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ABSTRACT
Understanding how intestinal enteropathogens cause acute and chronic alterations has direct
animal and human health perspectives. Significant advances have been made on this field by
studies focusing on the dynamic crosstalk between the intestinal protozoan parasite model Giardia
duodenalis and the host intestinal mucosa. The concept of intestinal barrier function is of the
highest importance in the context of many gastrointestinal diseases such as infectious enteritis,
inflammatory bowel disease, and post-infectious gastrointestinal disorders. This crucial function
relies on 3 biotic and abiotic components, first the commensal microbiota organized as a biofilm,
then an overlaying mucus layer, and finally the tightly structured intestinal epithelium. Herein we
review multiple strategies used by Giardia parasite to circumvent these 3 components. We will
summarize what is known and discuss preliminary observations suggesting how such
enteropathogen directly and/ or indirectly impairs commensal microbiota biofilm architecture,
disrupts mucus layer and damages host epithelium physiology and survival.
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Introduction

The extracellular protozoan parasite Giardia duodenalis
(syn. G. lamblia, G. intestinalis) causes giardiasis and
diarrheal disease in humans, livestock and companion
animals throughout the World. While acute giardiasis
may be responsible for diarrhea, intestinal malabsorp-
tion, abdominal pain and weight loss, recent evidence
also established that the infection can lead to chronic
disease and extra-intestinal complications.1,2 As an ani-
mal/human health concern, giardiasis joined the
“neglected diseases initiative” (established by theWorld
Health Organization) in 2007.3

Like most foodborne enteropathogens, Giardia
faces a multitude of hostile factors upon entering the
host. In the stomach, excystation of the dormant tetra-
nucleated cysts is initiated by gastric acid and pepti-
dases. Cysts with “weakened” cell walls pass into the
duodenum, where each releases a tetranucleated excy-
zoite, a process that is facilitated by Giardia’s own cys-
teine proteases.4 Each excyzoite quickly produces 2
binucleated trophozoites, the motile stage of the para-

site that divides by binary fission as it colonizes the
upper small intestine.5 Freshly released trophozoites
adhere to the epithelial cells of the upper small intes-
tine without invading tissues in most of cases. In the
gut, trophozoites interact with 3 distinct barriers,
namely the intestinal microbiota, the mucus layer, and
the epithelial barrier (Fig. 1). Despite important steps
toward the comprehension of the pathogenesis of giar-
diasis in the last decades, the pathophysiology of this
disease is still under investigations. Indeed, while the
epithelial dysfunctions during acute and chronic infec-
tions have been documented,6,7 the pathophysiology
of the gastrointestinal symptoms associated with
asymptomatic and symptomatic infections remains
obscure. In particular, to better characterize host-
Giardia interactions, more research needs to consider
the gut microbiome, the mucus layer and the epithe-
lium as separate entities forming selective barriers
against Giardia. First, trophozoites compete locally
with the commensal microbiome for nutrients and
ecological niches in the duodenal microenvironment.
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Resident bacteria play a role in the colonization of G.
duodenalis.8 Conversely, recent observations suggest
that Giardia also disrupts the microbiota during the
acute stage of infection, and the effects of giardiasis on
homeostasis may reach the large intestine.1,9,10 To
reach the epithelial surface, trophozoites must then
cross the mucus gel protecting the surface of the epi-
thelium from microorganisms, proteases and metabo-
lites. Trophozoites finally adhere to epithelial
microvilli using a ventral adhesive disk to resist lumi-
nal flow while accessing nutrients in the lumen.5

This review provides an update of current advances
on the mechanisms regulating this triple barrier in the
context of giardiasis. Moreover, the discussion illus-
trates how G. duodenalis constitutes an excellent
model to study the interactions of enteropathogens
with their microenvironement.

The gut epithelial barrier in giardia infections

Parasitic and host factors during Giardia-host cell
interaction

After excystation, newly formed trophozoites colonize
the upper parts of the small intestine by adhering to

the surface of the duodenal intestinal epithelial cells,
and replicate. In turn, infection leads to a partial or
severe disruption of the gut epithelial barrier without
provoking an overt inflammatory response. Tropho-
zoites adhere to the apical surface of IEC and take
advantage of luminal bio-available nutrients by pino-
cytosis.5 As a luminal protozoan, Giardia does not
invade the epithelial barrier. Recent observations have
suggested that under exceptional circumstances, Giar-
dia may invade the sub-epithelial space, between
enterocytes or at the base of goblet cells, but the find-
ings warrant further confirmation.11,12 This phenome-
non seems to be strain dependent, and is occasionally
observed in clinical conditions associated with muco-
sal injury.13,14

Trophozoites strongly attach to the microvilli
through a suction-based mechanism, involving their
ventral disk, flagellar movements, and a variety of
chemical bonds involving proteins, such as giardins,
lectins and variant surface proteins (VSPs).15 VSPs
belong to a widely varying cysteine-rich group of pro-
teins, and also contribute to host immune evasion
through antigenic variation.16 The antigenic variation
of VSPs, occurring by epigenetic mechanisms, may

Figure 1. Giardia interactions with gut triple barrier (microbiota, mucus, epithelium). a) characterization of intestinal barriers geographi-
cal distribution in mice immunostaining Colonic sections were stained with EUB-388 (bacteria; aDNA), WGA (mucus; Life Technologies)
and DAPI (epithelial cells; SIGMA). b) commensals are mostly organized in biofilms throughout the gastrointestinal tract. It has been
observed that this resident microbiota plays a role in host susceptibility to Giardia infection. Some commensals (ex: lactic acid bactaria)
even exhibit anti-giardial effects. In turn, Giardia has the ability to modulate commensals to pathobionts by inducing virulence factors
and also disrupting intestinal biofilms. The resulting shift of gut microbiota may help explain the production of post- infectious symp-
toms. c) To attach the epithelium, trophozoites must breach the mucus layer, which acts as a biochemical / physical barrier. Little is
known regarding the role of mucus during Giardia infection. Ongoing research indicates that Giardia’s proteolytic activity may disrupt
MUC2 mucin, the major constituent of intestinal mucus in humans; d) Trophozoites strongly attach to epithelial microvilli, and disrupt
the epithelial barrier. Disaccharidase deficiencies, diffuse microvillous shortening, arginine starvation, increased permeability, disruption
of tight junctions and enterocyte induced apoptosis have been associated with Giardia infection. Extracellular factors such as cathepsin
B-like cysteine proteases contribute to the parasite virulence by degrading CXCL-8 (IL-8) and inducing villin breakdown.
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contribute in some cases to the persistence of infec-
tion.17 Attachment of G. duodenalis to the epithelial
brush border is also mediated by lipid raft membrane
microdomains on trophozoites.18

Upon their arrival in the upper small intestine, sev-
eral cell-surface and extracellular factors contribute to
the establishment of trophozoites. Transcriptomic
studies revealed that after exposure to intestinal epi-
thelial monolayers, a set of genes coding for surface
proteins (VSPs and cysteine-rich proteins), attach-
ment proteins (giardins), cysteine proteases, and pro-
teins involved in the clearance of reactive oxygen
species were upregulated in several strains of G. duo-
denalis (WB, P-1, NF and GS/M).19,20 Likewise, intra-
and extracellular enzymes are synthesized by Giardia
following its contact with the host intestinal cells.21 In
particular, several parasitic extracellular products have
been identified by secretome analysis, including
metabolobic enzymes involved in arginine uptake and
putative enterotoxins.21,22 Giardia cathepsin B-like
proteases are upregulated during Giardia-intestinal
epithelial cells interaction and are implicated in excys-
tation.23 Cathepsin B-like cysteine proteases also
appear to regulate, at least in part, parasite virulence.
First, these cathepsins have the ability to cleave the
pro-inflammatory chemokine CXCL8 (IL-8) in gut tis-
sues, hence inhibiting neutrophil infiltration.24,25 Sec-
ond, Giardia cathepsin B-like proteases induce
myosin light chain kinase (MLCK)-mediated villin
breakdown and contribute to Giardia-induced micro-
biota toxicity.26,27 Findings from other reports suggest
that soluble factors secreted by colonic epithelial cell
lines are sufficient to up-regulate trophozoite mem-
branous and secreted proteins, such as cathepsin-B
precursors, cystatin and VSPs, independent of direct
parasite attachment.20,26 Despite very few virulence
factors have been identified and characterized in Giar-
dia to date, an unknown 58-kDa product released by
Giardia trophozoites has also been reported to induce
physiologic changes at mucosal surface. In particular,
this factor activates signal transduction pathways in
enterocytes leading to anion hypersecretion and intes-
tinal fluid accumulation.22

Short and long-term exposures to Giardia induce
significant changes in the gene expression in host
epithelial cells along with a regulation of signaling
pathways.28 In the presence of trophozoites, intestinal
epithelial cells secrete anti-parasitic factors that
contribute to the clearance of Giardia, such as

anti-microbial peptides (e.g. a- and b-defensins,
cryptdins), lysozyme and chemokines.29 Antimicrobial
peptides (AMPs) produced by intestinal epithelial cells
(IECs) are critical to intestinal mucosal defense against
enteropathogens.30 In addition, intestinal epithelial
cells exposed to Giardia produce matrix metallopro-
tease 7, a mediator known to activate a-defensin.31

The effects of Giardia on anti-microbial peptides,
either on its own or during co-infections with other
entropathogens, warrant further investigation.

Diffuse shortening of brush border microvilli
and malabsorption

One of the significant abnormalities observed in
symptomatic giardiasis is a diffuse shortening of brush
border microvilli, which reduces mucosal surface area
available for water, nutrient, mineral (iron and zinc)
and vitamin absorption (i.e. A and B12), electrolyte
transport, and digestion.32-40 Villous atrophy and
crypt hyperplasia have also been reported, but do not
seem to be required for Giardia-induced malabsorp-
tion.37,41 Decreased activity of brush border digestive
enzymes such as disaccharidases, and Na/D-glucose
malabsorption, are commonly associated with disrup-
tion of microvilli.36,42-44

Hypersecretion of chloride may also contribute to
diarrhea in giardiasis.38 In some cases, Giardia infec-
tion may induce the hypersecretion of bile, which,
when associated with lipid malabsorption may lead to
steatorrhea.45-47

Disaccharidase deficiencies and diffuse microvilli
shortening are mediated at least in part by activated
CD8C lymphocytes.36; 37,44 Indeed, in immunode-
ficient mice unable to produce T cells, the height of
microvilli as well as digestive enzyme activities did not
vary after Giardia infection when compared with con-
trols. Together, these observations demonstrate that
epithelial abnormalities in giardiasis are mediated by
parasites as well as host factors.

Intestinal permeability in giardiasis: A combination
of tight junctional disruptions, apoptosis, and
arginine starvation

During peak trophozoite colonization, giardiasis
increases intestinal epithelial permeability in humans
as well as in animal model systems.48,49 The alteration
of intestinal permeability is the result of Giardia-
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induced tight junctional protein alterations, epithelial
cell apoptosis, and starvation for L-arginine.7,29,50,51

The apical junctional complex (AJC) between enter-
ocytes constitutes a selective barrier protecting subepi-
thelial compartments from the luminal environment.
The AJC is mainly composed of tight junctions (TJ),
adherent junctions, and desmosomes.52,53 Giardia dis-
rupts the structure of the epithelium by breaking down
the AJC, hence increasing paracellular permeability
and decreasing transepithelial electrical resis-
tance.38,49,54-56 Giardia is known to alter the integrity
and rearrangements of several tight junctional ele-
ments, including zonula occludens-1 and 2 proteins
(ZO-1; ZO-2).38; 49; 55; 57,58 The rearrangement of ZO-1
is consistent with the elevation of intestinal permeabil-
ity induced by a broad range of enteropathogens.50 Epi-
thelial occludin and claudin-1 are also disrupted by
Giardia.38,57 Disorganization of apical filamentous
actin (F-actin) in the cytoskeleton, and rearrangement
of a-actinin further contribute to the disruption of the
AJC.36; 54; 57; 59,60 Moreover, a change in the spatial dis-
tribution of transmembrane proteins like desmocollin
has been observed at the level of epithelial desmo-
somes.54 Mechanistically, the relocalization of F-actin,
as well as disruptions of claudin-1 and ZO-1 seem to be
mediated by the apoptotic protease caspase-3,56 and
rearrangement of F-actin, ZO-1, and villin are myosin
light chain kinase (MLCK) dependent.49,61

It is now accepted that the gut barrier disruption
following enteropathogens infections is partly medi-
ated by the induction of epithelial apoptosis.50,62

Genes associated with apoptosis are upregulated in
epithelial cells exposed to trophozoites.28 Giardia acti-
vates caspase-3, caspase-8, caspase-9, and pro-apopto-
tic Bcl-2-associated X protein (BAX), while decreasing
the expression of the anti-apoptotic protein
Bcl-2.56,63,64 Poly (ADP-ribose) polymerase (PARP),
which is involved in programmed cell death, contrib-
utes to Giardia-induced host cell apoptosis.56,63 One
of the barrier parameters that may be regulated in
apoptosis-dependant fashion is the disruption of cellu-
lar ZO-1.56,62 In contrast, cleavage of villin induced by
Giardia cathepsin-like protease is independent of cas-
pase-3 activity.26 Therefore, in giardiasis, some of the
epithelial pathophysiology is apoptosis-dependent,
while some is not.

Other observations obtained in live animals indicate
that during the acute phase of infection,Giardia signifi-
cantly increases permeability and macromolecular

uptake through the small intestine, and leads to the
delayed recruitment of mucosal and connective tissue
mast cells.48 These changes may contribute at least in
part to the hypersensitivity reactions associated with
giardiasis, such as food allergies, urticaria, and post-
infectious irritable bowel syndrome. While important
observations have been generated from the use of ani-
mal models or studies in human patients, more
research is needed to establish the clinical significance
of these observations in the living host.38; 49,62

Cell proliferation in response to enteropathogenic
infection represents a critical mechanism of epithelial
renewal.65 Decreased expression of genes related to
cell proliferation has been observed following Giardia
exposure to human colonic cell lines.28,66 Further-
more, sodium– glucose transport proteins such as
SGLT-1 appear to play a protective role in enterocyte
apoptosis during the infection. Indeed, by enhancing
epithelial SGLT-1 activity and therefore increasing
glucose uptake, enterocytes try to protect against Giar-
dia-induced apoptosis.67

L-arginine is a precursor of nitric oxide (NO),
which acts as an antimicrobial compound, and a neu-
rotransmitter and mediator of peristalsis and sphinc-
ter actions in the mammalian intestine.68,69 L-arginine
is enzymatically converted into NO through the action
of 3 different nitric oxide synthases (NOS), nNOS
(NOS1), iNOS (NOS2) and eNOS (NOS3) which are
respectively neuronal, induced and endothelial types
of NOS.70 In enterocytes, NO is produced through
iNOS activity and released into the luminal environ-
ment, exerting anti-giardial effects. Indeed, in murine
models of giardiasis, NO contributes to the clearance
of G. duodenalis.71,72 The anti-giardial properties of
NO are not completely understood, and studies
showed that NO inhibits the proliferation of tropho-
zoites in vitro without killing them.73 However, the
cytostatic properties of NO prevent encystation and
hence serve to reduce the transmission of Giardia to
another host.21,73 During infections, Giardia con-
sumes host arginine, depleting enterocytes and pro-
moting their programmed cell death.73 Indeed,
arginine is one of the main sources of energy for Giar-
dia trophozoites for which it is auxotrophic, most
likely because this amino acid requires energy for its
synthesis.74 Giardia enzymes involved in arginine
metabolism, such as arginine deaminase, are upregu-
lated during the infection to allow efficient uptake by
the parasite. Moreover, arginine deaminase appears to
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contribute to antigenic variability by modifying
VSPs.75 Taken together, these observations indicate
that Giardia-induced host arginine depletion further
contributes to innate immune evasion through the
prevention of NO production and activation of argi-
nine deaminase-dependent antigen variability. Inter-
estingly, supplementation of arginine or citrulline was
suggested to promote the clearance of the parasite, as
it restored NO production and proliferation of entero-
cytes in vitro.76 In addition, arginine depletion has
deleterious effects on epithelial cells since it induces
apoptosis,77,78 causes villus shortening,79,80 and inhib-
its epithelial proliferation.76 Further research needs to
characterize whether and how Giardia-induced argi-
nine starvation may contribute to the loss of intestinal
barrier function during giardiasis.

The role of the mucus barrier during Giardia
infection

A thick mucus layer protects the luminal surface of the
entire gastrointestinal tract. Mucus acts as both a phys-
ical and chemical barrier. Its integrity is critical to pre-
vent foreign materials, commensal bacteria, and
enteropathogens from gaining access to the epithelial
cells and the underlying tissue, while at the same time
allowing for the passage of nutrients and providing
lubrication for moving food downstream.81,82 Intesti-
nal mucus is primarily composed of water and the large
glycoprotein mucin-2 (MUC2), which is produced by
specialized epithelial goblet cells. While the small intes-
tinal mucus has been described as a thin, loosely-
attached layer, colonic mucus is organized into a sterile
inner layer firmly adherent to the epithelium, and an
outer, more loosely-attached layer, which harbours
commensal microbial communities.82 In humans,
mucus thickness gradually increases from the upper
small intestine where it ranges from 150–300 mm, to
the colon, where its thickness is estimated at 900mm.83

To reach and attach to the epithelium, Giardiamust
first overcome the physical mucus barrier. Tropho-
zoites are highly motile via their flagella, but it has been
suggested that Giardia’s flagellar motion on its own
may not be sufficient to traverse the mucus barrier.84

Recent findings indicate that the movement through
the mucus may be facilitated by Giardia’s proteolytic
activity, which may disrupt MUC2 integrity to produce
a less viscous physical barrier.9,64 More research is
needed to characterize the effects of Giardia on the

mucus barrier. Other pathogens, including the proto-
zoan Entamoeba histolytica and the nematode parasite
Trichuris muris, have been found to secrete cysteine
and serine proteases, respectively, that aid in degrada-
tion of the mucus gel.85,86 Interestingly, Helicobacter
pylori, an opportunistic pathogen of the stomach,
secretes urease in its immediate surroundings to elevate
the pH of the mucus and therefore reduce its viscos-
ity.87 Although H. pylori possesses flagella for motility,
the added change in viscosity facilitates quick and easy
transport through the mucus layers. Additionally,
MUC2-deficient mice develop severe and life-threaten-
ing disease when exposed to Citrobacter rodentium,
and show significantly delayed clearance of
T. muris.8889 Infection with C. rodentium causes goblet
cell mucin depletion, leading to a thinner and more
porous mucus layer.90 The mechanisms that Giardia
may utilize to traverse the mucus barrier are still
unclear and require further elucidation. Furthermore,
the role of mucus in attenuating or aiding Giardia
infection remains under debate. In vitro studies dem-
onstrated that duodenal and jejunal mucus stimulated
the growth of trophozoites, while others reported that
mucin inhibited trophozoite attachment and prolifera-
tion.91,92 Earlier observations proposed that Giardia
may in fact adhere to mucus strands.93 Other studies
suggested that the mucus layer could itself be protective
for trophozoites, by preventing injury from exposure to
luminal products.94 The interactions of the mucus layer
and mucus-producing cells with Giardia have yet to be
fully explored.

The gut microbiota: A living barrier

Giardia-microbiota interactions in the gut

The gut microbiota is predominantly composed of 3
major phyla, namely Firmicutes, Bacteroidetes and
Actinobacteria, followed by 2 minor phyla, Proteobac-
teria and Verrucomicrobia.95 Its abundance and com-
position vary throughout the gastrointestinal tract
based on oxygen and pH gradients.96 While in the
small intestine the bacterial abundance varies from
101–3 in the duodenum to 107–8 in the ileum, the
microbial density reaches 1010–12 in the colon.97

The composition of commensal microbiota in the
gut influence the colonization by Giardia.8,41 The
mechanisms remain unclear, but research findings
indicate that the gut microbiota may modulate both
the susceptibility and the severity of giardiasis.44
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Animals with the same genetic background, but with
distinct microbiota, have varying susceptibility to
Giardia infection.8 Susceptibility to infection can be
restored by antibiotic treatment in mice that were pro-
tected. In co-housing, protected mice confer their
resistance against Giardia infection to susceptible
mice, suggesting a transfer of “protective”microbiota.8

Duodenal bacterial overgrowth has been reported in
subjects with symptomatic giardiasis in some studies,
but not in others.47; 98,99 Mucosal Giardia-specific IgA
secretion and Giardia specific serum IgM and IgG are
increased in conventional mice compare with germ
free controls, and these changes were associated with
reduced histopathology in germ-free animals.99 These
observations are consistent with the fact that germ-free
mice have an immature immune system, considering
that the gut microbiota plays an important role in
shaping host immunity.100 However, it was recently
observed that antibiotic treatment may protect against
disaccharidase deficiency in giardiasis.44 In that study,
the authors suggest that the microbiota may indeed
contribute to CD8C T cell activation and nutrient
malabsorption during giardiasis.44 A new model using
the nematode Caenorhabditis elegans recently demon-
strated that exposure to G. duodenalis makes human
gut microbiota toxic to the worm host.27 Human
microbiota treated with Giardia, but not the same
microbiota without exposure to the parasite, were
lethal to the nematode. Exposure of non-invasive E.
coli to extracellular metabolites from Giardia was suf-
ficient to make it lethal to C. elegans.27 Exposure to
Giardia and/or to C. elegans altered the expression of
a broad range of genes in E. coli, including some genes
that are involved in bacterial hydrogen sulfide metab-
olism,27 offering new avenues to investigate the inter-
actions of Giardia with host microbiota. In a recent
study comparing the human fecal microbiota of 20
subjects associated with the presence or absence of
several intestinal parasites (G. duodenalis, Entamoeba
spp., and Blastocystis hominis), Giardia-positive sam-
ples were associated with dysbiotic conditions, with an
increase of potentially harmful species such as Escheri-
chia coli and Enterococcus spp in the commensal
microbiota.101 Previous research had associated colo-
nization by enterobacteria with the development of
severe malabsorption during symptomatic giardia-
sis.102 Collectively, these results illustrate the capacity
of G. duodenalis to shape commensal microbial
communities.

Anti-giardial effect of commensals

Trophozoites and commensal microbiota compete for
the same ecological niches to colonize the small intes-
tinal microenvironement. Lactobacilli (Lactobacillus
genus) and more generally lactic acid bacteria are
some of the most common bacteria of the human
upper small intestine.103 Several studies have explored
the inhibitory effects of lactobacilli in giardiasis. For
instance, probiotic lactobacilli strains such as
L. johnsonii La1 (LjLa1), L. casei MTCC 1423, and L.
rhamnosus GG contribute to the clearance of
G. duodenalis in vivo by enhancing the host immune
response, restoring the integrity of the gut barrier, and
reducing cyst shedding and reducing the duration of
infection.104-108 The probiotic strain LjLa1 inhibits
trophozoite growth both in vitro and in vivo.106,109

A recent study revealed that this inhibitory effect is
mediated at least in part by the products of bile salt
deconjugation, through LjLa1s bile salt hydrolase
enzymatic activity.110 Other microorganisms are
known to exhibited anti-giardia properties, including
Enterococcus faecium SF68, Saccharomyces boulardii
(yeast), and even complex fermented milk products
containing lactic acid bacteria (Lactobacillus cremoris,
Lactococcus spp, Leuconostoc ssp, etc.) and yeast
(Sacharomyces cerevisae, Candida spp).111,112

The mechanisms underlying the strain-specific
anti-parasitic effects of lactic acid bacteria on Giardia,
and their immuno-modulatory aspects, remain
incompletely understood.113,114 In murine models of
giardiasis, L. rhamnosus GG stimulates the production
of anti-inflammatory cytokines (IL-10) and increases
Giardia-specific IgA, helping to restore mucosal integ-
rity, while also helping to eliminate the parasite.104 E.
faecium SF68 stimulates specific IgA and IgG secre-
tion, and induces a pro-inflammatory response.111

Other than acting on host immunity, these bacteria
compete for binding sites on the epithelial surface by
means of a variety of mechanisms. Recently observa-
tions indicate that a bacteriocin produced by the pro-
biotic strain L. acidophilus P106 significantly reduces
trophozoite’s burden in vivo by acting on host entero-
cyte structure.115 Regarding the anti-microbial proper-
ties of lactobacilli, several other factors should be
taken into account: (i) adhesion factors such as lipo-
protein and the adhesin B (L. acidophilus, L. johnsonii
and L. gasseri) which confer a better attachment to the
mucosa and a competitive advantage (ii) the ability of
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lactobacilli to detoxify bile via bile salt hydrolase activ-
ity, ensuring persistence in the bile-rich duodenum;
this is associated with the accumulation of deconju-
gated bile in the lumen, which is cytotoxic to tropho-
zoites,110 and (iii) competition for essential nutrients
for Giardia growth such as L-arginine, cholesterol,
purine nucleobases, and nucleosides.116 Finally, some
probiotic strains can influence the attachment of
entheropathogens via steric hindrance on enterocyte
receptors.117 Taken together, these observations
underscore the physiologically significance of the anti-
giardial effects that mucosal bacteria may exert on this
parasite. More research is required to unravel the
mechanisms through which Giardia trophozoites are
able to overcome this host protective phenomenon in
the gut.

Gut microbiota biofilms and post-infectious
complications

Recent findings have established that long after Giar-
dia has been eliminated from the host, post-infectious
complications may arise, in the form of failure to
thrive, stunting, cognitive deficiencies, allergies, arthri-
tis, Irritable Bowel Syndrome (IBS), and chronic
fatigue syndrome.1,118 Long-term gastrointestinal and
extra-intestinal complications affect at least 5% of
Giardia-infected humans.119 The mechanisms remain
obscure.

Intestinal mucosa-associated microbiota communi-
ties grow in multi-species biofilms adhering to the
mucosal surface, separated from the epithelium by the
double mucus layer.120,121 Patients with IBS harbour

dysbiotic gut microbiota.122 Recent research revealed
how Giardia alters human microbiota biofilm integrity
through a cystein-protease dependent mechanism
(Fig. 2) (Beatty et al.146). The findings indicate that
exposure of human gut microbiota biofilms to Giardia
induces the release of planktonic, swimming, bacteria,
that in turn may induce epithelial apoptosis, promote
bacterial translocation, and increase the production of
pro-inflammatory CXCL8 (Interleukin-8).146 These
alterations were dependent upon the release of cathep-
sin-like cysteine proteases by the parasite. Further
experiments performed in humanized germ free mice
showed that Giardia-modified human microbiota dis-
rupt epithelial barrier integrity, increase TLR-4
expression, and expand mucosal lymphoid aggregates
rich in CD45C B lymphocytes, a B-cell subset known
to cause inflammatory flares in patients with inflam-
matory bowel disease.123-127 Therefore, Giardia has
the ability to directly disrupt commensal gut micro-
biota. Giardia, similarly to other enteropathogens,
may activate latent virulence genes in commensal bac-
teria, disrupt the microbiota biofilm phenotype,27 and
promote the release of pathobionts from the commen-
sal biofilm.123,128 These effects may play a key role in
the development of post-infectious complications,
long after the inciting enteropathogen has been elimi-
nated by the host.

Polymicrobial infections

Polymicrobial infections have become a topic of great
interest in view of their importance on disease out-
come during infection, and their known impact on

Figure 2. Disruption of intestinal biofilm following Giardia exposure. Human microbiota biofilms from colonic biopsies were cultured ex vivo in
the Calgary Biofilm Device, and exposed to vehicle (Control) or to live Giardia trophozoites (G. duodenalis). G. duodenalis depletes microbiota bio-
films of their extracellular matrix coat. Representative Scanning Electron micrographs (13000 x magnification). Modified from Beatty et al.146

© Andre Buret. Reproduced by permission of Andre Buret. Permission to reusemust be obtained from the rightsholder.
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child health in developing countries.129 Polymicrobial
enteric infections are common in developing countries
with poor sanitation.39,130

Infections with G. duodenalis and other enteropah-
ogens most often arise from the ingestion of contami-
nated water and food. It is not surprising therefore
that giardiasis has been found to occur in concert with
other enteric pathogens and opportunistic pathogens,
including bacteria (Helicobater pylori, Clostridium dif-
ficile, Vibrio cholera, Escherichia coli, Campylobacter
sp, Tropheryma whipplei, Salmonella sp, etc.), viral
pathogens (norovirus and rotavirus), and other para-
sites (Hookworm sp, Ascaris sp, Cryptosporidium sp,
Cyclospora cayetanensis).131-141 Some reports suggest
that in children, polymicrobial infections involving G.

duodenalis may be more common than mono-
infections.41

Intriguingly, several human studies reveal an asso-
ciation between Giardia infections and a decreased
risk for developing acute diarrheal disease.64,142 For
instance, children cohorts in Tanzania and in Bengla-
desh infected with Giardia were found to have
reduced incidence of diarrheal disease and
fever.131; 143,144 The mechanisms remain incompletely
understood. A recent study investigated the role of
G. duodenalis cathepsin B-like cysteine proteases in
the attenuation of host inflammatory responses
induced by other gastrointestinal pathogens.25 Giardia
cathepsin-like proteases significantly attenuated the
production of pro-inflammatory responses induced by

Figure 3. Barrier disruption in giardiasis and post-infection consequences. (1) Consumption of arginine via high arginine deaminase
activity. Arginine starvation leads to an impaired secretion of anti-giardial Nitric Oxide (NO); (2) Giardia’s proteolytic activity (cathepsin-
B-like cysteine proteases) lead to (3) An impairment of commensal microbiota biofilms, (4) the cleavage of pro-inflamatory chemokines
(CXCL-8), (5) The disruption of MUC2 mucin integrity; (6) Diffuse shortening of brush border microvilli; (7) Disruption and/or rearrange-
ment of the apical junction complex (AJC) (ZO-1, ZO-2, claudin-1, claudin-4, occludin), filamentous actin (F-actin and a-actinin), and at
desmosomal level (desmocollin); (8) Bacterial and antigen translocation in the lamina propria; (9) Induction of pro-apoptotic factors cas-
pase-3, 8 and 9, BAX, PARP, and impairment of anti-apoptotic protein Bcl-2; (10) Immune response in giardiasis is reviewed in Einarsson
et al. 2016; (11) Toxic effects of pathobionts released by dysbiotic microbiota; (12) Paracellular translocation (13) Activation of patho-
genic endocrine and immunological signals.2
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exposure to either pro-inflammatory stimuli, such as
interleukin-1b, or to the enteropathogen Salmonella
enterica (serovar Typhimurium). Giardia inhibited
the Salmonella-induced inflammatory response by
degrading intestinal CXCL8 (IL-8).24 Direct inhibition
of intestinal inflammation was further demonstrated
when inflammatory signaling was triggered by Clos-
tridium difficile toxin, as well as in human biopsy tis-
sues from patients with IBS.25 These data offer strong
support to the hypothesis that Giardia may indeed
attenuate pathogen-induced pro-inflammatory
responses during co-infections, which in turn may
explain, at least in part, why Giardia infections can be
associated with a reduction of diarrheal disease in
countries with poor sanitation.64 Several questions
remain, specifically regarding how Giardia may mod-
ulate the release of antimicrobial peptides, and
whether or not the observed effects are assemblage-
specific.145

Conclusion

Intestinal parasites target tissues of the GI tract for
colonization and persistence within the intestinal
milieu. As a consequence, they are constantly battling
against the host’s immune response, mucosal defenses
and commensal microorganisms. Giardia has evolved
that capability to evade host immunity and disrupt
innate mucosal protective barriers. The release of pro-
teases such as cathepsin-like cysteine proteases allows
this parasite to attenuate local inflammatory
responses, to deplete mucus, and to disrupt commen-
sal microbiota biofilms (Fig. 3). Giardia’s arginine dei-
minase contributes to the modulation of the host’s
intestinal inflammatory responses (by attenuating NO
production). Giardia is also able to attenuate disease
outcome during polymicrobial infections at least in
part by dampening host CXCL8 signaling.64

More research is needed to characterize the mecha-
nisms whereby Giardia modifies microbiota and
mucus barriers during acute and chronic infections.
Likewise, the putative anti-giardial effects of mucin,
and the biologic factors by which resident bacteria
could influence Giardia infection warrant further
investigation. Recent epidemiological evidences have
shown that Giardia may lead to chronic post-infec-
tious gastrointestinal and extraintestinal disorders,
even after complete clearance of the parasite
(Fig. 3).1,2 Clinical manifestations of these

complications may occur several years following the
infection, and can either last for a few days or become
chronic. The post-infectious gastrointestinal disorders
reported following giardiasis share many similarities
with those associated with bacterial (E. coli, Campylo-
bacter jejuni, Salmonella sp, etc.) or viral (i.e., norovi-
rus) enteropathogens. Further research into the
mechanisms responsible for the intestinal barrier dis-
ruptions caused by Giardia, be it at the level of the
microbiota, the mucus, or the epithelium, will shed
new light toward novel clinical intervention strategies.
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