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ABSTRACT
Approximately one-sixth of the worlds’ population is infected with helminths and this class of
parasite takes a major toll on domestic livestock. The majority of species of parasitic helminth that
infect mammals live in the gut (the only niche for tapeworms) where they contact the hosts’
epithelial cells. Here, the helminth-intestinal epithelial interface is reviewed in terms of the impact
on, and regulation of epithelial barrier function, both intrinsic (epithelial permeability) and extrinsic
(mucin, bacterial peptides, commensal bacteria) elements of the barrier. The data available on direct
effects of helminths on epithelial permeability are scant, fragmentary and pales in comparison with
knowledge of mobilization of immune reactions and effector cells in response to helminth parasites
and how these impact intestinal barrier function. The interaction of helminth-host and helminth-
host-bacteria is an important determinant of gut form and function and precisely defining these
interactions will radically alter our understanding of normal gut physiology and pathophysiological
reactions, revealing new approaches to infection with parasitic helminths, bacterial pathogens and
idiopathic auto-inflammatory disease.
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Introduction

The epithelial lining of the gut is the interface between
the body proper (i.e. lamina propria and mucosa) and
the gut lumen and is exposed to a myriad of antigens,
a vast microbiota, and, more transiently, a variety of
protozoan and helminth parasites. Indeed, the gut is a
preferred niche for helminth parasites, providing a shel-
tered environment, a soft mucosal surface that can be
readily abraded to gain access to a rich microvascula-
ture for blood-feeders, and a steady stream of host-
ingested nutrients.

The barrier function of the gut is the net outcome of
the physical character of the epithelial layer, secreted ele-
ments (i.e., HCl, mucus, IgA, anti-microbial peptides,
electrogenic ion secretion to create a driving force for
directedwatermovement), and themucosal immune sys-
tem that would, for example, attack bacteria that enter the
mucosa to prevent their systemic dissemination.1,2 The
mobilization of mucosal immunity in the context of
enteric helminth infection is multi-faceted, complex and
intriguing but a comprehensive discussion of such is
beyond the scope of this commentary: the reader is

referred to excellent recent reviews of this topic.3-8 For
the purposes of this review we will use ‘epithelial perme-
ability’ to denote studies that address the physical proper-
ties of the epithelial layer and ‘barrier function’ is used as
a more encompassing term that refers to the many
extrinsic (e.g. mucus, IgA, commensal microbiota) com-
ponents of the intestinal barrier.

Nematodes can cause significant damage in the
small or large intestine of their mammalian hosts that
would be a significant breech in the epithelial barrier.
Recognizing that physical damage caused to the epi-
thelium by tissue- or blood-feeding nematodes or
trematodes can increase epithelial permeability, we
will not belabor this point, other than to note that sec-
ondary bacterial infection, or sepsis, is not a common
clinical feature of infection with gastrointestinal nem-
atodes, likely due to the combination of an effective
mucosal immune system and the recuperative power
of the epithelium. Here, we briefly discuss helminths
as a phylum, the nature of the epithelial barrier and
then how infection with helminths can affect this
directly or indirectly via host immunity.
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Helminth parasites

Helminth parasites are endo-parasites that are classi-
fied into 2 major groups: the nematodes (round
worms) and platyhelminths (flatworms), with the later
subdivided into trematodes (flukes) and cestodes
(tapeworms) (Fig. 1A). Parasitic helminths typically
exhibit complex life-cycles that involve one or more
intermediate hosts for juvenile stages of the worm and

a definite host where adults reach sexual maturity
(host specificity is the basis of parasitism and while
each species of parasite has a preferred definitive host
there is promiscuity in the system, with implications
for zoonotic disease9). It is also safe to say that for
every vertebrate species at least one parasitic helminth
has evolved. The successful parasite must: (a) recog-
nize its’ preferred host and niche therein; (b) be capa-
ble of maintaining itself in the preferred nice and be

Figure 1. Panel A provides a simplified phylogenic overview of parasitic helminths with typical examples of species that infect humans
or are common in laboratory studies (definitive host in parentheses). Detailed classification can be found in “Introduction to Animal Par-
asitology” by J.D. Smyth, Cambridge University Press, 1994: Anasakis simplex, Ancylostoma duodenale, Ascaris lumbricoides, Ascaris suum,
Brugia malayi, Diphyllobothrium latum, Clonorchis sinensis, Dracunculus medinensis, Echinococcus granulosus, Enterobius vermicularis, Heli-
gmosomoides polygyrus, Hymenolepis diminuta, Necator americanus, Nippostrongylus brasiliensis, Schistosoma mansoni, Strongyloides ster-
corlis, Strongyloides ratti, Taenia saginata, Taenia solium, Toxocara canis, Trichinella spiralis, Trichuris trichiura, Trichuris muris, Trichuris suis,
Wuchereria bancrofti). In Panel B the generic complexity of the lifecycle of parasitic helminths is shown along with an inset box present-
ing essential features of successful parasites (synchronization of the parasite life-cycle with host reproductive cycle is not critical but
could be advantageous).
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adapted to the physico-chemical conditions of that
environment; (c) obtain nutrition from the host; (d)
avoid or counteract the host attempts to eradicate it;
and (e), while not essential, it is beneficial if the para-
site can synchronize egg production with the hosts’
reproductive cycle (Fig. 1B).

The life-span of a helminth in its definitive host can
vary considerably from 2–3 weeks in the case of the
nematode Nippostrongylus brasiliensis in the rat to
24 months for the cestode Hymenolepis diminuta in
the rat (basically the life-span of the rat). A similar
spectrum can be applied to humans where gastrointes-
tinal nematodes (e.g., Ascaris lumbricoides), tape-
worms (e.g., Echinococcus granulosus) and trematodes
(e.g., Schistosoma mansoni) can co-exist with the host
for years. The longevity of the helminth-mammalian
host relationship has lead to the suggestion that these
parasites have exerted a major evolutionary selection
pressure on host immunity.10

Endemic in developing regions of the world, it is
estimated that »1.5–2.0 billion people suffer from
infection with parasitic helminths with effects ranging
from loss of nutrition, to anemia, to gastrointestinal
upset, to stunted growth, to loss of organ function
(e.g., blindness with Onchocerca volvulus (nematode),
elephantiasis with Brugia malayi (nematode) and
spleno-hepatomegaly with S. mansoni) and fatality
(neurocysticercosis from Taenia solium): death from
infection with helminth parasites is the extreme and
mild/significant morbidity is the norm. A similar situ-
ation exists for domestic livestock, a problem in devel-
oping and developed regions of the world, where
infection with helminth parasites takes a tremendous
toll on productivity (e.g., meat yields),11 and resistance
to anthelminthics is increasing alarmingly.12 Thus,
while helminth biology may be unfamiliar to the
reader, helminths are a ubiquitous component of our
ecosystem.

The nature of the intestinal barrier

For antigens, microbes or parasites to enter the mucosa
several barriers need to be negotiated. If antigens and
organisms can run the gauntlet of host-derived stom-
ach acid, proteases, mucus and anti-microbial peptides
that are produced throughout the entire gastrointesti-
nal tract, and a washer/sweeper event caused by
increased water movement into the lumen of the gut
combined with increased peristalsis,13 they are then

faced with the physical barrier of the epithelium (and
after that an extensive mucosal immune system). In
the absence of ulceration and damage to the epithelial
layer, soluble/particulate antigen can cross the epithe-
lium via uptake by specialized microfold (M) cells that
overlay lymphoid aggregates,14 capture by dendritic
cell processes that extend between adjacent epithelial
cells into the gut lumen,15 or traversing the epithelium
via the paracellular and transcellular pathways.

Paracellular permeability refers to the flux of mate-
rial between adjacent epithelial cells, where it must
pass the apical junctional complex composed of the
tight junction (TJ), the adherens junction and desmo-
somes: once established the TJ is the rate-limiting step
in paracellular permeability.16 The paracellular space
is in fact a continuity between the gut lumen and the
mucosa and is often considered in terms of a pore
pathway, a high capacity, size- and charge-selective
route, and a lower capacity leak pathway that allows
entry of larger molecules (e.g., 4 kDa dextrans).17

Research over the last 25-years has defined the molec-
ular composition of the TJ, its’ dynamic nature, the
mechanisms that regulate its’ opening and the impact
of microbial pathogens (including protozoans) on
enteric epithelial paracellular permeability.18

Briefly, the TJ is composed of many transmem-
brane proteins: TJ-associated MARVEL (MAL and
related proteins for vesicle trafficking and membrane)
proteins (TAMPs) include occludin, tricellulin
(restricted to tri-cellular junctions) and MarvelD3;
claudins, a 27-member family, are single-spanning
transmembrane proteins that interact homotypically
with the extracellular domain of claudins on neighbor-
ing cells; and, single transmembrane immunoglobu-
lin-like junction adhesion molecules (JAMs).17 These
proteins reside in cholesterol-rich, detergent-insoluble
lipid domains of the plasmalemma and are connected
to a peri-junctional ring of actin and myosin via the
scaffolding proteins zona occludens (ZO)-1, -2 and -3.
The function of TJ and ZO proteins is phosphoryla-
tion dependent.19,20 Thus, TJ opening and closing (i.e.,
the permeability characteristics or epithelial perme-
ability coefficient) is dependent on: (1) the molecular
composition of the tight junction [occludin was the
first TJ protein identified21 but it has emerged that it is
dispensable for TJ formation and that claudins are the
critical players in TJ permeability22 where increased
expression can enhance the barrier or conversely
increase TJ permeability via expression of the pore-
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forming claudin-223 (and claudin 15) (note that
interleukin-13 that is mobilized in response to hel-
minths increases claudin-2 expression24)]; (2) phos-
phorylation status of the TJ proteins; (3) cell
membrane fluidity;25 and, (4) contraction/relaxation
of the actinomysin ring via control of the F-actin cyto-
skeleton and the balance of myosin light chain kinase
(MLCK) and myosin light chain phosphatase activity
(MLCP).26

Intuitively, transcytosis through an enterocyte (i.e.,
the transcellular pathway) would be a more difficult
and hazardous route for lumen-derived material to
breech the epithelial barrier. Yet, evidence is accumu-
lating demonstrating that transcellular permeation of
antigen and microbes can be increased in epithelial
monolayers exposed to metabolic stress, inflammatory
cytokines (e.g., interferon-g) and bacterial pathogens
such as Campylobacter jejuni.27-29 While helminths
are too big to reside within an epithelial cell this
should not deter consideration of the transcellular
pathway as a route by which helminth-derived antigen
could enter the body.

Why consider epithelial permeability in the context
of infection with enteric helminth parasites?

This question needs to be considered from helminth
and host perspectives. With respect to tissue- and/or
blood-feeding helminths, destruction of the epithelial
barrier is essential for survival. Evoking a ‘washer/
sweeper’ event would assist the caudal movement of
helminth eggs to facilitate dissemination and hence
continuation of the life cycle: infection of the intestine
with parasitic nematodes (e.g., Trichinella spiralis) is
associated with altered neuro-muscular function and
electrogenic Cl¡ flux into the gut lumen.30 At the
same time a “washer/sweeper” effect could contribute
to expulsion of the worm burden alleviating any detri-
mental effect of a parasitized gut:13,31 this can be an
example of the elegant co-evolution that characterizes
the host-parasite relationship – the host wins by
removing the parasite and the parasite wins by com-
pleting its’ life cycle.

A similar argument can be advanced for the passage
of helminth-derived antigens or excretory/secretory
(E/S) products into the mucosa. With a parasite such
as the tapeworm H. diminuta that lacks teeth, hooks
and abrasive structures and causes no overt damage to
the gut, the host most likely recognizes the presence of

the worm by epithelial or immune cell detection of
worm products. This can result in the release of alar-
mins from the enterocyte (e.g., interleukin (IL)-25),
the promotion of T helper-2 (TH2) type immunity
and upregulation of effector mechanisms (e.g., IL-5
evoked eosinophils) aimed at worm destruction and
expulsion.32,33 However, the corollary of this is that
helminths are adept at manipulating immunity in
their hosts to meet their own needs,34 and do so via
the release of molecules that may need to gain access
to target cells in the mucosa – a leaky epithelial barrier
would facilitate this.

Increased epithelial permeability could have addi-
tional host benefits and anti-worm effects, for example
allowing increased nutrient uptake into the mucosa
could benefit the host to meet the energy requirements
needed to defend itself against the parasite. Easing the
passage of complement, antibody and putative effector
cells (eosinophils, macrophages) into the gut could be
invaluable in the attack on lumen-dwelling helminths.

Increased epithelial permeability triggered by
infection with helminth parasites

Direct effects on epithelial permeability are typically
assessed using cell lines grown as polarized mono-
layers on filter supports35 or analysis of tissues
mounted in Ussing chambers36 (use of isolated loops
of intestine for in vivo or ex vivo studies (ex vivo the
loops can be inverted) are less frequently used37).
Studies with monolayers add the product/drug/agent
of interest to either the apical or basal side of the epi-
thelia and then monitor transepithelial resistance
(TER) or apical-to-basal flux of marker molecules
(e.g., 51Cr-EDTA, FITC-dextrans) over time, typically
up to 72-hours post-treatment. Studies with Ussing-
chambered tissue use the same approach but are more
short-term, seldom extending beyond 4 hours because
of issues with tissue viability. Tissue can be retrieved
at various time-points post-infection with helminth
parasites for assessment in Ussing chambers. Under
these circumstances altered epithelial permeability
could be due to the host immune response to the hel-
minth and not to direct effects of the helminth or its’
E/S products on the epithelium.

Helminths and their products do directly interact with
enteric epithelial cells and indeed the enterocytes synthe-
sis of IL-25 and thymic stromal lymphopoietin (TSLP) is
important in the initiation of TH2-dominiated immunity

e1283385-4 D. M. MCKAY ET AL.



that can result in worm expulsion.32,33,38-41 Studies in
which helminth E/S products are added directly to epi-
thelial monolayers and permeability subsequently
assessed are scarce. The E/S products from the nematodes
Haemonchus contortus and Teladorsagia circumcincta
when applied to the apical surface of monolayers of the
human colon-derived Caco2 epithelial cell line lowered
the TER by »20% 2 hours post-treatment.42 Caco2
monolayers typically have TER values of 250–300V.cm2

and so in the absence of data on othermarkers of paracel-
lular permeability it is difficult to determine the func-
tional significance of the E/S-evoked 20% drop in TER.
The TER gradually recovered over a 24-hour period but
remained lower than that in time-matched na€ıve mono-
layers; immunolocalization at 4 hours post-treatment
revealed less peri-junctional staining of ZO-1 and occlu-
din, with the latter showing a diffuse cytoplasmic
distribution.42

Hiemstra et al. showed that a glycan component
of E/S products from the nematode Trichuris suis
dose-dependently decreased the electrical imped-
ance (analogous to TER) across monolayers of the
mouse cecal CMT93/69 epithelial line and
increased the flux of FITC-dextrans (10–100 kDa):
this was associated with reduced mRNA for clau-
din-4 and a claudin-like protein the authors desig-
nated epithelial membrane protein-1 (but not
claudin-3 or ZO-1) and was not accompanied by
increased epithelial cell death.43 This study also
showed that the barrier defect permitted T. suis E/S
products to cross the epithelial layer. This is note-
worthy from 2 contrasting perspectives: first, infec-
tion with T. suis has been promoted as a therapy
for inflammatory bowel disease44 and here increases
in epithelial permeability could exaggerate the dis-
ease. In this context, the magnitude of the increase
in intestinal permeability in individuals infected
with the nematode Anasakis simplex correlated
with worse disease.45 Alternatively, the passage of
T. suis E/S products across an epithelial layer
driven by the presence of the E/S products them-
selves could be a component of the anti-inflamma-
tory effect of T. suis, as the E/S products would
now be positioned to interact with resident
immune cells or those recruited to the gut.46

Data on the direct effect of trematodes and cestodes
on enteric epithelial permeability are limited. As
adults, S. mansoni lodge in mesenteric blood vessels
and to complete their lifecycle eggs must

‘breakthrough’ the tissue and enter the gut lumen that
may be facilitated, at least in part, by the spine on the
egg. This process must disrupt the epithelial barrier
but neither the mechanism of the transepithelial pas-
sage nor any physiologic/pathophysiological conse-
quences of this are well understood. S. mansoni, and
other flukes (e.g., Clonorchis sinensis (human), Fas-
ciola hepatica (cattle)), infect or affect the liver with
implications for bile flow and bile salt formation:47

bile acids can directly affect epithelial permeability
and electolyte transport,48,49 but we are unaware of
data in support of the possibility that infection with
these flatworms affect epithelial permeability indi-
rectly via bile salts.

We reported that mice (non-permissive host)
infected with 5 cysticercoids of the rat tapeworm, H.
diminuta, displayed a small, statistically-significant
increase in ionic conductance (the reciprocal or TER)
across jejunal tissue mounted in Ussing chambers at
5 d post-infection (dpi.) that returned to control levels
by 8 dpi.50 Infection with helminth parasites can result
in less severe disease in animal models of colitis.51 The
first study in this area used H. diminuta and dextran
sodium sulfate (DSS)-induced colitis:52 while
improvement in colon function was observed in the
infected mice, ion conductance across segments of
colon in Ussing chambers was not different between
control, H. diminuta-infected (11 dpi.) or DSS § H.
diminuta-treated mice. This is an unusual finding and
may, in this instance, reflect on the technique used to
assess epithelial barrier – measurements of TER or
conductance in Ussing-chambered tissue consider the
whole tissue and so increases in epithelial permeability
could be off-set by increased tissue thickness due to
edema or hyperplasia of the outer muscle layers in
inflamed tissue.

Infection with helminth parasites reduces the sever-
ity of colitis in murine model systems,51 and this can
be accompanied by a preservation of epithelial barrier
function. For example, downregulation of colonic lev-
els of ZO-1 and occludin mRNA and protein and the
increase in bacterial translocation to the blood, spleen
and mesenteric lymph nodes observed in tri-nitroben-
zene sulphonic acid (TNBS)-induced colitis were
reduced in mice treated with 10,000 freeze-killed eggs
of the trematode Schistosoma japonicum (given by
intra-peritoneal injection).53 However, it is unclear
whether the worm antigen directly affected the epithe-
lium or enhanced epithelial barrier function occurred
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via suppression of the inflammation: the latter being
the more likely of the 2 possibilities.

Infection with gastrointestinal nematodes increases
epithelial permeability,54 which in the acute stages is
likely due to the significant damage that species such
as the nematodes N. brasiliensis and Trichinella spira-
lis do to the gut either directly or as a consequence of
a cell-mediated immune responses:37 the villus atro-
phy can resemble that observed in celiac disease.
Increases in epithelial permeability after expulsion of
the parasite (the post-infectious state) are driven by
host cells, principal among these being mast cells.

In the late 1970s it was shown that 10 or 11 dpi.
with N. brasiliensis, loops of rat jejunum displayed
increased leakiness to lactulose and mannitol (mak-
ers of paracellular permeability).37 Subsequently
increases in gut permeability as assessed by 51Cr-
EDTA and ovalbumin were shown at 4, 10 and
35 dpi., the latter being »2 weeks after expulsion
of the worm and when the jejunum is characterized
by mast cell hyperplasia.55,56 Work by Miller et al.
linked helminth-induced mast cell hyperplasia and
activation, and the release of proteases with the
increase in gut permeability.57-60 Similarly, mast
cells are important in the increases in gut perme-
ability that occur as a consequence of anaphylaxis
due to challenge of previously infected rats with
worm antigen.55,57 cKitC mast cells have been
implicated in the increased intestinal permeability
observed 9–10 dpi. with T. spiralis, which was
accompanied by reduced expression of occludin.58

This barrier defect was enhanced in T. spiralis-
infected IL-9 transgenic mice that have increased
numbers of mucosal mast cells58 (increased IL-9 is
common following infection with helminth para-
sites61 and IL-9-knockout mice treated with TNBS
displayed increased colonic mRNA and protein lev-
els of claudins 4 and 7, occludin and JAM-A62). In
the T. spiralis post-infectious paradigm, the
increase in lactulose permeation across the gut cor-
related with reduced expression of claudin-1 pro-
tein in the ileum.63

More recent studies corroborate the participation of
mast cells in nematode-evoked increases in epithelial
permeability. Thus, 30 dpi. with T. spiralis when there
is no histological evidence of damage in the jejunum
of rats, there is a »2-fold increase in tissue conduc-
tance and increased fluxes of 4- and 40-kDa FITC-
dextrans across jejunal segments in Ussing

chambers.64 This epithelial permeability defect was
insensitive to in vitro tetrodotoxin treatment and
hence occurred independent of neuronal fast sodium
channels. A time-course analysis confirmed increased
jejunal permeability at 14 and 30 dpi. with T. spiralis
and correlated this with increased numbers of muco-
sal, but not connective tissue-type, mast cells and
increased mRNA expression of the rat mast cell
proteases (MCP) 1, 2, 4, 5, 8, 9 and 10 in jejunal
mucosa-submucosa at 6 and/or 14 dpi., but not
30 dpi.54 PCR-analysis of the same tissues revealed
reduced expression of occludin at 2, 6 (when conduc-
tance is not significantly altered), 14 and 30 dpi. A
role for mouse MCP1 in the increased permeability
observed 8 weeks after infection with the trematode
S. mansoni was ruled out using mMCP1¡/¡ mice.65

Given that the 2 most consistent findings observed
in humans having irritable bowel syndrome (IBS) are
increased gut permeability and mastocytosis,66 one
wonders if helminth therapy aimed at treating auto-
inflammatory disease34 might predispose an individ-
ual to IBS-like symptoms.

The adaptive immune response that follows
infection with helminth parasites can also partici-
pate in the increase in gut permeability. For
instance, infection with the nematode Heligmoso-
moides polygyrus, a parasite of the mouse duode-
num, increases colonic permeability at 7 pdi.
characterized by ballooning of the paracellular
space, increased transcytosis of the marker protein
horse-radish peroxidase (HRP), and loss of the epi-
thelial adherence junction protein, E-cadherin.
These findings were not apparent in severe com-
bined immunodeficient mice (SCID), but were
recapitulated when SCID mice were re-populated
with T cells.67 In addition, mice lacking signal
transducer and activator of transcription (STAT)-6,
which is critical in IL-4 signaling, did not display
the H. polygyrus-induced barrier defect.67 Likewise,
the drop in TER observed in muscle-free prepara-
tions of jejunum from nematode-infected Balb/c
mice was not seen in STAT-6¡/¡ animals.68 The
drop in TER in secondary infections with H. poly-
gyrus, was accompanied by a small increase in the
epithelial expression of the pore-forming claudin-2,
and the barrier defect was absent in IL-13Ra1¡/¡

mice.69 Increased IL-13 production following infec-
tion with helminths can be from innate70 or adap-
tive immune cells,71 and while IL-13 has been
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shown to directly decrease the barrier function of
epithelial monolayers in vitro,24,72 it is unclear if
helminth-evoked IL-13 targets the epithelium
directly or via other immunoregulatory activities.

With respect to TH2-type cytokines mobilized in
response to infection with helminths, many of these
have the potential to affect epithelial barrier function.
For instance, IL-6 was shown to lower Caco-2 epithe-
lial monolayer TER, increase NaC (but not macromol-
ecule) permeability and the expression of claudin-2.73

As another example, helminth-evoked IL-5 is critical
for eosinophil development and eosinophils can
directly increase epithelial permeability,74 or indirectly
via mast cells75 (Fig. 2). However, the host-parasite
interaction is so exquisitely balanced that the net effect
of any given cytokine in vivo is difficult to fully ascer-
tain and will depend on the target cell, temporal kinet-
ics of cytokine production and the microenvironment
in which the cytokine operates. Thus, the prototypic
TH2 cytokine, IL-4 added to monolayers of human
colon-derived epithelial monolayers increased paracel-
lular permeability,76 while reciprocally, one can
hypothesize that alternatively activated macrophages
induced by IL-4 production after helminth-infection77

could, via their tissue reparatory capacity, enhance
epithelial barrier function.

Collectively, the available evidence suggests that
helminths can increase gut permeability by abrading
the epithelium directly, that defined helminth-derived
products may affect the structure of the tight junction
(in general there is a paucity of data here), and that
immune activity during or after infection can

significantly compromise or enhance epithelial perme-
ability (Fig. 2).

Helminth and host-derived factors impact on
intestinal barrier function

Defining the intestinal barrier as mechanisms that
prevent material in the lumen entering the circulatory
system, there is a vast literature on helminth-evoked
changes in intestinal barrier function: goblet/mucus,
trefoil factors,78 Paneth cells/defensins/antimicrobial
peptides, serotonin, and mucosal immunity are all
components of the barrier that can change signifi-
cantly (cell number and/or function) following infec-
tion with parasitic helminths and each is worthy of a
focused review.

Enhanced epithelial cell turnover may contribute to
the hosts’ anti-helminth defenses79-81 and this has the
concomitant benefit of clearing any microbe-infected
enterocytes. Stimulated electrogenic ion transport cre-
ates a driving force for water movement that can lubri-
cate the epithelial surface and may assist in the
expulsion of intestinal helminths:82 water is important
in the physical properties of mucus.83,84

Intestinal goblet cell hyperplasia is perhaps the
most prominent gut characteristic of infection with
gastrointestinal parasitic helminths3,85 and increases
in mucin production, type (e.g., Muc5a) and glycosyl-
ation can be critical components of the epithelial bar-
rier that aids the expulsion of helminths, such as the
nematode N. brasiliensis86-89 and the trematode, Echi-
nostoma caproni;90 indeed, helminths in their own

Figure 2. Schema showing the variety of possible mechanisms by which T cell activation following helminth infection could affect epi-
thelial permeability and intestinal barrier function (E/S, helminth-derived excretory/secretory products; IL, interleukin; TGF, transforming
growth factor; Th2, T-helper cell type-2; Treg, regulatory T cells).
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defense may release proteases to degrade mucus.91 The
advent of mucin-gene knockout mice positions the
field to unequivocally test the role of mucus in the
expulsion of a range of parasitic helminths. The goblet
cell/mucus response can be driven by the helminth-
evoked TH2 response, principally IL-4 and IL-1392,93

and IL-2594 (Fig. 3) and potentially by contact with
the worms or their E/S products: the latter needs to be
explored on a species-by-species basis. The potential
of helminth-evoked changes in the enteric nervous
system95 and the regulation of mucus production by
acetylcholine should also be pursued.96 Finally, recent
work has shown that goblet cells can sense their
microenvironment and pass this information to den-
dritic cells;97 the implications of this for barrier func-
tion and host-parasite interactions are poorly
understood.

Paneth cells are a significant source of anti-micro-
bial peptides in the mammalian small intestine and
infection with nematodes and S. mansoni was shown
to induce Paneth cell hyperplasia,98 while Toxocara
canis (nematode) infection increased the number of
secretory granules in Paneth cells.99 Helminth-regula-
tion of anti-microbial peptides has implications for
the overall barrier function of the gut as this will affect
the composition and structure of the commensal

microbiota. For instance, N. brasiliensis infection has
been associated with reduced expression of the mRNA
of the anti-microbial peptides, lysozyme-1 and
RegIIIg.89 In contrast, expulsion of the nematode
Trichuris muris from mice was accompanied by
increased expression of the anti-microbial peptide,
angiogenin-4,84 with goblet cells identified as a source
of angiogenin-4 in the colon of infected mice.100

Reduced numbers of segmented filamentous bacteria
(SFB) in the gut of N. brasiliensis-infected mice have
been reported (Table 1):89 SFB are important stimuli
of TH17 cells and should this be a general outcome of
infection with helminths, the question arises are there
any short or long-term consequences to the host to a
reduced TH17-TH1 axis in terms of gut homeostasis
or vulnerability to microbial pathogens. For example,
mice infected with H. polygyrus have an impaired
response to concurrent infection with the bacterial
pathogen, Citrobacter rodentium that the investigators
related to mobilization of alternatively activated mac-
rophages in the co-infected mice.101,102

Entrochromaffin cells (ECs) within the enteric epi-
thelium are the body’s major source of serotonin.103

Increases104 and decreases103 in intestinal ECs and
serotonin have been demonstrated after infection with
helminths, with early studies linking serotonin to

Figure 3. Schematic overview of the mechanisms by which infection with intestinal parasitic helminths (worm or their excretory/secre-
tory products (ESP)) can directly or indirectly impact the barrier function of the gut (IL, interleukin; MLN, mesenteric lymph nodes; TH2,
T-helper cells type 2; TSLP, thymic stromal lymphopoietin).
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worm expulsion,105 possibly via its ability to elicit elec-
trogenic Cl¡ secretion into the gut to create a driving
force for directed water movement.30

This sampling of studies aptly illustrates the magni-
tude of changes in the amount and function of factors
that comprise the extrinsic component of the intesti-
nal barrier (noting we have not addressed changes in
antibody or complement) that can accompany, or fol-
low, infection with parasitic helminths. The challenge
is to understand the consequences of these changes
for gut barrier function in a host-parasite specific
manner, and the putative implications for host inter-
action with microbes and concomitant inflammatory
disease.

Helminth-microbial interactions at the epithelial
barrier

The mammalian intestine is home to trillions of bacte-
ria from a diverse array of species. Layer on top of this
virus and fungi, protozoan and helminth parasites and
a complex ecosystem of microbiota and macrobiota
emerges. Intuitively, one can accept that the interplay
between these species and the host is critically impor-
tant in controlling gut function: yet, knowledge of
inter-species communication or cross-kingdom

interactions in the regulation of gut function is
rudimentary.106

A normal commensal microbiota is considered an
extrinsic component of the intestinal barrier. The
commensal bacteria can produce bacteriostatic factors
to influence other bacteria in the gut and may prevent
pathogen colonization by niche-exclusion via compe-
tition for nutrients and space. The release of bacterial
molecules (e.g., PAMPS: pathogen-associated molecu-
lar patterns), may keep the gut primed to respond to
invasion by pathogens.

Recent studies have begun to catalog changes in the
gut bacteria that occur following infection with hel-
minth parasites, typically those that seek to establish
in the intestine (Table 1).107,108 It is unclear if hel-
minth-regulation of the enteric microbiota is a direct
effect, since they are in the same location, or indirect
via the host anti-worm immune response; for exam-
ple, IL-25 mobilized in response to helminths could
suppress synthesis of IL-22 (and vice versa109) which
is an important regulator of the epithelial response to
bacteria, promoting mucin and anti-bacterial peptide
synthesis,110,111 and under certain circumstances may
aid worm expulsion from the gut.88

Functional consequences of perturbation of the
enteric microbiome are largely unknown, with a nota-
ble exception being that the suppression of airways

Table 1. Changes in the gut microbiota associated with infection with helminth parasites.

Species Host Location Diversity class level change in relative abundance Ref.

Nematodes

Necator americanus Human Small intestine NC NC 115

" species richness NC 116

Trichuris trichuria Human Small intestine NC # Clostridia 117

Trichuris trichuria Macaques Small intestine " a diversity " Bacteroidia 118

" a and b diversity " Chlorophyta,
# Bacteroidia

119

Trichuris suis Pig Proximal colon NA " Fibrobacter & Clostridia 120

NC " Deferribacteres 121

Heligmosomoides polygyrus Mouse Small intestine NA " Bacilli (Lactobacillus) 122

Trichinella spiralis Mouse NA " Bacilli (Lactobacillus) 123Small intestine
NC " Clostridia (Lachnospiraceae) 112

increased (?) " Gammaproteobacteria 124

NA " Bacilli (Lactobacillus) & 106

Clostridia (Clostridiales)
# Bacilli (Turicibacteraceae)

Nippostrongylus brasiliensis Mouse Ileum NC a diversity # Fimicutes (Lactobacillaceae) 89

(# segmented filamentous bacteria)
" Bacteroides & Actinobacteria

Trichuris muris Mouse Large intestine # a and b diversity " Bacilli (Lactobacillus) 125

# a diversity # Bacteriodia 126

NA " Clostridia (Lachnospiraceae) 127

# Bacteriodia
Cestodes

Hymenolepis diminuta Rat Cecum NC " Clostridia, # Bacilli 128

Rat Small intestine #aerobic bacteria NA 92

Note. NC, no statistical change reported; NA, no data available; " increased abundance; # decreased abundance
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inflammation observed in H. polygyrus-infected mice
was dependent on bacteria-derived short-chain fatty
acids.112 Intriguingly, the decreased barrier function
reported following infection and rejection of T. spiralis
was ameliorated by treatment with probiotics:63 the
probiotic treatment also resulted in lower expression
of pro-inflammatory cytokines, returning us to the
conundrum of whether the probiotic effect was by
interaction at the level of the enterocyte or the
immune system. The possibility that infection with
helminths that do not localize to the gut could affect
the composition of the enteric microbiota should be
assessed: we are unaware of any data in this area.

Thus, the stage is set to delve into analyses of the
functional outcome of helminth-induced changes in
microbiota content and diversity for the host, the bac-
teria and the helminth. How important is the com-
mensal bacteria to intestinal barrier function
following infection with helminth parasites? What
happens to the bacterial metabolome? Is the energy
status of the host impacted by helminth regulation of
the microbiota? Is the host more vulnerable to oppor-
tunistic bacterial infections because of the helminth?
Does the altered microbiome impact the course of the
helminth-infection113 and any associated pathology?
How important is the microbiota to helminth-modu-
lation of disease? These questions and many more
await rigorous research efforts. Understanding the
interplay between the triumvirate of host epithelium
(or immune system), helminth and bacteria (or virus
or fungi) is a new frontier in enteric biology that will
revolutionize awareness of the control of gut form and
function, and how we manage digestive disease.106

Concluding comments

The epithelial surface of the gut is the largest contact
site with the outside world and is recognized as a
dynamic regulated barrier composed of 6 cell pheno-
types (goblet, tuft, enteroendocrine, M-cell, Paneth
and transporting enterocyte), the activation of which
directs mucosal immunity. To date the there has been
little commentary on the barrier defect due to the
physical damage caused by infection with abrasive hel-
minths, with more information on the mechanism(s)
of host immunopathology following primary or sec-
ondary infections with parasitic helminths, and ana-
phylactic reactions due to exposure to worm antigen
in previously infected animals (Fig. 3). Data on the

direct effect of helminths or their E/S products on epi-
thelial permeability is lacking. Given the contribution
of the epithelium to innate immunity, we suggest that
focused efforts to define how helminths affect epithe-
lial permeability will reveal novel aspects of host-para-
site interactions and new ways to combat infection
with gastrointestinal parasites. Finally, we underscore
that the gut is an ecosystem and that the myriad of
cells that reside there or are recruited in response to
infection form an integrated circuit: while challenging,
we contend that the holistic approach of integrated
neuroimmunophysiology114 needs to be applied if we
are to understand the complex regulation of intestinal
barrier function (or indeed any aspect of gut function)
and the consequences of perturbed barrier function
for gut homeostasis and disease.
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