mmol/L Tris-HCl, pH 7.4, 150 mmol/L NaCl,
and 0.1% Tween 20]. After blocking, the membranes were
incubated with primary antibodies using the following di-
lutions: 1:1000 for a-smooth muscle actin (SMA; Abcam
Cambridge, MA), 1:1000 for transforming growth factor-b1
[TGF-b1; a gift of Dr. Leslie B. Gold (New York University,
NY)], and 1:5000 for b-actin (Sigma, St. Louis, MO), and
incubated for 2 hours at 37�C with gentle shaking on a
platform shaker. After incubation with secondary antibody,
proteins were visualized using the enhanced chemi-
fluorescene kit (Amersham Biosciences, Piscataway, NJ).
Band intensities were analyzed by the Adobe Photoshop
CS2 (Adobe Systems, Mountain View, CA) and normalized
to the b-actin level.

Real-Time RT-PCR

Total RNA from skin biopsy specimens was isolated using
an RNeasy Fibrous Tissue kit (Qiagen, Valencia, CA),
1741
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according to the manufacturer’s protocol. RNA was quan-
tified using spectrophotometric OD260 measurements, and
quality was assessed by the OD260/OD280 ratio. Reverse
transcription was performed using the GeneAmp RNA Core
Kit (Applied Biosystems, Carlsbad, CA) in a volume of 25
mL using oligo dT primers and MuLV Reverse Transcrip-
tase (Applied Biosystems), according to the manufacturer’s
protocol. Real-time PCRs were performed using the SYBR
Green PCR Master Mix (Stratagene, Santa Clara, CA),
following the manufacturer’s instructions, and performed on
the Mx3005P Q-PCR system (Stratagene). Aliquots of
reverse transcription reactions were subjected to PCR in 25-
mL reactions with SYBR Green using primers for CTGF:
forward, 50-TCCTACCGCGTCCCGATCAT-30 and reverse,
50-GCTTTACGCCATGTCTCCGT-30; TGFb1: forward, 50-
GTCAGACATTCGGGAAGCAG-30 and reverse, 50-GCG-
TATCAGTGGGGGTCA-30; and GAPDH: forward, 50-
CTACACTGAGGACCAGGTTGTCT-30 and reverse, 50-
GGTCTGGGATGGAAATTGTG-30. For each assay, stan-
dards, no-template, and no-RT controls were included to
verify the quality and cDNA specificity of the primers.
Comparison of the expression of each gene between its
1742
control and stimulated states was determined with DDCT,
according to the following formula:

DDCT Z ½ðCT GOI Control � CT HKG ControlÞ � ðCT GOI Stimulated �
CT HKG StimulatedÞ� ð1Þ

where the gene of interest (GOI) corresponds to the CTGF
or TGFb1 and the housekeeping gene (HKG) corresponds
to GAPDH. Fold increase was calculated according to the
formula:

FoldZ 2 ðDDÞCT : ð2Þ

Immunohistochemistry

After deparaffination and rehydration of tissue sections (5 mm
thick), antigen retrieval was performed for 15 minutes at 98�C
with 0.01 mol/L citrate buffer, pH 6.0. To block non-specific
binding, the slides were incubated for 30 minutes with 5%
normal goat serum in TTBS buffer (20 mmol/L Tris-HCl, pH
7.4, 150 mmol/L NaCl, and 0.1% Tween 20). The 1:100
antiea-SMA primary antibody in TTBS containing 1.5%
normal goat serum was incubated overnight at 4�C. After
Figure 1 Deficiency of CD39 and/or CD73
limits adenosine levels and dermal fibrosis after
bleomycin treatment. A: Skin adenosine levels
were measured by high-performance liquid chro-
matography in supernates after 2 hours of skin
culture. *P < 0.05 (n Z 6 to 12 skin samples per
group). Skinfold thickness (B) and breaking ten-
sion (C) measurements were performed on freshly
excised skin and 6-mm skin punch biopsy speci-
mens. D: Dermal hydroxyproline content was
assessed on 6-mm skin biopsy specimens. Data
represent means � SEM. *P < 0.05, **P < 0.01,
comparisons versus WT þ bleomycin (BLM); anal-
ysis of variance, followed by Dunnett’s post-test
analyses. E: Skin histological sections were
stained with H&E (top row) and picrosirius red,
viewed under polarized microscopy (middle and
bottom rows). Original magnifications: �20 (E,
top row); �10 (E, middle row); �40 (E, bottom
row).
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washing, secondary antibody (alkaline phosphatasee or
peroxidase-conjugated goat anti-rabbit immunoglobulins) in
TTBS containing 1.5% normal goat serum was incubated for
60 minutes at room temperature. Fast Red substrate system
(Dako, Carpinteria, CA) or diaminobenzidine (DAB) substrate
(Vector, Burlington, ON, Canada) was used according to re-
agent availability to detect positive staining; no appreciable
differences were observed in control slides (from bleomycin-
treated WT mice) stained with either Fast Red or DAB
substrate. Counterstaining was performed with Gill’s hema-
toxylin. Negative staining control experiments were per-
formed according to the previously described protocol, with
omission of the primary antibody. Images were obtained with
a Q-Imaging (Surrey, BC, Canada) Retiga digital camera
mounted on an Olympus BX51 microscope (Olympus
America Inc., Center Valley, PA). The number of myofibro-
blasts was determined by quantifying positive cells in six in-
dependent fields for each skin section (nZ 3 mice per group).

Statistical Analysis

Results are represented as means � SEM. Data were
analyzed by one-way analysis of variance, and post hoc
analyses of significance of differences between groups were
determined by Dunnett’s multiple comparison tests. All
statistical analyses were performed with Graphpad Prism
software version 4.02 (Graphpad, San Diego, CA).

Results

It has been previously reported that adenosine critically
contributes to bleomycin-induced dermal fibrosis6 and that
The American Journal of Pathology - ajp.amjpathol.org
CD39 and CD73 play an important role in fibrogenesis after
pancreatitis and in hepatic fibrosis, respectively.21,22 How-
ever, to our knowledge, the contributions of CD39 and
CD73 on the progression of skin fibrosis have not been
studied. We, therefore, challenged WT mice and mice
deficient for CD39 (CD39KO), CD73 (CD73KO), and
double CD39/CD73 (CD39/CD73DKO)edeficient mice
with the known sclerosant, bleomycin. As expected, bleo-
mycin treatment significantly increased the level of adeno-
sine release from skin of WT mice (more than threefold
increase, P < 0.01), but not in mice deficient for CD39 and/
or CD73 (Figure 1A), indicating that bleomycin promotion
of adenosine generation proceeds via the two-step enzy-
matic process involving both CD39 and CD73.

Morphometric measurements in skin after 21 days of
bleomycin treatment revealed a significant increase of skin
thickness in WT mice, but not in CD39KO, CD73KO, and
DKO mice (Figure 1B), which is also reflected in H&E skin
sections (Figure 1E). Breaking tension of the skin, an
indicator of tensile strength, was increased in bleomycin-
treated WT mice, whereas this change was less pro-
nounced in CD39KO and CD73KO mice. In CD39/
CD73DKO mice, tensile strength was significantly inhibited
when compared with WT mice after bleomycin treatment
(Figure 1C).

Collagen production was assessed by measuring hy-
droxyproline content in skin biopsy specimens and by pic-
rosirius red staining of skin sections. Interestingly, deletion
of CD39 and/or CD73 completely prevented the bleomycin-
induced increase in dermal collagen (Figure 1D), because
hydroxyproline levels remain at low levels, similar to those
of PBS-treated WT mice. No difference in basal collagen
Figure 2 Deficiency of CD39 and/or CD73
prevents synthesis of profibrotic mediators after
bleomycin (BLM) treatment. mRNA levels of con-
nective tissue growth factor (CTGF) (A) and TGF-b1
(B) were measured by quantitative RT-PCR in skin
lysates. mRNA levels of CTGF and TGF-b are
increased by bleomycin only in the WT mice. yyP <

0.01, bleomycin- versus PBS-treated WT mice.
Protein levels of a-SMA and TGF-b1 were assessed
by using Western blot analysis, and representative
blots are shown (C). Band intensities were quan-
tified and normalized to b-actin as loading control
(D and E). Data represent means � SEM (A, B, D,
and E). *P < 0.05, **P < 0.01 for comparisons
made versus WT-bleomycin (BLM) by analysis of
variance followed by Dunnett’s post-test analyses.

1743
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content was found in PBS-treated KO mice compared with
WT mice (Supplemental Figure S1). Picrosirius red stains of
collagen impart an intense yellow to red birefringence to
thick and densely packed fibrils when viewed under polar-
ized light.27,28 As shown in Figure 1E, a denser packaging
of the collagen fibrils, indicated by an increase of the yellow
to red birefringence, is observed in skin sections of
bleomycin-treated WT, but not in CD39KO, CD73KO, and
CD39/CD73DKO, mice.

We have recently shown that CTGF is an important
mediator of the fibrogenic actions of adenosine29 in human
dermal fibroblasts and in a mouse model of elevated tissue
adenosine, where skin fibrosis mediated by A2AR activation
is associated with increased levels of CTGF and TGF-b.7 In
agreement, we found that mRNA levels of CTGF and
TGF-b are increased by bleomycin only in the WT mice
(bleomycin- versus PBS-treated WT mice; P < 0.01), but
not in the CD39KO, CD73KO, or CD39/CD73DKO mice
(comparisons versus PBS-treated WT mice; P > 0.05)
(Figure 2, A and B). Low levels of TGF-b in CD39- and/or
CD73-deficient mice were also corroborated at the protein
level (Figure 2, C and D).

Myofibroblasts play a central role in the accumulation of
excessive collagen and the contraction of the extracellular
matrix in fibrosing diseases of the skin. These cells have a
phenotype characterized by excessive production of collag-
enous extracellular matrix and tensile force,30 playing a
pivotal role in the establishment of fibrotic conditions.31 It
has become accepted that neo-expression of a-SMA in
myofibroblasts regulates essential phenomena for organ
fibrosis,30,31 and myofibroblast differentiation and organ
fibrosis are predominantly controlled by TGF-b.32 Therefore,
1744
we first analyzed the expression of a-SMA in skin lysates. As
shown in Figure 2, C and E, a-SMA protein levels were
increased in WT mice after bleomycin treatment, but
remained low in CD39- and/or CD73-deficient mice. We
confirmed that the myofibroblast population was significantly
reduced in bleomycin-treated CD39KO, CD73KO, and
CD39/CD73DKO mice compared with bleomycin-treated
WT mice by quantification of a-SMAþ cells in skin sec-
tions (Figure 3).
Discussion

In the present work, we investigated the role of CD39 and
CD73 in an established model of dermal fibrosis induced by
bleomycin. WT, CD39, and CD73 KO mice, as well as
CD39/CD73DKO mice, were challenged with bleomycin,
and dermal fibrosis was analyzed. As expected, bleomycin
promoted a dramatic increase in skin adenosine production,
but skin from CD39KO, CD73KO, and CD39/CD73DKO
mice generated significantly lower levels of adenosine when
compared with WT mice (Figure 1A). As previously found,6

bleomycin caused severe fibrotic changes in the skin, as
indicated by increased skin thickening, tensile strength, and
collagen content (Figure 1, BeD), as well as increased
collagen density in the dermis, as measured by picrosirius
red stain (Figure 1E). Increased collagen deposition was
accompanied by increased levels of mediators of fibrosis,
including TGF-b1, CTGF, and fibroblast transformation to
myofibroblasts (Figures 2 and 3). Interestingly, in support of
the hypothesis that extracellular adenosine generation by the
enzymatic process involving CD39 and CD73 plays a
Figure 3 Deficiency of CD39 and/or CD73
prevents myofibroblast accumulation after bleo-
mycin treatment. Antiea-SMA immunohistochem-
istry was performed on skin histological sections
on CD39/CD73DKO mice (A) and on CD39- or CD73-
deficient mice (B). Fast Red or DAB substrates were
used to develop immunostaining, respectively.
Representative photomicrographs are shown for each
group. C: Number of a-SMAþ cells were counted in
skin cross sections, and data represent means� SEM.
Original magnification, �20. **P < 0.01. All com-
parisons were made versus WT-bleomycin (BLM) by
analysis of variance, followed by Dunnett’s post-test
analyses.
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critical role in the development of fibrosis in the skin, the
fibrotic response elicited by bleomycin was significantly
diminished in the CD39KO, CD73KO, and CD39/
CD73DKO mice, strongly suggesting that extracellular
generation of adenosine is needed for the development of
dermal fibrosis in response to bleomycin injection.

Extracellular adenosine signals via binding to one or
more of four adenosine receptors (A1R, A2AR, A2BR, and
A3R)

10 and adenosine activation of its A2AR receptor pro-
mote synthesis of collagen from dermal fibroblasts6,29;
therefore, it accelerates wound healing by stimulating
collagen matrix production.33e37 However, the A2AR may
promote excessive collagen deposition in the healed wound
and continued A2AR activation contributes to scar progres-
sion; its pharmacological blockade diminishes scar size and
dysfunctional matrix remodeling in a murine model that
mimics human scarring.8 Similarly, we have previously
shown that A2AR blockade or A2AR-deficient mice were
protected from developing bleomycin-induced dermal
fibrosis,6 suggesting that A2AR contributes to the patho-
genesis of dermal fibrosis in diseases such as scleroderma.
To further confirm the fibrogenic effects of adenosine, we
have found that deficiency in adenosine deaminase (the
principal catabolic enzyme for adenosine in vivo) leads to
elevated adenosine levels and spontaneous pulmonary38 and
skin fibrosis in mice, accompanied by increased collagen
deposition, which is significantly prevented by A2AR
pharmacological blockade in skin.7

Levels of adenosine are rapidly elevated in response to
tissue injury, and the main source of extracellular adenosine
is the stepwise dephosphorylation of ATP by the coordinated
action of ecto-apyrase (CD39) and ecto-50-nucleotidase
(CD73).33 It has been well documented that CD39 and CD73
favor the anti-inflammatory effects of adenosine in the im-
mune system,15e17 CD39 plays a major role in modulating
extracellular matrix remodeling in inflammatory diseases of
the pancreas,21 and CD73 is critical for progression of hepatic
fibrosis.22 However, less is known about the roles of both
ecto-enzymes in adenosine-mediated skin fibrosis.

Prior work indicates that adenosine can serve as a profi-
brotic signal in the lung38,39 and that CD39 and CD73
promote fibrosis in the pancreas and in the liver,21,22

respectively. But paradoxically, decreased levels of adeno-
sine after bleomycin challenge in CD73KO mice enhance
pulmonary fibrosis.2

These diverse responses to tissue adenosine could be
influenced by the levels of ligand produced, the pattern of
receptor expression on various cells, the effector systems
coupled to these receptors, and the cytokine or growth factor
environment.2,3,40 Further investigations are, therefore,
needed to decipher the mechanisms by which CD73 ensures
proper tissue remodeling in the lungs, as opposed to prop-
agation of fibrosis in the liver22 and skin, as suggested by
the present work.

In addition, CD39, such as CD73, has organ-specific
effects: ectonucleoside triphosphate diphosphohydrolase
The American Journal of Pathology - ajp.amjpathol.org
activity seems to inhibit fibrosis in liver, and effects may be
related to aberrant ATP signaling (S.C.R.).

In summary, our results support the hypothesis that
increased levels of extracellular adenosine, generated by the
two-step enzymatic process involving the ecto-apyrase
(CD39) and the ecto-50-nucleotidase (CD73), mediate
dermal fibrogenesis, as we have shown in a murine model of
bleomycin-induced dermal fibrosis. Therefore, modulation
of extracellular adenosine production by CD39 and CD73
may represent a useful therapeutic means to regulate dermal
fibrogenesis in conditions such as scleroderma.

Supplemental Data

Supplemental material for this article can be found at
http://dx.doi.org/10.1016/j.ajpath.2013.08.024.
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