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ABSTRACT
Entamoeba histolytica (Eh) is the protozoan parasite responsible for intestinal amebiasis and
interacts dynamically with the host intestinal epithelium during disease pathogenesis. A
multifaceted pathogenesis profile accounts for why 90% of individuals infected with Eh are largely
asymptomatic. For 100 millions individuals that are infected each year, key interactions within the
intestinal mucosa dictate disease susceptibility. The ability for Eh to induce amebic colitis and
disseminate into extraintestinal organs depends on the parasite competing with indigenous
bacteria and overcoming the mucus barrier, binding to host cells inducing their cell death, invasion
through the mucosa and outsmarting the immune system. In this review we summarize how Eh
interacts with the intestinal epithelium and subverts host defense mechanisms in disease
pathogenesis.
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Introduction

Entamoeba histolyica (Eh) is an enteric human proto-
zoan parasite responsible for amebiasis that is com-
mon to developing countries. Accounting for
approximately 100 million cases per year, Eh results in
amebic dysentery, colitis and if left untreated can
develop abscesses in extraintestinal sites, most com-
monly the liver. In 2013 there were 11,300 global
deaths from amebiasis ranking it the fourth leading
cause of parasitic diseases.1 Infection occurs through
ingestion of contaminated food or water that contains
Eh cysts. The vast majority of those infected with Eh
are asymptomatic carriers where the parasite stays
restricted to the lumen of the colon and finally under-
goes encystment for excretion in stool to carry on the
lifecycle.2 On average, a carrier will pass 45 million
cysts in the stool daily and the infectious dose is
greater than 1000 cysts.3 Disease is characterized by
acute diarrhea often with the presence of blood and
mucus, abdominal cramping and fever. Eh that have
invaded the intestinal mucosa often form flask-like
ulcers. Infection in children is particularly concerning
as this leads to malnourishment and growth stunting
which is exacerbated by common reinfection.4 Treat-
ment for invasive amebiasis utilizes nitroimidazoles

and often requires multiple interventions for a cure.
Although there is no approved vaccine against Eh,
vaccination against the major Eh adhesin protein, the
Gal/GalNAc lectin, has proved promising in animal
models.5 After infection there is resistance to subse-
quent Eh infections mainly through IFN-g production
and mucosal IgA.2 It still remains to be understood
why such a large proportion of colonized individuals
resist invasive disease. Owing to the complex patho-
genesis profile of Eh, this is likely driven by several fac-
tors outlined in this review.

Interactions with the mucus barrier

The first line of innate host defense in the colonic
milieu is the mucus barrier that forms a bimodal
layer above the single layer of epithelial cells.6 This
acts to spatially restrict noxious substances, commen-
sal bacteria and potential pathogens from accessing
the epithelial cells while allowing nutrient flux
through. The primary component of this mucus bar-
rier is MUC2 mucin, a tremendously large protein of
5179 amino acids that accounts for 80% of its weight
through branched glycans and the most prominent
member of the mucin family within the intestine.
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This glycosylation protects the mucin molecule from
proteolytic degradation and may also act as a molec-
ular decoy to bacteria or other pathogens that possess
adhesins mistaking mucus for a target cell. Undoubt-
edly a critical aspect in Eh pathogenesis is to over-
come the mucus barrier to gain access to the
epithelial cells. Indeed, Eh binds to the colonic mucus
layer with strong avidity through the Gal/GalNAc
lectin, targeting the abundant galactose and N-acetyl-
galactosamine residues present on the O-linked sugar
side chains of mucin.7 The Gal/GalNAc lectin has
the highest affinity for multivalent saccharides such
as GalNAc39BSA, however has very high affinity for
in vivo conjugates such as mucin and fetuin.8 Eh pos-
sess a variety of glycosidases that may remove
branched polysaccharides from mucin or host cells
including sialidase, N-acetylgalactosamidase and N-
acetylglucosaminidase.8 Due to the scarcity of free
carbohydrates in the colon and competition with the
commensal microbiota, Eh may turn on a pathoge-
nicity program for scavenging polysaccharides. Since
mucin is the largest source of carbohydrates in the
colonic lumen, this would increase the degradation of
the mucus barrier and result in Eh encountering epi-
thelial cells. Indeed, Eh glycosidases present in
secreted components interact with the polysaccharide
side chains of mucin. In a transcriptome analysis of
virulent versus non-virulent Eh during colonization,
the glycoside hydrolase b-amylase was very strongly
associated with invasive trophoziotes.9 Eh lacking this
b-amylase was unable to breach the mucus layer and
perturb the epithelial barrier. Additionally various
other genes related to glycosidase and carbohydrate
metabolism were induced in pathogenic Eh following
colon invasion. Specifically N-acetylglucosamine
modifies these sugar moieties on mucin leading to a
loss of the protective functions.10 This occurs in
absence of serine or cysteine protease activity how-
ever may increase the availability of proteases to
interact with the mucin backbone and undergo
proteolysis.

Mucin protein degradation occurs via cysteine pro-
teinases present in Eh secreted components and the
resulting degradation products are less efficient at pre-
venting Eh adherence to host cells.11 Although EhCP1,
EhCP2 and EhCP5 make up more than 90% of the
cysteine protease activity in Eh, the degradation of
mucin appears to be predominantly from EhCP5 as
antisense inhibition drastically reduces the proteolytic

activity. Further, Eh deficient in EhCP5 are unable to
overcome the mucus barrier of cultured cells that
abundantly express and secrete mucin. This leads to
lack of cytolysis, however EhCP5-deficient parasites
retain their cytopathic effect on cultured cells lacking
a mucus barrier.12 EhCP5 specifically targets the
C-terminal cysteine rich domain of MUC2 likely due
to the lack of glycosylation.13 These regions within
MUC2 are responsible for forming disulphide bridges
between adjacent mucin molecules resulting in a poly-
meric sheet of mucus.

In the battle to maintain homeostasis within the
host during Eh infection, the host responds to degra-
dation of mucin and presence of a threat by evoking
mucus hypersecretion. This acts to repel the invading
pathogen from the epithelial surface. This responsibil-
ity is executed by colonic goblet cells that produce and
secrete MUC2 mucin via regulated exocytosis. The
absence of MUC2 in the intestinal epithelium leads to
excess gross pathology and serum albumin leakage
during Eh infection.14 This is directly coupled to exag-
gerated pro-inflammatory gene expression and cyto-
kine secretion, particularly TNF-a, IFN-g and IL-13.
Additionally, inhibition of glycosylation of mucin
within goblet cells renders the epithelium sensitive to
Eh cytopathic effects and monolayer destruction.15

Therefore proper regulation of mucin secretion by
goblet cells during Eh pathogenesis is critical. Eh is
known to induce massive mucin hypersecretion dur-
ing infection similar to other known secretagogues
such as cholera toxin.16 This leads to the cavitation of
goblet cells and mucin depletion, rendering the epithe-
lium sensitive to invasion by Eh. This event is driven
primarily through EhCP5 that interacts directly with
its cognitive receptor avb3 integrin on colonic goblet
cells.17 A signal transduction cascade consisting of
SRC family kinase, PI3K, and PKCd ultimately leads
to the activation of the mucin vesicle marker myris-
toylated alanine-rich C-kinase substrate (MARCKS)
affording mucin exocytosis (Fig. 1).

Antimicrobial peptides and the microbiota

A key protective mechanism elicited by epithelial cells
of the intestine is the production and secretion of anti-
microbial peptides. Eh contact with host cells induces
the expression of human defensin 2 through TLR2
and TLR4 canonical NF-B signaling. This leads to
secretion of the active cationic peptide and
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ultrastructural alterations in exposed Eh characterized
by discontinuous zones of plasma membrane and rup-
tured areas where cellular material is released.18 Inter-
estingly, Eh was less susceptible to defensin killing
compared with bacteria likely due to lipid composition
of the plasma membrane and rapid turnover of surface
molecules. Eh contains highly charged LPPG glyco-
conjugates, a component that discriminates between
virulent Eh and non-virulent E. dispar.19 Additionally,
Eh induces the expression of cathelicidin (LL-37) in
both human cultured cells and a mouse model of ame-
bic colitis. The role cathelicidin plays in Eh pathogene-
sis remains unclear as, unlike many bacterial
pathogens, Eh are resistant to cathelicidin killing.
Interestingly, Eh can cleave cathelicidins through cys-
teine proteases, specifically EhCP1. These proteolytic
cleavage fragments retain their antimicrobial activity
against susceptible bacteria. Despite Eh targeting cath-
elicidins for degradation, this is not the mechanism of
resistance, as inhibition of cysteine proteases did not

render Eh sensitive to killing. It would be interesting
to decipher if cysteine protease cleavage by Eh pro-
cesses antimicrobial peptides into smaller active frag-
ments and the relative effect on the microbial
communities within the host. With several other
pathogens, perturbation of the commensal communi-
ties can render the host more susceptible to infec-
tion.20 An additional role for antimicrobial peptides in
pathogenesis is through the chemoattractant proper-
ties they possess for neutrophils, monocytes, T cells
and eosinophil’s which is mediated through the formyl
peptide receptor-like 1 receptor.21,22

The interplay between pathogenic bacteria and Eh
has been studied from the observation that co-infec-
tion is common in endemic areas. Indeed, co-infection
with enteropathogenic bacteria and Eh may enhance
invasive disease within the intestine. This can be
driven by either Eh ingestion of pathogenic bacteria or
the prior alteration of the inflammatory state of host
cells by pathogenic bacteria. Eh co-cultured with a

Figure 1. Entamoeba histolytica interactions with the mucosal barriers (clockwise). During Eh invasion the parasite degrades the protec-
tive mucus layers and evoke mucus hypersecretion from goblet cells (GC). By interacting with epithelial cells directly, Eh induces a pro-
inflammatory responses driven by NF-B and later perturbation of the tight junction proteins to stimulate water and ion secretion. The
epithelial barrier is then breached by cytolysis of epithelial cells allowing Eh to migrate in the lamina propria degrading the extracellular
matrix (ECM). Here, Eh interacts with the immune compartment specifically macrophages where either Eh death will occur through
NO-dependent killing or Eh will establish chronic disease.
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commensal E. coli increase the surface expression of
Gal/GalNAc lectin and display increased adherence to
host cells.23 This is further enhanced if the feeder bac-
teria are pathogenic such as Enteropathogenic E. coli
or Shigella. Interestingly while EPEC is nonviable
once ingested, Shigella retains about 70% viability after
phagocytosis by Eh, an effect that is limited to Eh and
not E. dispar. As one might expect, increased adher-
ence to host cells also leads to increases in the cyto-
pathic effect of Eh induced monolayer destruction
however, this was limited to Eh that have ingested
pathogenic and not commensal bacteria. Increases in
cysteine proteinase activity were also observed in Eh
that ingested pathogenic bacteria.

The intestinal microbiota likely plays a role in dis-
ease pathogenesis either through direct interaction
with Eh or modulation of the host epithelium. Altera-
tions in the host microbiota have been observed in
patients infected with Eh including suppression of
Clostidium, Bacteroides, Lactobacillus, Campylobacter
and Eubacterium with an expansion of Bifdobacte-
rium.24 Interestingly, susceptibility to Eh infection can
be predicted to a 79% accuracy based on analysis of
microbiota distribution in the host.25 Several taxa that
are strongly associated to a facilitative microbiota to
allow for Eh infection have been linked to autoim-
mune disorders and exacerbating a pro-inflammatory
state in the intestine including Prevotella copri. There
is a direct correlation between Eh burden in infected
individuals and abundance of P. copri in endemic
areas of amebaisis.26 Specific components of the host
microbiota may also educate the intestinal epithelium
to subvert Eh infection. In a mouse model of Eh infec-
tion, colonization with segmented filimentous bacteria
(SFB) has been shown to have a protective effect on
Eh infection through inducing IL-23 leading to induc-
tion of IL-17 and increases in DC and neutrophil
abundance in the cecum.27 The importance of this in
human disease however remains to be elucidated, as
SFBs in humans is controversial.

Epithelial cell responses and IL-8

As epithelial cells are the first cells too encounter an
invading pathogen, they produce various pro-inflam-
matory cytokines to alert professional immune cells of
danger such as IL-1b, IL-8 and TNF-a. Particularly,
IL-8 functions as a chemoattractant to neutrophils
recruiting them to sites of infection during acute

inflammation. Therefore cytokines such as IL-8 likely
mediate inflammation and tissue injury during Eh
infection. The role of IL-8 during Eh pathogenesis
appears to be a deleterious one, as neutrophils are
unable of kill Eh at a ratio of 3000:1 and the host may
actually be more severely damaged by the presence of
neutrophils at the site of infection.28 Specifically, intes-
tinal epithelial cells evoke a pro-inflammatory
response characterized by IL-1b and IL-8 that results
in neutrophil recruitment and tissue damage.29 Inhibi-
tion of NF-B p65 subunit or depletion of neutrophils
results in lesser disease and abrogated intestinal per-
meability. Not surprisingly, Eh can stimulate both
IL-8 mRNA and protein secretion from epithelial cells
via both a contact dependent and independent event.30

Eh can evoke up regulation of IL-8 from a contact
independent mechanism via secreted products how-
ever; Eh lysates possess this induction as well. This
was not due to cellular damage or paracrine signaling
by other cytokines such as IL-1b or TNF-a. Instead,
Eh derived PGE2 drives IL-8 mRNA expression via
the EP4 receptor.31 This event could be blocked almost
entirely with delipidation of Eh secreted products, the
broad cyclooxygenase inhibitor aspirin or silencing of
the EP4 receptor (Fig. 1). Alternatively, Eh cysteine
proteases can increase the expression of IL-8 however,
this occurs independent of the protease-activated
receptor 2 (PAR2).32

Cysteine proteases have emerged as critical viru-
lence factors in Eh pathogenesis. This stems mainly
from observations that attenuation of protease activity
with E64 or silencing of EhCP5, the predominant CP
that is secreted, leads to reduced gut inflammation,
damage to the barrier and Eh that are unable to form
liver abscess.33,34 Additionally, EhCP5 is absent in the
non-pathogenic E. dispar.35 EhCP5 contains an RGD
binding domain that interacts with avb3 integrin on
colonic cells to trigger NF-B pro-inflammatory gene
expression such as IL-8.36 This occurred through
integrin-linked kinase mediated phosphorylation of
AKT and lead to ubiquitination of NF-B essential
modulation (NEMO) and downstream activation of
NF-B. Interestingly, this event could be driven by
purified EhCP5 and was independent of protease
activity indicating a form of pathogen sensing by
integrins. By no means is the involvement of NF-B
deleterious to the host during Eh pathogenesis as tar-
geted deletion of the p50 subunit of NF-B which abro-
gates signaling, leads to a worsened outcome.37
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However there appears to be a bias toward nonclassi-
cal NF-B signaling as epithelial specific IKKb KO
mice manage Eh similarly to WT and are not more
susceptible to infection. Alternatively, Eh may control
the level of NF-B signaling by inducing epithelial cells
to increase the expression of heat shock proteins.38

HSP27 and HSP72 have been shown to dampen NF-B
induced pro-inflammatory gene expression by inter-
acting directly with IKKa and IKKb, ultimately allevi-
ating oxidative and apoptotic injuries.

The chemotactic activity of IL-8 does not fully
explain the repertoire of immune cells that are
recruited to the site of Eh infection, particularly
monocytes and lymphocytes. Accordingly, Eh can also
induce epithelial cells to release the monocyte chemo-
tactic protein MCP-1 through non-classical NF-B sig-
naling mediated by PI3K.39 Other chemokines such as
GMCSF have proved pivotal in controlling intestinal
amebiasis. This can be induced by serum amlyoid A
and segmented filamentous bacteria through upregu-
lation of CSF2RA expression and granulocyte mono-
cyte precursors in the bone marrow.40 Consequently
Eh responds by producing secreted products that
inhibit the chemotaxis and random mobility of mono-
cytes, thus masking this detection mechanism.41 Eh
also responds to various cytokines by following the
chemotactic gradient toward the source of the chemo-
kine. Specifically, IL-8 is able to bind to a surface
receptor on Eh that shares homology with CXCR1
and orchestrate movement of the actin/myosin cyto-
skeleton to initiate migration. Additionally, Eh con-
tains a BspA-like family protein with high homology
to the leucine rich repeats of TNF receptor 1 and toll-
like receptors that affords chemotaxis toward TNF-
a.42 This occurs via a PI3K dependent mechanism
resulting in reorganization of the actin cytoskeleton
and up regulation of the Eh adhesin Gal/GalNAc
lectin.43 Silencing of this TNFR1 analog, CSP, attenu-
ated the ability of Eh to penetrate the colonic barrier
and migrate into the lamina propria of human
explants.

Tight junction permeability and ion secretion

Loss of integrity of the epithelial tight junction (TJ)
barrier precludes cell death, with a decrease in the
transepithelial resistance (TER) occurring indepen-
dent of cell lysis. Instead, Eh appears to modulate the
junctional complex to increase paracellular

permeability. This event coincides with release and
degradation of ZO1 along with the release and
dephosphorylation of ZO2.44 The molecular signaling
cascades responsible for paracellular permeability
remain elusive, as pharmacological inhibition using
various inhibitors does not prevent leakage. This event
may instead be driven by perturbation of the host
cytoskeleton. Ultimately this change in paracellular
permeability results in electrolyte and water imbalan-
ces resulting in diarrhea. Another mechanism by
which Eh may modulate epithelial permeability is
through PGE2 production. Following infection of the
colonic mucosa, Eh induces a 10-fold increase in
PGE2 at the site of inflammation.45 In addition to
inducing host cells such as epithelial and mononuclear
cells to produce PGE2, Eh possesses the COX-like
enzymes to produce the prostanoid itself in the pres-
ence of arachidonic acid.31 Indeed, PGE2 regardless of
the source is able to perturb the TER of the epithelial
barrier by signaling through EP4 to displace claudin-
4.46 As a consequence, paracellular leakage of chloride
into the lumen drives water culminating in diarrheal
disease (Fig. 1).

Specific virulence factors within Eh also home to
the tight junctions such as the EhCPADH112 com-
plex. This complex is composed of the EhCP112 cyste-
ine protease and EhADH112 adhesin and can
specifically bind to occludin, claudin-1, ZO1 and ZO2
thereby targeting these tight junction proteins for deg-
radation. This leads to the rapid loss of TER and
increases paracellular permeability.47 Additionally, Eh
contains an occludin-like protein which possibly func-
tions to displace the host TJ occludin resulting in a
decrease in TER.48 The expression of TJ proteins has
been studied in the context of a mouse colonic loop
model using control animals and also mice lacking a
bonafide mucus layer. During acute infection with Eh,
WT animals increase the expression of occludin
whereas mice lacking a mucus barrier increase the
expression of the claudin-2 leading to greater paracel-
lular permeability.14 This effect was driven largely by
cysteine proteases as pre-treatment of Eh with E64 or
antisense-targeting EhCP5 diminished the increase in
gene expression of claudin-2 and occludin. Ultimately
alterations of TJ proteins lead to a tremendous influx
of serum albumin and water into the lumen of the
colon. Anion transport, particularly chloride, has been
shown to drive diarrheal disease through serotonin
that is produced by Eh.49 Characteristic of a neuronal
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peptide, this effect was specific to the serosal side of
the tissue. In addition to detection of serotonin in Eh
lysates, neutralization of Eh serotonin by antibodies or
desensitization by pre-treatment of bufotenine abol-
ished the effects on ion transport and short circuit cur-
rent. This occurs through both a calcium dependent
mechanism and cAMP activation of CFTR.50 Eh
lysates could also exacerbate this effect by inhibiting
sodium and chloride absorption.

Invasion into and beyond the epithelial barrier

Eh exerts a cytopathic effect on a variety of different cell
types including both immune and epithelial cells as part
of its pathogenesis. Cytotoxicity of an activated macro-
phage will ensure survival whereas direct killing of
epithelial cells will allow for passage deeper into the
mucosa. It is clear that the cytotoxicity that Eh inflicts
on host cells is contact dependent, specifically mediated
by the Gal/GalNAc lectin. Addition of exogenous galac-
tose or GalNAc inhibits the cytopathic effect however
Gal/GalNAc lectin may induce cytopathic effects in
addition to providing adherence.51 A critical virulence
mechanism to subvert immune detection of the invad-
ing parasite is phagocytosis of apoptotic cells. The
importance of phagocytosis in Eh pathogenesis derived
from the observation that phagocytosis deficient clones
of Eh were less virulent.52 A microarray analysis identi-
fied 121 genes that are important to Eh phagocytosis,
specifically gene clusters relating to actin binding and
cytoskeletal organization.53 Interestingly, pre-exposure
to a phagocytosis stimulus enhanced subsequent phago-
cytosis potential suggesting a feed-forward regulation of
genes related to phagocytosis. Apoptosis of host cells
precedes phagocytosis and is mediated by exposure of
host cell phosphatidylserine.54 Although annexin V
masking of phosphatidylserine on erythrocytes can
greatly inhibit phagocytosis, this effect is not seen with
nucleated cells such as T cells suggesting other apoptotic
markers may facilitate this event.55 The Eh receptor that
recognizes apoptotic markers on host cells may be part
of the large family of Eh trans-membrane kinases
(TMK).56,57 Additionally, there is support for the serine
rich Eh protein (SREHP) on facilitating Gal/GalNAc
lectin independent phagocytosis of apoptotic host cells
given the 90% inhibition using a specific monoclonal
antibody.58 Opsonization of apoptotic cells by C1q can
also occur whereby Eh calreticulin acts as the surface
receptor to initiate phagocytosis.59 During engulfment

of host cells by Eh, F-actin and myosin 1B localizes to
the phagocytic cup to facilitate ingestion. Perturbation
of actin polymerization or overexpression of myosin 1B
disrupts the phagocytic activity of Eh. Cholesterol also
participates in engulfment as seen through an enhance-
ment in phagocytosis, likely through sequestering Gal/
GalNAc lectin in lipid raft domains in the plasma mem-
brane at the site of uptake.60,61 Instead of cholesterol
loading effecting the abundance of Gal/GalNAc lectin
on the surface of Eh, it is likelymore a sequestering effect
to produce a highly enriched region of receptors that will
facilitate a more localized synapse with the host cell.62 In
addition to increasing the avidity of binding between Eh
and the host cell, this will lead to stronger potentiation
of intracellular signal cascades, specifically RabGTPases.

A recent mechanism of Eh invasion into the epithe-
lium and cell killing has emerged coined Eh trogocyto-
sis, whereby Eh will ingest small fragments of the
plasma membrane of host cell.63 Trogocytosis shares
similarities to Eh phagocytosis of cells including
EhC2PK, a C2 domain containing protein kinase that
initiates the phagocytic cup and actin recruitment.64

Not surprisingly, interference with the cytoskeletal
and microfilament network within Eh also inhibited
trogocytosis. Host cells that were nibbled on also expe-
rienced irreversible intracellular calcium increases
(Fig. 1). This is in accordance with prior studies that
identified inhibitors or chelators of calcium as block-
ing the cytotoxicity of Eh. The effector for driving this
calcium flux may be the Gal/GalNAc lectin as purified
lectin and fixed Eh are both able to induce calcium
flux in target cells.65 Eh also induces apoptosis of host
cells by activating caspase 3 in a contact-dependent
manner.66 Mice deficient for caspase 3 resist intestinal
colitis by Eh and other caspases such as caspase 8 and
9 are not involved.67 The receptor that induces this
fast activation of caspase 3 has not been identified
however Fas and TNF-a receptor do not play a role.68

A possible effector for driving caspase 3 activation was
identified by an RNAi screen where ion transporters,
specifically potassium (K(C)), were found to be
involved in Eh cell killing.69 Given low cytosolic KC
concentration can mediate both apoptosis and caspase
activation, KC efflux induced by Eh appears to be crit-
ical in cell killing and pathogenesis. Additionally, the
adipocytokine leptin appears to regulate Eh-induced
cell death in epithelial cells. Overexpression of the lep-
tin receptor or addition of exogenous leptin is protec-
tive from Eh induced apoptosis.70 Leptin signaling is
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dependent on STAT3 and functions through regula-
tion of apoptotic gene expression. In a mouse model
of amebiasis, genetic deletion of the leptin receptor in
intestinal epithelial cells rendered the host susceptible
to Eh infection.71 In humans, a mutation in the leptin
receptor (Q223R) increases susceptibility to amebia-
sis.72 When this polymorphism is expressed in mice a
similar susceptibility to Eh intestinal amebiasis is
observed resulting in increased caspase 3 activity, and
decreased antiapoptotic gene expression.

The extracellular matrix (ECM) provides a scaffold
for the intestinal epithelia and is composed primarily
of collagen. The ECM is divided into 2 compartments,
a basement membrane comprising a tight meshwork
that underlay the epithelial layer and a looser
3-dimensional interstitial collagen fiber network
underneath that supports the lamina propria. After
breaching the epithelial layer, Eh must navigate
through this ECM as a precursor for amebic ulcer for-
mation within the mucosa/submucosa and dissemina-
tion into extra intestinal sites. Eh is able to degrade
the collagen network through cysteine proteinase
activity and non-virulent strains of Eh lack collageno-
lytic activity.73 However, it is more likely that instead
of completely degrading the collagen network within
the ECM, Eh remodels the collagen fibers to increase
the porosity of the matrix in a cysteine proteinase
manner. This would suggest that if amoeboid move-
ment through the matrix is too restrictive due to the
large size of Eh or tightness of the matrix, Eh might
deploy cysteine proteinases to facilitate pore forma-
tion. Interestingly, human factors appear to play a role
in EhCP5 dependent collagen remodelling, specifically
human matrix metalloproteinases (Fig. 1; MMPs).
These MMPs are transcriptionally regulated by pro-
inflammatory cytokines that have been characterized
during Eh infection such as TNF-a and IL-1b and are
also overexpressed in patients with amebiasis.74 These
MMPs are secreted as inactive proform molecules
whose activation state depends on other MMPs or
host proteases. EhCP5 can directly cleave latent
MMP-3 into the active form, resulting in downstream
cleavage of MMP-1.75 In a vicious feedback loop, Eh
can evoke further MMP expression through EhCP5-
NF-B pro-inflammatory gene expression and readily
activate MMPs leading to ECM remodelling and tissue
invasion. Interestingly, once Eh has penetrated into
the lamina propria where the ECM network is more
porous, it does not need protease dependent migration

and may turn off this virulence mechanism to
avoid detection by immune cells. This environment
would favor an amoeboid or bleb-like migration
that is controlled by instability of intracellular pres-
sure and executed by the actomyosin contractile
machinery.76 Specifically, myosin II has been impli-
cated in Eh motility and also has roles in inducing
cytotoxicity.77,78

Another form of Eh migration has been postulated
from the observation that following fibronectin treat-
ment Eh sequesters actin in a dot-like compartment
analogous to invadosomes.79 Invadosomes are found
in transformed cells that exert migration through the
ECM by degradation. This process is highly influenced
by growth factors and ECM cues that are largely
sensed by host integrins. Eh has been implicated in
possessing a fibronectin receptor that is antigenically
similar to human b1 integrin.80 This fibronectin
receptor participates in the formation of actin rich
dots within Eh in a Rab21 GTPase dependent man-
ner.81 This event was positively regulated by fibronec-
tin, inducing membrane protrusions and negatively
regulated by collagen type I resulting in smooth Eh.
Accordingly, Eh can bind to various ECM compo-
nents such as fibronectin and collagen via lipid rafts.82

Inhibition of Gal/GalNAc lectin binding to collagen
suppresses actin dot formation however this was not
observed with fibronectin. This constitutes a model
where biogenesis of invadosomes is induced by fibro-
nectin with Gal/GalNAc lectin as a co-stimulatory
molecule. This model has not been validated in an in
vivo model of Eh invasion however. In support of
invadosome mediated migration with extensive ECM
degradation, Eh possesses 86 genes encoding proteases
including 22 metalloproteases.83 The role these Eh
metalloproteases play in pathogenesis has not been
explored yet.

Eh virulence factors and interactions with
immune cells

Perhaps the best-studied virulence factor within Eh is
the Gal/GalNAc lectin that mediates attachment to
host cells. Early studies demonstrated that Eh contact
with host cells, immune cells and intestinal mucus
could be inhibited by exogenous galactose and
GalNAc while other carbohydrates had no effect. This
adherence was mediated by a disulfide bridged
dimeric lectin consisting of a heavy (170kDa) and light
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subunits (35kDa) that was heavily cysteine rich in the
carbohydrate binding region (CRD).84,85 The active
site of this CRD was mapped using monoclonal anti-
bodies to resides 596–1082 of the heavy chain.86 The
170kDa subunit of Gal/GalNAc lectin is highly tar-
geted by the humoral response in patients previously
infected with Eh with more than 90% having immune
sera against this antigen.87 Despite this, acquired
immunity from Eh infection is likely more skewed to a
cell-mediated mechanism than humoral. Accordingly,
reinfection with Eh is extremely low in endemic areas
possibly due to anti-Gal/GalNAc lectin antibodies and
thus this antigen presents as a suitable target for vac-
cine development. In a gerbil model of amebic liver
abscess, fusion proteins derived from Gal/GalNAc lec-
tin as a vaccine conferred up to 81% protection.88 The
causation of this is largely unknown however interest-
ingly Gal/GalNAc lectin appears to have a mitogenic
effect stimulating lymphocytes from previously immu-
nized animals or infected humans to proliferate and
produce IL-2 and IFN-g.89

Soluble Gal/GalNAc lectin has the ability to
stimulate TNF-a production from naive macro-
phages and can be inhibited with specific monoclo-
nal antibodies against the CRD of the Gal/GalNAc
lectin.86 TNF-a is primarily released from activated
macrophages and can induce both cell proliferation
and apoptosis of target cells, act as a chemoattrac-
tant and upregulate other pro-inflammatory cyto-
kines. In IFN-g primed macrophages, native
Gal/GalNAc lectin simulated both TNF-a and
iNOS mRNA expression. This coincided with an
increase in TNF-a secretion and NO production
that lead to macrophage killing of Eh tropho-
zoites.90 TNF-a can also act directly on Eh by
inhibited the growth rate without inducing any
cytotoxic effects.91 Secretion of TNF-a is not purely
beneficial however, as this cytokine has been shown
to exacerbate tissue damage during Eh infection
and increase permeability of the barrier.92 Intrigu-
ingly there is an direct correlation to TNF-a levels
in patients previously infected with Eh that devel-
oped diarrheal disease compared with those that
were asymptomatic.74 Isolated PBMCs that pro-
duced the highest levels of TNF-a correlated with
patients with increased risk of first and recurrent
Eh diarrheal episodes.

Gal/GalNAc lectin may also contribute to induction
of inflammatory responses through upregulating PRR

expression, specifically TLR2 on macrophages. Puri-
fied Gal/GalNAc lectin was found to act through p38
MAPK to activate NF-B signaling and increase TLR2
mRNA and surface expression.93 Upregulation of
TLR2 and TLR4 by Gal/GalNAc lectin was later
shown to occur in epithelial cells through the classical
MyD88 signaling cascade culminating in NF-B induc-
tion.23 This is analogous to pathogenic bacteria signal-
ing though PRR to increase the expression of TLR2/4
and co-infection may render the epithelium more
responsive to such PAMPs. Interestingly, the CRD of
the Gal/GalNAc lectin was shown to directly interact
with TLR4, likely due to the N-linked glycosylation of
the receptor.94 During infection when Eh Gal/GalNAc
lectin upregulated TLR expression on the cell surface,
Eh possesses a greater adherence potential. This
occurred in naive macrophages suggesting that this up
regulation of specific TLRs could skew the inflamma-
tory response to a protective Th1 response. Further,
by altering the expression of TLR2 on either epithelial
or immune cells, Gal/GalNAc lectin may change the
way the host responds to stimuli from commensal or
pathogenic bacteria.

In addition to the Gal/GalNAc lectin, Eh can stimu-
late TLR2/4 signaling through lipopeptidophospho-
glycan (LPPG). This cell surface molecule is
predominately composed of carbohydrates and is
immunogenic as most patients previously infected
with Eh have anti-LPPG immunoglobulins in their
sera.95 The structural composition of LPPG likely con-
tributes to pathogenesis as non-virulent strains vary in
their polysaccharide compared with virulent counter-
parts.96 This molecule is transferred to enteric cell
layers during pathogenesis following adhesion but
before alterations in the tight junction.97 LPPG
appears to have both anti-inflammatory and pro-
inflammatory effects on macrophages and monocytes.
Exposure of monocytes to LPPG initially results in
secretion of TNF-a followed later by IL-12p40 and
IL-8.98 Macrophages appear to be more sensitive to
LPPG as a greater secretion was observed compared
with monocytes. Regardless, LPPG can signal through
both TLR2 and 4 by canonical NF-B signaling and
ablation of these receptors leads to attenuated TNF-a
and IL-6 release. The anti-inflammatory functions of
LPPG are to dampen TLR2 mRNA expression and
induce IL-10 from monocytes.99 This balance between
induction of a pro-inflammatory response character-
ized by TNF-a mediated NO killing by macrophages,
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IL-8 chemotaxis of neutrophils, IL-12p40 skewing to
Th1 T cell responses and immunosuppression by
IL-10 likely reflects the complexity of responses to Eh
infection. Indeed, minor alterations in how the host
responds to Eh through this cytokine concert could
begin to explain the variation in disease onset by indi-
viduals in a population. During infection with Eh and
while the host fights to maintain homeostasis by elicit-
ing amebicidal activity, Eh lysis is bound to occur.
This will indefinitely liberate Eh genomic DNA which
is unmethylated analogous to various other pathogens
and bacteria. This Eh DNA can signal similarly to
CpG DNA through TLR9 to activate NF-B and initiate
an inflammatory signaling cascade culminating to
TNF-a and iNOS production.100

Inflammasome activation

The innate immune system is tasked with sensing
countless microbial products within the gut and
responding with appropriate action to deal with the
threat while minimizing damage to the host. The
detection mechanisms discussed prior focused on
sensing specific molecular patterns within Eh products
to activate a pro-inflammatory response however,
does not discriminate between live and dead Eh. Spe-
cifically, Eh that have invaded into the colonic barrier
present the highest threat and require a vigorous
immune response to prevent further dissemination to
extraintestinal sites. Macrophages are likely first res-
ponders in the innate immune compartment as they
reside in the lamina propria and orchestrate a strong
pro-inflammatory response characterized by activa-
tion of the inflammasome and IL-1b secretion.101

Interestingly, activation of the NLRP3 inflammasome
in macrophages requires direct contact by Eh through
binding of Gal/GalNAc lectin. Patients with invasive
amebiasis typically have a strong antibody response
against Gal/GalNAc lectin and immune sera are suffi-
cient to inhibit contact and inflammasome mediated
IL-1b secretion. Soluble Eh components have no effect
on eliciting IL-1b secretions however, are sufficient to
prime macrophages and evoke non-inflammasome
mediated cytokine secretion such as TNF-a. The puta-
tive virulence factor that evokes inflammasome activa-
tion after contact is EhCP5 by binding to the a5b1
integrin on macrophages.102 Activation of a5b1 integ-
rin results in pannexin-1 mediated ATP release that
then signals back on the macrophage through P2£7

receptors to deliver the co-stimulatory signal neces-
sary for NLRP3 activation. This intimate contact event
mediated by Gal/GalNAc lectin forms an immune cell
synapse that potentiates signal transduction through
the actions of EhCP5. Inflammasome activation is also
dependent on potassium efflux as inhibition of KC
channel activity blocks caspase 1 activation, IL-1b
secretion and pyroptotic death in macrophages.69 Sur-
prisingly, inflammasome activation by Eh may coordi-
nate other inflammatory cytokine secretion as NLRP3
and ASC deficient mice failed to elicit IL-10, IL12p70
and MIP-1 secretion. It is likely that pathogen detec-
tion by inflammasome activation within macrophages
is a precursor for driving effector responses. While
calculated immune responses are critical to controlling
infection, Eh tampers with this balance to subvert the
host into mounting a more aggressive response. Spe-
cifically, Eh cysteine proteinases possess IL-1 convert-
ing enzyme (ICE) activity that can process inactive
pro-IL-1b that is released from dead cells into active
IL-1b. This Eh cysteine proteinase processed IL-1b
mimics the endogenously processed IL-1b by caspase-
1 and is able to induce nitrite production. Not all cas-
pase-1 cleavage products are processed similarly by Eh
however, as pro-IL-18 is proteolytically cleaved into
inactive fragments by EhCP5.103

Conclusion

Upon colonizing the colon of the infected host, Eh
likely changes its relationship within the host from a
non-pathogen to pathogen. This is likely driven by
interaction with the microbial communities and could
be driven by nutrient availability. Eh then targets the
mucus barrier for degradation using the glycans as a
food source and evoking mucin hypersecretion from
goblet cells. Upon mucin depletion, Eh contacts the
epithelial cells via the Gal/GalNAc lectin inducing
robust pro-inflammatory gene expression, release of
chemotaxic factors and antimicrobial peptides. The
subsequent cytolysis of the epithelial cells leads to a
barrier breach where Eh migrates into the mucosa.
Once reaching the lamina propria Eh induces macro-
phage activation, resists neutrophil killing and induces
massive pro-inflammatory cytokine release. The abil-
ity for Eh to establish in this niche will ultimately
decide if infection persists or if the host successfully
clears the parasite (Fig. 1).
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