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Malacca River water quality is affected due to rapid urbanization development. The present study applied LULC changes towards
water quality detection inMalacca River.Themethod uses LULC, PCA, CCA, HCA, NHCA, and ANOVA. PCA confirmedDS, EC,
salinity, turbidity, TSS, DO, BOD, COD, As, Hg, Zn, Fe, E. coli, and total coliform. CCA confirmed 14 variables into two variates;
first variate involves residential and industrial activities; and second variate involves agriculture, sewage treatment plant, and animal
husbandry. HCA and NHCA emphasize that cluster 1 occurs in urban area with Hg, Fe, total coliform, and DO pollution; cluster 3
occurs in suburban area with salinity, EC, and DS; and cluster 2 occurs in rural area with salinity and EC. ANOVA between LULC
and water quality data indicates that built-up area significantly polluted the water quality through E. coli, total coliform, EC, BOD,
COD, TSS, Hg, Zn, and Fe, while agriculture activities cause EC, TSS, salinity, E. coli, total coliform, arsenic, and iron pollution; and
open space causes contamination of turbidity, salinity, EC, and TSS. Research finding provided useful information in identifying
pollution sources and understanding LULC with river water quality as references to policy maker for proper management of Land
Use area.

1. Introduction

Land Use Land Cover (LULC) refers to two separate ter-
minologies that are often used interchangeably [1, 2]. Land
Cover can be defined as the physical characteristics of the
earth’s surface which involve vegetation, water, soil, and
other physical features created through human activities like
settlements, while LandUse refers to land used by humans for
habitats concerning economic activities [1]. LULC patterns
depend on human usage in terms of natural and socioe-
conomic development through space and time. In other
words, Land Use changes have the ability to affect the Land
Cover and vice versa. Shifting into possibility negative impact
through the LandUse perspective for social activities is affect-
ing Land Cover to change, especially in biodiversity, water
and earth radiation, trace gas emission, and other processes
that come together to affect the climate and biosphere [2, 3].
These changes are attributed to only one main factor in terms
of size and pattern, namely, “population growth.” Increasing
population growth directly and indirectly contributes to

LULC changes, especially from the perspective of demand
for built-up area, agricultural activities, and water resources.
Ecological expertise is very concerned with LULC changes
that impact biodiversity and aquatic ecosystems [4]. LULC
changes in a watershed will affect water quality, leading to
increased surface runoff, reduced groundwater discharge,
and transfer of pollutants [2, 4].Therefore, LULC information
at the watershed level is important for selection, planning,
monitoring, and management of water resource so that the
changes in Land Use meet the increasing demand for human
needs and welfare without compromising water quality.

Various research studies have been conducted about
the change analysis of watersheds, which are important
in developing effective management strategies to protect
water resources [1, 5–7].Watershedmanagement is necessary
because a watershed is not only a hydrological unit [8] but
also plays an important part in socioecological perspective
by providing economical, food, and social security as well
as provision of life support services to local residents [9].
LULC changes in the watershed area for urbanization and
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deforestation will continuously have negative impacts on
water quality and indirectly affect the nature of a watershed
ecosystem. Hence, understanding of the spatial and temporal
variations that occur in a watershed over time as well as
explanation of the interaction between hydrological compo-
nents of the watershed will allow better water conservation
strategies to be formulated [5]. Specifically, remote sensing
has been widely used to classify and map LULC changes
with different techniques and data sets, such as Landsat
images that provide better classification of different landscape
components at a large scale [10]. Several change detection
techniques have been developed in remotely sensed image
with continuous debate on the advantages and disadvantages
of each technique. These include unsupervised classification
or clustering, supervised classification, PCA, hybrid classi-
fication, and fuzzy classification, which are all commonly
applied and used in classification [1, 2, 11, 12]. Although vari-
ous classification techniques have been proposed, supervised
classification methods are considered as favorable for change
detection analysis. More recently, researchers have applied
supervised classification for several LULC change detection
for several research aims and purpose [1–3, 13].

TheMalacca River watershed area has been selected for a
change detection study because of its uncontrolled urbaniza-
tion, unmanageable sewage discharge, and active soil erosion
and tree cutting. Apart from these actions, pesticide residues
and animal husbandry residues are suspected to become
major concerns in the watershed area due to increasing
agricultural and poultry farm activities [14]. Rapid urban
development in the study area has led to several problems
like fragmentation of aquatic animals, soil erosion, and river
pollution due to deforestation and discharge of municipal
garbage and industrial waste [15]. This study is carried out
using the remote sensing application to differentiate the
extent of changes which occurred in the Malacca River
watershed for 15 years. The objectives of this study are to
examine the potential sources of pollutants in the Malacca
River between 2001, 2009, and 2015; identify the different
LULC classes and the pattern of changes in watershed from
2001 to 2009 and 2009 to 2015; and determine the connection
of LULC changes in contributing to pollutant sources in the
Malacca River.

2. Materials and Methods

2.1. Study Area. Malacca state is located in the South West
of Peninsular Malaysia. The geographical coordinates are
2∘23󸀠16.08󸀠󸀠N to 2∘24󸀠52.27󸀠󸀠N for latitude and 102∘10󸀠36.45󸀠󸀠E
to 102∘29󸀠17.68󸀠󸀠E for longitude. Malacca state can be divided
into three districts, namely, Alor Gajah, Jasin, and Malacca
Central. The catchment areas in Malacca state are approxi-
mately 670 km2 and contain an 80 km length of the Malacca
River that flows through Alor Gajah and Malacca Central.
Generally, the river is formed by 13 subbasins of watershed,
namely, Kampung Ampang Batu Gadek subbasin, Kampung
Balai subbasin, Kampung Batu Berendam subbasin, Kam-
pung Buloh China subbasin, Kampung Cheng subbasin,
Kampung Gadek subbasin, Kampung Harmoni Belimbing
Dalam subbasin, Kampung Kelemak subbasin, Kampung
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Figure 1: Sampling stations and subbasin of the study area.

Panchor subbasin, Kampung Pulau subbasin, Kampung Sun-
gai Petai subbasin, Kampung Tamah Merah subbasin, and
Kampung Tualang subbasin. Only 7 subbasins of 13 were
selected, with 9 sampling stations along the river (Figure 1).

Malacca state has a reservoir located between Alor Gajah
and Malacca Central. This is the Durian Tunggal Reservoir,
with a catchment of 20 km2. It acts as a source of water
for Malacca residents. Increasing local population has led
to increasing public facilities such as transport, healthcare,
accommodation, sewage, and water supply services [14–16].
Due to the drastic population growth, rapid urban develop-
ment in the Strait of Malacca has also increased, especially
from a Land Use perspective. A majority of residents are
centralized in the city, which extends about 10 km to the west,
10 km to the east, and 20 km to the north.The changes in Land
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Use have continuously developed until today, which is in line
with the vision and mission of sustainable tourism sector.
Eventually, these actions indirectly contribute to economic
growth and political changes, strengthened cultural and
social relationships, and also impact environmental quality,
especially the water in Malacca River.

3. Data Collection

Nine sampling stations were chosen along the Malacca River.
River water quality data included samples in year 2015
analyzed based on APHA [17], while river water quality
data for 2001 and 2009 were collected from the Department
of Environment (DOE), Malaysia. The primary data was
collected in 2015 to obtain recent water quality data status
as well as field data verification. There are only two methods
of measurements involved: in situ analysis and laboratory
analysis. River water quality was analyzed according to
physicochemical parameters, that is, pH, temperature, elec-
trical conductivity (EC), salinity, turbidity, total suspended
solid (TSS), dissolved solids (DS), dissolved oxygen (DO),
biological oxygen demand (BOD), chemical oxygen demand
(COD), and ammoniacal nitrogen (NH3N), trace elements
(i.e., mercury, cadmium, chromium, arsenic, zinc, lead, and
iron), and biological parameters (i.e., Escherichia coliform
and total coliform) as shown in Table 5. Additionally, the
remote sensing imagery of selected research areas for 2001,
2009, and 2015 was obtained from ARSM and downloaded
from the USGS Earth Explorer of the selected research area
in Malacca state. Landsat 5 TM data were obtained for 2001
and 2009, while Landsat 8 data was obtained for 2015.

4. Data Analysis

4.1. River Water Data

4.1.1. Water Quality Analysis. Water samples were analyzed
based on in situ measurement and laboratory analysis. In
situ measurement involves pH testing using a SevenGo
Duo pro probe (Mettler Toledo AG); turbidity test using
a portable turbidity meter (Handled Turbidimeter Hach
2100); and multiparameter probe (Orion Star Series Portable
Meter) tests on temperature, EC, DS, salinity, and DO.
Meanwhile, laboratory analysis involves measurement on
NH3N using a spectrophotometer based Hach Method 8038;
COD parameter using APHA 5220B open reflux technique;
BOD parameter measure using APHA 5210B (Hach Method
8043); TSS measure using APHA 2540D method; E. coli
and coliform test using membrane filtration method based
APHA 9221B; and trace metal test using an inductive coupled
plasma-mass spectrometry (ICP-MS, ELAN DRC-e, Perkin
Elmer). Each sample underwent the tests in triplicate before
calculating the mean value, and standard deviation (SD) was
used as an indication of the precision of each parameter
measured with less than 20%.

4.1.2. Statistical Analysis. The analysis results are then input
into Statistical Package for Social Science (SPSS) version 23
for statistical analysis using principal component analysis

(PCA), canonical correlation analysis (CCA), hierarchical
cluster analysis (HCA) and nonhierarchical cluster analysis
(NHCA), and analysis of variance (ANOVA). Generally,
PCA can be expressed through (1) original data reduced to
dominant components of factors (source of variation) that
influence the observed data variance and (2) the whole data
set extracted to produce eigenvalue and eigenvectors [18].
Only eigenvalues greater than 1 are considered significant
[19] to perform new group variable Varimax Factor (VFs).
A VFs coefficient with 0.6 is considered “moderate” and will
be taken into account as factor loadings. PCA is applied in
this study to define possibility of pollutant sources in the
Malacca River. Continuously, the components of PCA will be
extracted into CCA for further analysis. CCA have an ability
to investigate relationship between the two groups. In other
words, (1) CCA will seek for vectors of a and b in random
variables of 𝛼𝑋 and 𝛽𝑌 to maximize the correlation of 𝜌 =
corr(𝛼𝑋, 𝛽𝑌); (2) random variable of 𝑈 = 𝛼𝑋 and 𝑉 = 𝛽𝑌
will be constructed to perform new sets of canonical variates
that are linear combinations from the original variables with
simple correlation between 𝑈 and V ; (3) then other vectors
𝑈 and 𝑉 having maximal correlation subject but being
uncorrelated with the first canonical variate will be produced
as the second canonical variates [20]. CCA is applied in this
study to determine accurately and precisely pollutant sources
in the river. HCA is able to sort different objects into the same
group based on similarity between objects, which involve
(1) Ward’s methods using variance analysis to minimize
between any two clusters [18, 21]; (2) measuring the similarity
through Euclidean distance between two samples [18, 21]; and
(3) a dendogram to provide the results for high similarity
with small distances between clusters in a group [12]. This
study employedHCA to determine possible area contributing
to pollution in the study area. Unlike HCA, NHCA with
the involvement of 𝐾-means method is used to obtain the
correct classification of pollutant sources based on the PCA
components provided. Lastly, ANOVAwill be used to analyze
between Land Use classes of LULC changes analysis with
water quality from factor loadings of PCA analysis.Themain
purposes of using ANOVA are to determine and to prove
the existing of LULC classes that react as pollutant sources
to impact the water quality and cause contamination in the
Malacca River.

4.2. Remote Sensing Data

4.2.1. Image Preprocessing, LULC Classification, and Change
Detection Analysis. Satellite images required preprocessing
to ensure that the primary object could be established into a
more direct affiliation between acquired data and biophysical
phenomena [1]. The preprocessing was accomplished using
ArcGIS version 10.0 for georeferencing, mosaicking, and
subsetting of the image for the Area of Interest (AOI).
Landsat 8 images underwent spatial sharpening using the
panchromatic bands which resulted in images with a 15m
resolution. Meanwhile, Landsat 5 TM images for 2001 and
2009 were in an original 30m resolution. Further image
processing analysis was carried out using ENVI 5.0. The
image was displayed in natural color composite using a band
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Table 1: Classes delineated on the basis of supervised classification.

Class name Description
Vegetation Including all agricultural and forest lands.
Built-up area Including all residential, commercial, industrial, and transportation.
Water Including all water bodies (river, lakes, gravels, stream, canals, and reservoirs).
Open space Including all land areas that exposed soil and barren area influenced by human.

Table 2: Magnitude and percentage of LULC change from 2001–2009–2015.

Class
Total area and percentage Magnitude of change

2001 2009 2015 2001–2009 2009–2015
Km2 % Km2 % Km2 % Km2 % Km2 %

Built-up area 196 29.3 245 36.6 337 50.3 +49 +7.3 +92 +13.7
Vegetation 271 40.4 202 30.1 221 33 −69 −10.3 +19 +2.9
Water 138 20.6 97 14.5 30 4.5 −41 −6.1 −67 −10
Open space 65 9.7 126 18.8 82 12.2 +61 +9.1 −44 −6.6
Total 670 100 670 100 670 100 0 0 0 0

combination of 3, 2, and 1 for Landsat 5 TM and 4, 3, and 2
for Landsat 8. Maximum likelihood supervised classification
was performed using several selected regions, with Regions
of Interest (ROIs) based on delineated classes of agriculture,
built-up areas, water, and open space area (Table 1).

In performing LULC change detection, a postclassifi-
cation detection method is applied in ENVI 5.0, which
involves two independently classified images used to make
comparisons to produce change information on a pixel basis.
The interpretation between images provides changes in “-
from, -to” information. Classified images of two different data
sets were compared using cross-tabulation in determining
qualitative and quantitative aspects of changes for the periods
from 2001 to 2009 and 2009 to 2015.Themagnitude of change
and percentage of changes can be expressed in a simple
formula as follows:

𝐾 = 𝐹 − 𝐼,

𝐴 =
(𝐹 − 𝐼)

𝐼
× 100,

(1)

where𝐾 is magnitude of changes,𝐴 is percentage of changes,
𝐹 is first data, and 𝐼 is reference data [11].

4.2.2. Accuracy Assessment. Accuracy classification assess-
ments for 2001, 2009, and 2015 images were carried out
to determine the quality of information provided from the
data. If classification data is to be used for change detection
analysis, it is important to conduct accuracy assessments for
individual classifications [1]. Kappa test is used to perform
measurement of the classification accuracy as the test is able
to account for all elements in confusion matrix including
diagonal elements [22]. A kappa test is a measure calculated
using predefined producer and user assigned ratings, which
can be expressed as follows:

𝐾 =
𝑃 (𝐴) − 𝑃 (𝐸)

1 − 𝑃 (𝐸)
, (2)

where𝑃(𝐴) is the number of times the 𝑘 raters agree and𝑃(𝐸)
is the number of times the 𝑘 raters are expected to agree only
by chance [1, 23]. Meanwhile, user accuracy can be defined
as the probability that a pixel in an image actually represents
a class on the ground, while producer’s accuracy indicates
the probability a pixel being correctly classified and is mainly
used to determine how well an area can be classified [23].
As described previously, the four categories of classes that
have been delineated should have a minimum of 50 points
for each considered category to increase the percentage of
accuracy assessment [1]. Therefore, this study indicates the
overall classification accuracies for 2001, 2009, and 2015 are
89.51%, 88.49%, and 92.21%, with kappa statistics of 0.87, 0.85,
and 0.90, respectively. According toWeng [24], theminimum
level for accuracy assessment in identification of Land Use
and LULC classes in remote sensing data should be at least
85%.

5. Results and Discussions

5.1. Magnitude and Percentage of LULC Changes between
2001–2009 and 2009–2015. The magnitude and percentage
of LULC changes from 2001 to 2009 and 2009 to 2015 are
summarized in Table 2. The results indicate Land Use type
in 2001 for built-up area is 196 km2 (29.3%), agriculture is
271 km2 (40.4%), water is 138 km2 (20.6%), and open space
is 65 km2 (9.7%). In 2009, only built-up area and open space
had increased, by about 49 km2 (7.3%) and 61 km2 (9.1%) to
become the total of 245 km2 (36.6%) and 126 km2 (18.8%),
respectively. However, agriculture and water are reduced by
about 10.3% and 6.1%, which resulted in the total area of
202 km2 and 97 km2. Lastly, built-up areas have continuously
increased by about 13.7% to provide a total area of 337 km2,
and agricultural land also increases for 2.9% to perform
total area of 221 km2. Nevertheless, open space areas have
decreased about 44 km2 to end up total area of 82 km2
(12.2%), and water coverage continues to decrease by 10% or
67 km2 to result in the total area of 30 km2 (14.5%). Generally,
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Table 3: Cross-tabulation of LULC classes between 2001 and 2009 in (km2).

Class Built-up area Agriculture Water Open space Total
Built-up area 196 27 22 0 245
Vegetation 0 136 66 0 202
Water 0 46 35 16 97
Open space 0 62 15 49 126
Total 196 271 138 65 670

Table 4: Cross-tabulation of LULC classes between 2009 and 2015 in (km2).

Class Built-up area Agriculture Water Open space Total
Built-up area 245 62 12 18 337
Vegetation 0 140 40 41 221
Water 0 0 11 19 30
Open space 0 0 34 48 82
Total 245 202 97 126 670

cross-tabulation is used in this study to determine quantities
of conversions from a particular Land Cover to another Land
Cover category from a particular later date. The magnitudes
of LULC class changes from agricultural land and water into
open space and built-up area from 2001 to 2009 are tabulated
in Table 3. In other words, themajority of the water body area
is reduced and converted into open space and agricultural
land, including certain areas that already transformed into
built-up (Figures 3(a) and 3(b)). Meanwhile, Table 4 shows
the LULC class changes from water and open space area
into built-up area and agricultural land, as built-up areas are
continuously increasing from open space and water coverage
is transformed into agricultural land from 2009 to 2015
(Figures 3(b) and 3(c)).

5.2. Water Quality Assessment Based on Determination of
Pollutant Sources. PCA was applied to compare composition
patterns between water quality parameters and to determine
the factors influenced by the identified regions in Malacca
state. According to Table 6, there are 7 PCs identified through
eigenvalues larger than 1 with 69% of total variance. Principal
component (PC) 1 loadings with 15.3% of total variance have
positive loadings for dissolved solids, electrical conductivity,
and salinity, which are connected to agricultural activities
and contribute to nonpoint source pollution through surface
runoff [18]. Salinity pollution exists due to pesticide usage in
oil palm and rubber plantations as well as animal husbandry
(chickens, cows, and goats) carried out by some local resi-
dents along the Malacca River. Apart from that, erosion of
riverbank due to dredging activity in the river is contributed
to electrical conductivity pollution in the river. PC 2 explains
positive loadings of turbidity and total suspended solid
with total variance of 10.3%. This condition could happen
when there are interruptions of human activities in terms of
hydrologicmodifications like dredging, water diversions, and
channelization causing disruption in the Malacca River [16].
On the other hand, increasing population growth leading
to land clearing increase for urban development [18, 19]
and surface runoff cause road edge erosion [19] to happen

within residential areas adjacent to the river. Next, PC 3 show
positive loading on BOD and COD with the total of variance
of 10.1%, which can be related to anthropogenic sources,
having high possibility of coming from sewage treatment
plant that contributed as point sources pollution [19].

PC 4 loadings with 10% of total variance have positive
loadings on zinc and iron. Zinc pollution exists due to large
numbers of houses and building development in urban and
rural area that uses metallic roofs coated with zinc, where it
can be mobilized into the atmosphere and waterways when
contacting with acid rain or smog [19], while iron pollution
happens because of agricultural activities in most parts of the
rural area [18] and originating from industrial effluents in
urban area [19]. PC 5 indicated positive loading of arsenic
with total variance of 8.5%, showing that the pollutions are
strong possibility of involving with the agricultural land [25].
PC 6 loadings with 8.0% of total variance have positive
loadings on E. coli and total coliform, while negative loadings
are dissolved oxygen. The presence of E. coli and total
coliform pollution in the river is strongly connected with
raw and municipal sewage from domestic and poultry farm
mainly in rural and urban area. In addition to this, surface
runoff and discharge from wastewater treatment plants from
urban areas as well as dissolved oxygen pollution may be
impacted by high levels of dissolved organic matter that
consume large amounts of oxygen [19] and are suspected to
come from agriculture activities and forest areas which are
the dominant Land Use type in rural regions. Lastly, PC 7
resulted in positive loading of mercury with total variance
of 6.8%, highly suspected to link with chemical industrial
wastewater [25] that the majority occur at middle-stream
and downstream of Malacca River. Therefore, the most
likely sources of pollutants in terms of physicochemical and
biological parameters are agriculture, residential activities,
septic tank and sewage treatment plant activities, animal
husbandry, industrial activities, and open space activities,
which have an important role in specifying changes in LULC.

Continuously, CCA is carried out on the sets of data
obtained from 7 PCs. There are 14 variables in the response
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Table 6: Varimax rotation PCs for water quality data within Malacca River basin.

Variables (unit) Principle component
1 2 3 4 5 6 7

Turbidity (NTU) −.084 .761 .020 .162 .154 −.087 −.040
Dissolved solid (mg/l) .806 −.048 .016 −.087 .093 .111 −.021
Electrical conductivity (uS) .924 .011 .045 −.034 −.120 .050 .003
Salinity (ppt) .913 −.018 .010 −.014 .064 .031 .007
Temperature (∘C) .024 −.290 .318 −.370 −.525 .011 −.229
Dissolved oxygen (mg/l) −.127 .254 −.207 −.184 .051 −.636 −.095
Biological oxygen demand (mg/l) −.070 −.154 .806 −.074 .089 .053 −.014
Chemical oxygen demand (mg/l) .233 .186 .781 .087 −.005 .083 .041
Total suspended solid (mg/l) .056 .816 −.061 −.005 −.181 −.184 −.033
Acidity/alkalinity (pH) .454 −.009 .198 −.396 −.546 −.084 −.023
Ammoniacal nitrogen (mg/l) −.149 −.291 .549 −.275 −.124 .385 −.301
E. coli (cfu/100ml) .113 −.133 .076 .000 .105 .679 −.047
Coliform (cfu/100ml) −.001 −.188 −.019 .178 .500 .602 .497
Arsenic (mg/l) .130 −.017 .217 −.124 .763 .048 −.155
Mercury (mg/l) −.001 −.009 .068 −.065 −.064 −.013 .870
Chromium (mg/l) −.079 .507 −.092 −.113 .008 .015 −.062
Zinc (mg/l) .089 .080 .014 .855 .059 .056 .106
Iron (mg/l) −.319 .023 −.056 .746 .018 −.008 −.173
Initial eigenvalue 3.297 2.797 2.357 2.061 1.856 1.821 1.535
% of variance 15.539 10.310 10.115 10.024 8.526 8.088 6.852
Cumulative % 15.539 25.849 35.964 45.987 54.514 62.602 69.455
∗The bold values are factor loadings above 0.6 that were taken after Varimax rotation is performed.

data set, namely, biological parameter with E. coli and total
coliform and physicochemical parameter including turbidity,
DS, EC, salinity, DO, BOD, COD, TSS, As, Hg, Zn, and Fe
(Table 7). Table 7 represents the results of CCA for biological
and physicochemical variables. Correlation coefficients for
canonical variates 1 and 2 were 0.841 and 0.660, respectively,
indicating both are statistically significant (𝑝 < 0.000). The
test statistic for canonical variates 1 and 2 is found to be
𝑥2
1 = 620 with 24 degrees of freedom and 𝑥2

2 = 311
with 11 degrees of freedom. This result indicates that both
variates of 1 and 2 are having strong relationship with high
correlation between the response and predictor sets of data;
only variate 2 is higher than variate 1. The dominant variable
in first canonical variate for biological variables (𝑈1) is E.
coli, while the dominant variables in 𝑉1 (physicochemical
parameters) are DS, EC, DO, BOD, COD, Hg, and Zn.
Next, the second canonical variates indicating the predictor
variables are E. coli and total coliform, while the response
variables have the result of turbidity, EC, salinity, TSS, As,
and Fe. Considering the mentioned results, a regular pattern
can be seen. From the first canonical variate it is indicated
that residential and industrial activities have high percentage
to cause pollutant sources, while second canonical variate
indicates that agriculture, sewage treatment plant including
septic tank, and animal husbandry activities proved to cause
as pollutant sources and to react as nonpoint source pollution
in the river.

Further analysis is carried out in hierarchical cluster anal-
ysis (HCA) and nonhierarchical cluster analysis (NHCA), as
well as ANOVA between the LULC classes changes with river

water quality data.The analysis of HCA usingWard’s method
indicates the results of three cluster areas, which can be
divided into C1 with S7, S8, and S9; C2 with S1 and S2; and C3
with S3, S4, S5, and S6 (Figure 2(a)). The result provided will
be further analyzed using nonhierarchical cluster analysis to
obtain the correct classification of pollutant sources based on
thePCAcomponents in the location area involved.According
to Table 8, NHCA confirmed four samples detected in
cluster 1 with 275 cases involved to produce Hg, Fe, total
coliform, and DO; cluster 2 has only 5 cases to produce
two samples with salinity and EC; and cluster 3 detected
three samples in 44 cases to produce salinity, EC, and DS.
In other words, cluster 1 is significantly subjected to be
involved with the industrial and residential activities, as well
as sewage treatment plant [19], while cluster 3 is suspected
to carry out agriculture, sewage treatment plant, and animal
husbandry activities; and cluster 2 is involved with minor
impact caused by agriculture and animal husbandry activities
[18] (Figure 2(b)). Therefore, cluster 1 is likely to occur in
urban area, cluster 3 is suburban area, and cluster 2 is rural
area.

Lastly, as described in statistical analysis, analysis of
variance (ANOVA) is carried out to obtain accurate result
between LULC classes with river water quality of 15 years.
Among the LULC classes, built-up areas are having the high-
est significance with 9 variables of water quality; vegetation is
the second highest to have 8 variables significant with water
quality; and the lowest significance is the open space with
only 4 variables of water quality that resulted in ANOVA
(Table 9). Built-up area is subjected to cause pollution in E.
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Table 7: Canonical correlation analysis of the data set.

Canonical variates 1 2
Canonical correlation 0.841 0.660
Chi-square 620 311
Degree of freedom 24 11
Significant level 0.000 0.000
Biological parameter (unit)
E. coli (cfu/100ml) −0.975 −0.276
Total coliform (cfu/100ml) −0.118 1.006
Physicochemical parameter (unit)
Turbidity (NTU) 0.100 0.024
Dissolved solid (mg/l) −0.212 0.097
Electrical conductivity (uS) 0.464 −0.527
Salinity (ppt) −0.404 0.264
Dissolved oxygen (mg/l) 0.724 0.311
Biochemical oxygen demand (mg/l) −0.211 0.037
Chemical oxygen demand (mg/l) −0.128 −0.092
Total suspended solid (mg/l) 0.118 −0.377
Arsenic (mg/l) −0.016 0.246
Mercury (mg/l) 0.176 0.518
Zinc (mg/l) −0.173 0.623
Iron (mg/l) 0.197 −0.098

Table 8: The physicochemical and biological properties classified by the 𝐾-mean method.

Variable (unit) Frequency Cluster 1 Cluster 2 Cluster 3

Turbidity (NTU) Mean
range

−0.63
−0.71∼−0.55

1.56
3.07∼0.05

−0.4
−0.56∼−0.24

Dissolved solid (mg/l) Mean
range

0.36
0.66∼0.06

−0.33
−0.37∼−0.28

0.71
−0.32∼1.73

Electrical conductivity (uS) Mean
range

0.26
0.55∼−0.03

−0.39
−0.42∼−0.36

0.92
−0.39∼2.23

Salinity (ppt) Mean
range

0.13
0.21∼0.04

−0.42
−0.48∼−0.36

0.93
−0.41∼2.26

Dissolved oxygen (mg/l) Mean
range

−0.77
−0.71∼−0.83

0.49
0.91∼0.07

−0.22
−0.11∼−0.33

Biochemical oxygen demand (mg/l) Mean
range

0.16
0.23∼0.08

−0.06
−0.13∼0.01

−0.11
−0.13∼−0.08

Chemical oxygen demand (mg/l) Mean
range

0.54
0.56∼0.52

0.27
0.62∼−0.08

−0.53
−1.51∼0.46

Total suspended solid (mg/l) Mean
range

−0.66
−0.77∼−0.55

3.54
7.09∼−0.01

−0.09
−0.32∼0.15

Arsenic (mg/l) Mean
range

0.32
0.37∼0.27

−0.33
−0.61∼−0.04

0.06
−0.12∼0.24

Mercury (mg/l) Mean
range

8.67
10.02∼7.31

−0.13
−0.15∼−0.11

−0.13
−0.15∼−0.11

Zinc (mg/l) Mean
range

−0.51
−1.04∼0.02

−0.53
−1.04∼−0.02

0.49
0.85∼0.12

Iron (mg/l) Mean
range

−0.9
−1.06∼−0.74

−0.22
−0.58∼0.13

0.79
2.29∼−0.72

E. coli (cfu/100ml) Mean
range

−0.37
−0.58∼−0.16

−0.28
−0.51∼−0.05

−0.07
−0.48∼0.35

Total coliform (cfu/100ml) Mean
range

0.62
−0.44∼1.68

−0.32
−0.63∼−0.01

4.33
8.81∼−0.16

Number of samples 4 2 3
Sampling stations 7, 8, 9 1, 2 3, 4, 5, 6
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Table 9: ANOVA between LULC classes changes with water quality in 2001, 2009, and 2015.

Parameter (unit) LULC classes (ha) ANOVA results
Built-up area Vegetation Open space DF F 𝑝 value

E. coli (cfu/100ml) 181.14 88.22 45.00 2 13.43 0.0001
Total coliform (cfu/100ml) 219.63 80.71 55.53 2 14.48 0.0000
Turbidity (NTU) 64.35 28.75 7.10 2 9.77 0.0001
Dissolved solid (mg/l) 111.46 59.81 12.77 2 2.65 0.0773
Electrical conductivity (uS) 78.71 22.57 6.01 2 7.54 0.0001
Salinity (ppt) 1.773 0.891 0.221 2 2.33 0.0243
Dissolved oxygen (mg/l) 15.72 8.61 2.22 2 1.38 0.1634
Biochemical oxygen demand (mg/l) 21.34 19.18 7.46 2 11.71 0.0000
Chemical oxygen demand (mg/l) 68.47 32.21 18.59 2 9.63 0.0001
Total suspended solid (mg/l) 54.98 47.33 12.76 2 6.66 0.0001
Arsenic (mg/l) 0.0015 0.0007 0.0005 2 19.27 0.0000
Mercury (mg/l) 0.0017 0.0013 0.0007 2 25.85 0.0000
Zinc (mg/l) 0.0156 0.0120 0.0090 2 4.26 0.0178
Iron (mg/l) 0.34 0.18 0.12 2 10.16 0.0000
∗One-way ANOVA with 𝑝 < 0.05 is significant.
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Figure 2: (a) Hierarchical cluster analysis using Ward’s methods through Euclidean distance. (b) Nonhierarchical cluster analysis through
𝐾-means method.
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Figure 3: (a) Classifiedmaps ofMalacca River watershed in 2001. (b) Classifiedmaps ofMalacca River watershed in 2009. (c) Classifiedmaps
of Malacca River watershed in 2015.

coli, total coliform, EC, BOD, COD, TSS, Hg, Zn, and Fe.
In this condition, residential activities (BOD, COD, E. coli,
total coliform, and Zn), industrial activities (Hg, Zn, and
Fe), and sewage treatment plant (BOD, COD, E. coli, and
total coliform) as well as animal husbandry (E. coli, total
coliform) are suspected to become main pollutant sources
to contaminate the Malacca River, as the majority occur
in urban and suburban area. Meanwhile, vegetation area
involves agriculture activities and forest land is suspected
to cause pollution in river water quality. Agriculture activ-
ities with high usage of pesticide would cause salinization
pollution; and high percentage of fertilizer would cause E.
coli, total coliform, arsenic, and iron pollution. Indirectly,
agriculture activities could disrupt the soil structure and
cause EC as well as TSS in the river.These activities happen to
result in nonpoint source pollution. Continuously, although
DO is suspected to have contaminated in vegetation area,
however, the variable is not considered due to no significance
in analysis to provide the result of 𝐹 (df = 2, 𝑝 > 0.16)
= 1.38. Probably minor cause of pollution from DO can be
connected with forest land activities. Open space activities of
LULC classes can be described as transition area for built-up
area that converted from agriculture, as well as several areas
from forest land into agriculture activities. On the other hand,
hydrologic modification like dredging, water diversion, and
channelization will cause erosion of riverbank to increase the
pollution of turbidity, salinity, EC, and TSS.

6. Conclusion

Remote sensing is a tool to aid in detecting the magnitude
of LULC change that has taken place in the Malacca River

watershed for river water quality over the span of 15 years.
It is divided into two parts: 2001 to 2009 for 9 years and
2009 to 2015 for 7 years. This research study has highlighted
the application of remote sensing to develop LULC changes
over time for the river water quality pollution based on
pollutant sources. 7 PCs had been identified through PCA
to result in DS, EC, salinity, turbidity, TSS, DO, BOD, COD,
As, Hg, Zn, Fe, E. coli, and total coliform detected in the
river water quality, which contribute possible detection of
pollutant sources as agriculture activities, residential activi-
ties, industrial activities, septic tank, and sewage treatment
plant activities, as well as animal husbandry activities. Simul-
taneously, selected variables from PCA will be applied into
CCA to seek the relationship between the physicochemical
parameters of response data and biological parameters of
predictor data, with the result showing strong relationship
and high correlation.TheCCA indicate first canonical variate
as E. coli, DS, EC, DO, BOD, COD, Hg, and Zn, to prove the
existing of residential and industrial activities. Meanwhile,
second canonical variate produces E. coli, total coliform,
turbidity, EC, salinity, TSS, As, and Fe, which resulted as
agriculture, sewage treatment plant as well as septic tank, and
animal husbandry activities are carried out in the Malacca
River watershed.

Afterwards, HCA is applied to determine possible area
based on the pollution which occurred, indicating three
clusters that consist of C1 with S7, S8, and S9; C2 with S1 and
S2; and C3 with S3, S4, S5, and S6. Next, NHCA is used to
obtain the correct classification of pollutant sources based
on HCA cluster and PCA components, which defined that
cluster 1 produces Hg, Fe, total coliform, and DO; cluster 2
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produces salinity and EC; and cluster 3 produces salinity, EC,
and DS. Overall, HCA and NHCA emphasize that cluster 1
occurs in urban area, cluster 3 is suburban area, and cluster 2
is rural area. Lastly, ANOVAbetween LULC andwater quality
data showed built-up area having contamination of E. coli,
total coliform, EC, BOD, COD, TSS, Hg, Zn, and Fe, which
highlighted the residential activities, industrial activities, and
sewage treatment plant as well as animal husbandry that
occur in urban and suburban area. Meanwhile, vegetation
area of agriculture activities is suspected to cause EC, TSS,
salinity, E. coli, total coliform, arsenic, and iron pollution,
while forest land has minor impact to contaminate the river
by DO pollution. Most of vegetation area occurs in suburban
and rural area. Lastly, open space activities have pollution of
turbidity, salinity, EC, and TSS due to hydrologic modifica-
tion such as dredging, water diversion, and channelization.
Overall, these research findings offer an effective solution to
water quality management when large complex water quality
data is involved, provided useful information in identifying
pollution sources and understanding the river water quality
with LULC change detection information providing refer-
ences to policy maker in proper management of Land Use
area.
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