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Abstract

Clinically, Angiotensin II (Ang II) has been implicated in some forms of hypertension and linked 

to vascular injury. Experimentally, chronic Ang II infusion leads to an increase in blood pressure, 

resulting in impaired endothelial function and vascular hypertrophy. Ang II also upregulates the 

activity and expression of a number of inflammatory molecules, including nuclear factor kappa B 

(NFκB) and pro-inflammatory cytokines, such as interleukin-6 (IL-6). More recently, it has been 

reported that Ang II is associated with upregulation of toll-like receptor TLR expression, 

specifically TLR4. Classical TLR4 signaling is mediated in large part by the effector protein 

myeloid differentiation factor 88 (MyD88), with resultant activation of NFκB, a transcription 

factor that promotes expression of a number of inflammatory gene products, including IL-6. A role 

for IL-6 has been previously implicated in the vascular dysfunction associated with Ang II-

dependent hypertension. It is not known whether the MyD88 signaling pathway represents a 

cellular mechanism by which Ang II promotes endothelial dysfunction via NFκB activation and 

increases in IL-6. Taken together, we propose to mechanistically elucidate the role of innate 

immune signaling in Ang II-dependent hypertension. We hypothesize MyD88-deficiency will 

prevent the activation and transcription of NFκB-related gene products, including IL-6, thereby 

limiting Ang II-dependent hypertension and vascular complications.
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Introduction

Hypertension is a major risk factor for cardiovascular disease affecting nearly one in three 

adults in the United States (1). Angiotensin II (Ang II), the main effector of the renin-

angiotensin-system (RAS), is implicated in several forms of hypertension, including 
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essential and renovascular hypertension (2, 3). Experimentally, chronic Ang II infusion 

results in a sustained increase in blood pressure, endothelial dysfunction, and vascular 

hypertrophy. Ang II mediates its cardiovascular effects primarily through angiotensin II 

receptors, type 1 (AT1). AT1-deficiency limits the increase in blood pressure and endothelial 

dysfunction in response to Ang II infusion (4). Moreover, AT1 receptor activation increases 

reactive oxygen species (ROS), such as superoxide via increased NADPH oxidase 

expression and activity (5–10). Functionally, increases in vascular superoxide are important 

for a number of reasons. For example, superoxide activates redox sensitive transcription 

factors, including NFκB (11, 12). ROS, including superoxide have been linked to activation 

of the innate immune response, and ROS scavengers limit the production of pro-

inflammatory cytokines. Endothelial dysfunction is limited by the ROS scavengers Tiron 

and Tempol in mice infused with Ang II (13, 14). Similarly, transgenic expression of 

superoxide dismutase isoforms limits oxidative stress and endothelial dysfunction produced 

by Ang II (14). Taken together, there is strong pharmacological and genetic evidence linking 

AT1 activation with increases superoxide and vascular dysfunction.

In addition to promoting increases in ROS, Ang II increases expression of a number of 

inflammatory molecules, such as the pro-inflammatory cytokines TNF-α, IL-6, IL-1β, and 

IL-17 to name a few (15–18). Clinically, levels of IL-6 have been positively correlated with 

blood pressure (19). Furthermore, increased IL-6 levels are associated with end-organ 

damage in hypertensive subjects (20–22). Experimentally, IL-6 deficiency is protective 

against endothelial dysfunction as well as vascular hypertrophy produced by Ang II, 

suggesting a critical role for inflammation in vascular impairment (23–25). Thus, IL-6 

appears to have an important role in the development of hypertension and endothelial 

dysfunction. Although immune signaling appears to be involved to varying degrees in the 

development and maintenance of hypertension, few interventions directed at the 

inflammatory response have been studied for the treatment of high blood pressure. We 

hypothesize MyD88 signaling plays an essential role in the vascular complications seen in 

Ang II-dependent hypertension. Therefore, we propose MyD88-deficiency will limit the 

activation and transcription of NFκB-related gene products and prevent Ang II-dependent 

hypertension and vascular complications.

The Hypothesis

Adaptive Immunity in Hypertension

Emerging evidence has begun to implicate a role for the adaptive immune system in the 

pathology of hypertension (26–31). The idea of the immune system playing a role in the 

development of hypertension first came from the observation that the thymus was necessary 

for the late salt-dependent phase of hypertension in a DOCA-salt model (26). The 

importance of the thymus in hypertension was later studied in the spontaneous hypertensive 

rat (SHR), which develops high blood pressure with age. The increase of blood pressure in 

the SHR parallels immunological depression and diminished T-cell function (27, 28). 

Furthermore, hypertension was prevented in the SHR that were injected by thymus grafts as 

neonates (29). In addition, mice lacking both B- and T-lymphocytes (RAG1−/−) do not 

develop hypertension or endothelial dysfunction and vascular hypertrophy following Ang II 
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infusion (30). However, with the adoptive transfer of activated T-lymphocytes, but not B-

lymphocytes, Ang II-dependent hypertension and vascular dysfunctions are restored (30). A 

large number of infiltrating T-lymphocytes and macrophages are found in the perivascular 

tissue of hypertensive animals, suggesting there is an initial innate immune response 

occurring locally in the vasculature. Classically, activation of the innate immune system is 

necessary for the stimulation of adaptive immunity. However, it is yet to be determined what 

specific innate immunity components are triggering T-lymphocytes in hypertension.

Evolutionarily, the innate immune system represents the body’s first line of defense against 

infection. Once activated by a foreign pathogen, antigen-presenting cells bind and activate 

leukocytes of the adaptive immune system to initiate an antigen-specific response. 

Phagocytes are the major cells to initiate this process. These include macrophages, 

neutrophils, and dendritic cells, all of which possess TLR’s. Initially, these cells will activate 

intracellular processes resulting in the transcription of pro-inflammatory cytokines. 

Exogenous and endogenous molecules, including Ang II, have been shown to activate TLR’s 

through binding recognition patterns.

Ang II and Inflammation

TLR’s are an essential part of the mammalian inflammatory response and are able to 

recognize and respond to foreign pathogens. Though most often considered the 

lipopolysaccharide (LPS) receptor, TLR4 can also be activated by endogenous molecules, 

such as heat shock proteins and fibrinogen (32). TLR4 is located on the cell surface of 

myeloid dendritic cells as well as peripheral and central macrophages. More recently, it has 

been shown TLR4 is present in atherosclerotic legions, suggesting a role in cardiovascular 

disease (33–35). In vitro experiments utilizing vascular smooth muscle cells demonstrate 

Ang II increases TLR4 expression (36). Clinically, TLR4 gene Asp299Gly polymorphisms 

decrease inflammatory responses and are associated with decreased vascular inflammation 

and a reduced risk for coronary artery disease (37–39). Our laboratory has preliminary data 

showing that the loss-of-function point mutation in TLR4 limits endothelial dysfunction 

after chronic Ang II infusion (40). Taken together, this suggests detrimentally high levels of 

IL-6 in hypertensive patients may be derived through TLR4 signaling.

Several cytokines, including IL-6, are responsible for the development and progression of 

cardiovascular diseases, such as heart failure, atherosclerosis, and hypertension (20, 41–43). 

IL-6 production is not limited to macrophages but can be produced locally by endothelial 

cells and vascular smooth muscle cells (44, 45). Ang II increases expression of IL-6 in the 

vasculature in-vitro. Our laboratory has shown IL-6 deficient mice limited endothelial 

dysfunction and vascular hypertrophy in mice chronically infused with Ang II (23). 

Additionally, we have shown that an increase in vascular superoxide, in particular NOX2- 

derived superoxide, contributes to the endothelial dysfunction produced by IL-6 in Ang II-

dependent hypertension (13, 46). Taken together, these data suggest a role for inflammation 

in vascular pathophysiology in hypertension.
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MyD88 Signaling

TLR’s, with the exception of TLR3, signal primarily through the MyD88-dependent 

signaling pathway (47, 48). As an adaptor protein, MyD88 plays a crucial role in the innate 

immune system and in inflammatory responses, through activation of NFkB. Upon TLR4 

activation, the receptor’s intracellular domain binds with the homologous TIR domain of 

MyD88, initiating the recruitment cascade of IRAK’s and TRAF-6 (49, 50). This complex 

dissociates from MyD88 and causes the dissociation of IkB from NFkB to allow 

translocation to the nucleus and transcription of pro-inflammatory cytokines (51, 52). 

MyD88-deficient mice have little macrophage production or leukocyte proliferation in 

response to LPS (53). However, NFkB activation in MyD88-deficient mice occurs but with 

delayed kinetics (53). In addition to a suspended inflammatory response, there is evidence 

suggesting MyD88 deficiency protects against cardiovascular disease.

MyD88 deficiency limits vascular hypertrophy and the frequency of ascending aortic 

aneurysms in mice treated with Ang II (54). Though little has been done to relate 

hypertension to TLR4 signaling, we hypothesize MyD88- deficiency will limit endothelial 

dysfunction and vascular hypertrophy after chronic Ang II infusion.

Evaluation of the Hypothesis

Although initial evidence, including our own, has demonstrated TLR4 is expressed in 

vascular cells, no studies to our knowledge have examined the in vivo contribution of 

vascular TLR4 and MyD88 expression in the development of hypertension and related 

vascular sequale. Thus, we hypothesize that as a part of the innate immune response, 

MyD88 signaling contributes to the hypertension and endothelial dysfunction produced by 

Ang II (Figure).

We will test this hypothesis in TLR4- and MyD88-deficient mice made hypertensive by 

chronic Ang II infusion. We will assess blood pressure and vascular function as well as the 

ROS and inflammatory profiles of these mice. If our hypothesis is true, we predict that 

TLR4 and MyD88 deficiency will limit the development of hypertension and related 

endothelial dysfunction produced by Ang II. We predict NFkB translocation and levels of 

IL-6 will be decreased in TLR4- and MyD88-deficient mice relative to their respective 

controls after Ang II infusion.

If our hypothesis is correct, we predict that the reductions in blood pressure, endothelial 

dysfunction, and vascular hypertrophy through the loss of MyD88, would correlate with 

reductions in superoxide levels and, therefore improve endothelial function. Furthermore, we 

expect TLR4 expression and IL-6 levels will be the decreased in MyD88-deficient mice 

following Ang II infusion relative to wild-type mice. We hypothesize this decreased degree 

of inflammation will limit the vascular impairment seen in Ang II-dependent hypertension. 

Taken together, these results could lead to potential therapeutic approaches in the treatment 

of hypertension and its associated vascular dysfunction.
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Figure 1. 
Hypothetical scheme in which MyD88 plays an essential role in NFκB-related gene 

products, which results in endothelial dysfunction and vascular hypertrophy in Ang II-

dependent hypertension. Ang II increases TLR4 expression, however the mechanism of 

which is not clear. In addition, the AT1 receptor via Ang II increases NFκB activation.
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