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Abstract

Daily living activity monitoring is important for early detection of the onset of many diseases and 

for improving quality of life especially in elderly. A wireless wearable network of inertial sensor 

nodes can be used to observe daily motions. Continuous stream of data generated by these sensor 

networks can be used to recognize the movements of interest. Dynamic Time Warping (DTW) is a 

widely used signal processing method for time-series pattern matching because of its robustness to 

variations in time and speed as opposed to other template matching methods. Despite this 

flexibility, for the application of activity recognition, DTW can only find the similarity between 

the template of a movement and the incoming samples, when the location and orientation of the 

sensor remains unchanged. Due to this restriction, small sensor misplacements can lead to a 

decrease in the classification accuracy. In this work, we adopt DTW distance as a feature for real-

time detection of human daily activities like sit to stand in the presence of sensor misplacement. 

To measure this performance of DTW, we need to create a large number of sensor configurations 

while the sensors are rotated or misplaced. Creating a large number of closely spaced sensors is 

impractical. To address this problem, we use the marker based optical motion capture system and 

generate simulated inertial sensor data for different locations and orientations on the body. We 

study the performance of the DTW under these conditions to determine the worst-case sensor 

location variations that the algorithm can accommodate.
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1. INTRODUCTION

Human-activity recognition has become a task of high interest within the field, especially for 

medical, military, and security applications. For instance, patients with diabetes, obesity, or 

heart diseases are often required to follow a well defined exercise routine as part of their 

treatment [1] [2]. Therefore, recognizing activities such as walking, running, or cycling 

Publisher's Disclaimer: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted 
without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the 
full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee.

HHS Public Access
Author manuscript
Proc Wirel Health. Author manuscript; available in PMC 2017 March 23.

Published in final edited form as:
Proc Wirel Health. 2012 October ; 2012: . doi:10.1145/2448096.2448103.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



becomes quite useful to provide feedback to the caregiver about the patient’s behavior. A 

continuous stream of data in particular is a sequence of real numbers generated naturally in 

many applications, such as real-time network measurements, medical devices, sensor 

networks, and manufacturing processes. Matching patterns in continuous data streams is 

important for monitoring and mining stream data [3]. For example, if the real-time stream of 

data from the electrocardiogram is found similar to a pattern of ischemia, the physician can 

be alerted for assistance [4].

Various signal processing and classification techniques are employed to achieve high 

accuracies in Human-Activity recognition such as hidden Markov model (HMM), principle 

component analysis (PCA), support vector machines (SVM), linear discriminant analysis 

(LDA), artificial neural networks (ANN) and dynamic time warping (DTW) [5]. In this 

paper, we focus on DTW.

Euclidean distance is a traditionally used technique to measure the similarity between two 

sequences [6]. However, a more robust technique is needed that allows an elastic shifting of 

the time axis, to hold valid for sequences that are similar but out of phase(Figure (1)). 

Dynamic time warping (DTW) is a technique that allows variations in the time axis to be 

accommodated for a fair comparison between them [7].

Dynamic time warping (DTW) is an algorithm for measuring the similarity between two 

sequences which may vary in their time or speed. For instance, similarities in walking 

patterns can be detected, even if the person was walking slowly or if he or she were walking 

more quickly. DTW has been applied to video and audio signal processing and indeed to any 

data which can be turned into a time-series representation. A well-known application for 

DTW to cope with speed variations is automatic speech recognition. DTW is also employed 

in Human-Activity recognition for pattern matching of a previously stored template of a data 

stream from a body-worn sensor corresponding to a movement and the real-time incoming 

sample data [8]. However, DTW has a disadvantage that in order to have a precise match, the 

position and orientation of the sensor when the template of movement was recorded should 

be the same when using it in real-time detection, which might be difficult to retain. Body-

worn sensors might be slightly misplaced or accidentally moved. In this paper, we attempt to 

study the performance of DTW under the misplaced sensor stream of data. For determining 

the acceleration values from all possible misplacements, we need closely spaced infinite 

number of sensors placed on the body which is practically very difficult. Creating all 

different configurations and the experimental study associated with it can be tedious. To 

facilitate this, we make use of an optical motion capture to create a human skeleton model 

and reconstruct the simulated inertial measurements values which can be manipulated to 

produce the equivalent of misplaced or disorientated sensor.

The rest of the paper is organized as follows: In Section 2 we review the related works and 

discuss the Dynamic Time Warping Algorithms. In Section 3, we introduce the system 

components and the generation of accelerations from motion capture and its validity. We 

introduce the methods to generate the shift in orientations and translations in the sensor data 

in Section 4. In Section 5, we provide the results of experiment. Section 6 and 7 gives a brief 

introduction to our future direction.
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2. BACKGROUND

2.1 Related Work

Dynamic Time Warping is used as a feature classification technique in variety of 

applications such as speech recognition [9], character recognition [10], etc. Researchers have 

employed methods like normalization of DTW, matching distance [1] for speech recognition 

or clustering algorithms to estimate high quality templates [11]. Normalization techniques 

cannot be utilized in human activity recognition as under sensor misplacement, the 

acceleration values are distributed among other axes by a factor that is dependent on the 

degree of misplacement. It is also difficult to employ correcting techniques to the templates 

in Human-Activity recognition where there are variations in the templates due to accidental 

misplacements of the sensor. These variations can be in the form of rotations or translations 

by an unknown factor which make them difficult to predict [12]. Therefore, we attempt to 

determine the boundary limits of misplacements and disorientations under which the DTW 

will perform with satisfactory results.

2.2 Review of Dynamic Time Warping

Suppose we have two time series, R and T, of length M and N, respectively, where

(1)

To align two sequences using DTW, we construct an n-by-m matrix where the (ith, jth) 

element of the matrix contains the distance between the two points ri and tj (i.e. d(ri, tj) = (ri 

– tj)2). As shown in Figure (2), each matrix element (i, j) corresponds to the alignment 

between the points ri and tj. A warping path W is a contiguous (in the sense that is stated 

below) set of matrix elements that defines a mapping between R and T. The kth element of 

W is defined as wk = (i, j)k. Therefore, we have

(2)

The warping path is typically subject to several constraints.

Boundary conditions—w1 = (1, 1) and wk = (m, n). This requires the warping path to 

start and finish in diagonally opposite corner cells of the matrix.

Continuity—Given wk = (a, b), then wk-1 = (a′, b′), where a-a′ ≤ 1 and b –b′ ≤ 1. This 

constraint restricts the allowable steps in the warping path to the adjacent cells (including 

diagonally adjacent cells).

Monotonicity—Given wk = (a, b), then wk-1 = (a′ , b′), where a –a′ ≥ 0 and b –b′ ≥ 0. 

This forces the points in W to be monotonically spaced in time.

There are exponentially many warping paths that satisfy the above conditions. However, we 

are only interested in the path that minimizes the warping cost:
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(3)

This path can be found using dynamic programming to evaluate the following recurrence, 

which defines the cumulative distance γ(i, j) as the distance d(i, j) found in the current cell 

and the minimum of the cumulative distances of the adjacent elements:

(4)

The Euclidean distance between two sequences can be seen as a special case of DTW where 

the kth element of W is constrained such that wk = (i, j)k and i = j = k. Note that it is only 

defined in the special case where the two sequences have the same length. The time and 

space complexity of DTW is O(nm).

3. METHODOLOGY

3.1 System Components

Inertial Measurement Units—Figure 3 shows the sensor node used in the system. Each 

sensor node consists of commercially available Motiv TelosB with a custom designed sensor 

board. The sensor board consists of a tri-axial accelerometer and a bi-axial gyroscope and is 

powered by a rechargeable battery. Sensor nodes that are placed on the body sample the data 

at 100 Hz perform limited local computations and transmit the data wirelessly to a base-

station. In our experiments, the base-station is a sensor node connected to a PC via the USB 

port. During the experiment, we also use a Logitech® camera to record the video of the 

movement trials. The video frames and data samples are recorded and synchronized in 

MATLAB®.

Optical Motion Capture System—We use a commercial Vicon® system [13] that 

comes with eight cameras. Each camera consists of a distinct video camera, a strobe head 

unit, a suitable lens, an optical filter and cables. The Vicon® is supported by the Nexus 1.7 

software which works as the core motion capture and processing software. The Nexus 

software samples the data at 100 Hz and measures the rotations and translations at each with 

respect to the predefined Vicon® axes, which later can be used to reconstruct the 

accelerations due to random movements.

3.2 Data Collection

The Vicon® markers are placed on the IMU locations on the body, as shown in Figure 3. A 

replica of the IMU is generated in Vicon-Nexus® which records the rotations in Euler angles 

and translations in the Vicon® axes. The IMU sensor data and Vicon® data is synchronized 

using the ViconDataStream® software development kit for MATLAB® by which we 

validate the reconstruction of accelerations to the actual IMU readings.
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For continuous stream of data from the Vicon®, all the markers placed on the body should 

be visible to at-least 4 out of the 8 cameras present in the system, which restricts on the 

variety of movements that can be tested. We collected data on an average of 20 trials by 

placing IMU on the right thigh, waist and ankle for the movements sit-to-stand, stand-to-sit, 
walking, turn right 90° and back, kneeling forward and back, turn left 90° and back with 

each movement being the target movement for each trial.

By using the video file available, we annotate the data to its corresponding movement, with 

which we can generate the template file for a particular movement. These template files are 

later used for evaluating the DTW distance over the sample data. As these templates have a 

particular position and orientation, misplacement in the sensor position can lead to more 

error.

For the sake of simplicity, we assume that the human limb is a perfect spherical cylinder. We 

induce variations in the position of the sensor by adding a constant rotation and translation 

factor in a particular axis. Due to this assumption, the regenerated accelerations lack the 

influence of muscle or tissue flexibility that is produced by any human limb when in motion. 

Therefore, the correlation between accelerations generated by the Vicon® and the IMU may 

be slightly less than the ideal cases.

3.3 IMU data generation with motion-capture

Let the rotation about the X, Y and Z axes be denoted as ϕ, θ and ψ respectively [14]. The 

rotation matrices Rx, Ry and Rz with the Euler angles known in degrees are given as:

(5)

An orthogonal matrix producing a combined rotation effect corresponding to clockwise 

rotation with x-y-z convention is formed as:

(6)

The translations are converted to accelerations by differentiating and then post-multiplied to 

the matrix R at each sample to provide the accelerations of the IMU replica in the IMU 

frame. The samples received from Vicon® carry noise and therefore the translations are 

needed to be smoothed which is done initially using a median filter before filtering it with a 

second order low-pass filter to remove the spurious changes in the data collected.
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The sample at any instant is given by a six columns matrix including rotations in degrees 

and translations. The sample changes at any instant can be denoted by a space vector S(t):

(7)

(8)

(9)

(10)

(11)

(12)

(13)

The computations show the conversion of translations in the Vicon® frame to IMU frame. 

The accelerations obtained in m/s2 lack the gravity component. The influence of the gravity 

is determined by using the same rotation matrices obtained in Equation (7) and then 

subtracted to reconstruct the accelerations that are equivalent to IMU tri-axial accelerometer 

values. The negative sign in Equation (13) symbolizes the counteracting forces against 

gravity. Figure 4 shows a comparison between the IMU acceleration recordings and the 

reconstructed accelerations from the Vicon® or IMU replica.

The angles obtained from Vicon® at each instant, need to be converted to the sensor (body) 

frame from the Vicon® (global) frame.

(14)
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With the x-y-z rotation convention the rotation matrix for the same are obtained by Equation 

(15)

(15)

Converting the combined rotation matrix from Vicon® (global) frame to sensor (body) 

frame, we can determine the local angles

(16)

Differentiating with respect to time, the angles are converted to obtain the angular velocities 

(gyroscope readings).

(17)

(18)

Figure 5 shows a comparison between the IMU gyroscope recordings and the reconstructed 

angular velocities from the Vicon® or IMU replica.

The two sensor values have a satisfactory correlation factor of 0.84. The primary source of 

inconsistency is due to sporadic noise that can be well handled in DTW.

4. GENERATION OF MISPLACEMENT

The misplacement of the sensor can be due to change either in rotation or in translations. 

The pure translation is invoked in the sensor accelerations using backward transformations 

and pure rotation by post multiplying with constant angle rotation matrix.

4.1 Orientation

As shown if Figure 6, a sensor placed on the body can rotate along its own axis in any 

direction. Therefore, we generate the rotated acceleration values by post-multiplying the 

accelerations generated from optical motion capture by a constant angle rotation matrix, in 

the range of -90° to +90°along the X, Y and Z axis individually. The constant angle rotation 

matrix, denoted by Rdeviation, is generated by using the rotation matrices in Equation (5) 

along the respective axis. If there is a rotation along the z-axis by an angle ω the equations 

will be of form
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(19)

Using the total acceleration generated from Equation (13), we denote the final acceleration 

due to rotation by:

(20)

When we obtain these disoriented acceleration values, using the original position templates 

we compute the DTW distance for these simulated rotated sample data.

4.2 Translation

A sensor placed positioned on the body can have pure translations only along the vertical 

axis as in other direction will involve a combination of both translation and rotation along its 

own axis. If the sensor is supposed to be displaced along vertical axis, it is denoted by a 

vector (0 0 δ) where δ denotes the displacement along the vertical axis. The motion of this 

vector in the Vicon® co-ordinate system is determined by post-multiplying it to the rotation 

matrix R from Equation (6) at each sample. The vector position matrix at each instant is 

added to the translations in Equation (7) which produces the effect of displaced sensor 

position values in the Vicon® co-ordinate system. We then process these values to convert 

them into accelerations and use them as sample values for DTW processing.

(21)

(22)

(23)

(24)

(25)
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(26)

(27)

(28)

(29)

The accelerations recorded from the sensor have a prominent gravity component and the 

actual accelerations due to human motions are very low. As illustrated in Figure 8, the 

translations do not produce significant changes in the values that the DTW can 

accommodate.

Using the results from the translated and rotated data, we try to determine the range of 

misplaced sensor locations that the DTW can accommodate for a movement.

5. RESULTS

The acceleration values from the sensor are dependent on the subject performing the motion. 

Therefore, acceleration values from two different subjects might be dissimilar from each 

other. For investigating the effects of sensor misplacement, we need to avoid the variances 

caused by using templates from different subjects. Therefore in this study, we primarily 

focus on a single-subject scenario and sensor misplacements. With the sensor devices placed 

on the body along with reflective markers, we perform the set of movements.

We make the use of the simulated sensor data from the various body positions to establish 

threshold limits for the detection of each of the target movements. With the help of the 

Vicon® system, we generate 20 data sets of simulated sensor values for each of the target 

movements that we randomly divide into two equal parts: one for training and the other for 

testing. Using the training templates and data sets, we compute the DTW distance values for 

all the recorded movements. We determine the closest non-target movement to each target 

movement. To differentiate between these two movements, we need a threshold distance 

value, served as the margin to ensure the separability of target and non-target movements.

Figure 9 shows the distribution of the DTW distance values for thigh sensor with sit-to-stand 
movement as the target movement. We can determine the walking to be the closest non-

target movement to sit-to-stand movement.
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We determine similar plots of the DTW distance values for each of the target movement and 

its closest non-target movement. Figure 10 shows the distribution of the DTW distance 

values for the kneeling movement with the ankle sensor and Figure 11 for turn right 90°. 

Figure 12 is the DTW distance distribution for the kneeling movement with the waist sensor.

Having established a threshold on the DTW distance values for Sit-to-Stand movement, 

using the testing data, we check the robustness of the algorithm. The established DTW 

threshold distance misclassifies the walking movement as sit-to-stand on three instances and 

sit-to-stand as walking on one instance giving an accuracy of 98% where we choose 100 

maximum DTW distances (worst-case) for target movement and 100 minimum DTW 

distances (best-case) for non-target movement. Figure 13 shows the comparison of the sit-to-
stand and walking DTW distance values for thigh sensor with the horizontal line denoting 

the threshold for target movement. Figure 14 shows the comparison of kneeling and walking 
distance values for the waist sensor.

In the similar fashion, we obtain the threshold value for detection of each of the target 

movements.

Orientation

The sensor on the body has the freedom to be rotated in two axes, though for the purpose of 

analysis, we try and learn the impact of sensor misplacement in all the three axes. For 

generating the hypothetical misplaced IMU acceleration values, we induce a constant degree 

of rotation along the axes in the original position. We achieve these misplaced sensor 

accelerations by rotating it from a range of -90° to +90° in steps of 2 degrees and for each 

step evaluate the performance of DTW. With the same threshold limit we used for the testing 

data, we perform the DTW comparison between the testing templates for target movement 

and the misplaced sensor accelerations. The DTW distance is computed on 80 misplaced sit-
to-stand trials for each degree of rotation and their accuracies are measured.

Accuracy is defined as the ratio of correctly classified rotated target movements to the total 

number of target movements. Figure 15 shows the influence of the sensor rotation along the 

X, Y and Z axes on the accuracy of the DTW distance values for sit-to-stand movement for 

the thigh sensor.

Figure 16 and Figure 17 show the effects of the sensor rotations on the accuracy for 

detection of kneeling and turn left 90° movements, respectively. We obtain similar plots for 

the performance of sensor disorientation on the DTW based gyroscope evaluations. Figure 

19 and Figure 20 show the performance of the gyroscope in terms of percent accuracy for 

the detection of sit-to-stand and kneeling movements.

Translation

The accelerations from the accelerometers are the results of both motions and the 

counteracting forces against the gravity. In particular, for wearable computing applications, 

acceleration changes are primarily resulted by the gravity rather than the motion itself. 

Provided that the body segment on which the accelerometer is placed is relatively rigid, and 

the distance of the accelerometers from the rotation center of the body is not severely 
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changed, the effects of gravity forces will not be affected. Therefore, a displacement or pure 

translations along the vertical axis should not have drastic effects on the measured 

accelerations which we confirmed from our conducted experiments. The DTW distance 

values for these purely translated sensor accelerations gives 99.9% accuracy for a range of 

-20cm to 20cm displacement along the vertical axis with only one misclassified movement. 

Figure 21 confirms that pure translation along the vertical axis does not have drastic impacts 

on the DTW computations. Assuming a human limb to be an almost spherical cylinder, there 

cannot be pure translations along other axes.

6. CONCLUSION

The tradeoff between the accuracy and the degrees of rotation confirms that -15° to 15° 

misplacements in each axis can be tolerated and does not affect the signal processing 

adversely. A displacement in the form of pure translation of the sensor along the vertical axis 

can be accommodated in DTW.

If the sensor is placed within these limits of sensor placement in which originally the 

template was generated, the movement is detected. If a match found, Dynamic Time 

Warping algorithm provides the added advantage of generating new templates (or training 

sets) that are specific to the new positioning of sensor. Therefore, the algorithm can learn 

and self-correct itself. By utilizing this, we can continue achieving higher accuracies with 

higher degrees of misplacement in sensor positions.

7. FUTURE WORK

For comparison between complex movements, we will take into consideration data from two 

or more sensors as sensor from one limb is not sufficient to differentiate between all 

movements. When using the changes in the accelerations from the thigh for the sit-to-stand 
movement the values can be similar to movements like kneeling-to-stand, so to differentiate 

between these two movements we need to analyze the results from two or more sensors 

placed at different locations on the body such as on the ankle. To study the impact of sensor 

misplacements for differentiating between such similar movements, we need to formulate an 

effective technique. We will further consider other sensors and their corresponding replica 

and simulated data such as magnetometers.

Acknowledgments

This work was supported in part by the National Science Foundation, under grants CNS-1138396, CNS-1150079 
and CNS-1012975 and the National Institute of Health, under grant R15AG037971. Any opinions, findings, 
conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect 
the views of the funding organizations.

References

1. Jia, Y. Diatetic and exercise therapy against diabetes mellitus. Intelligent Networks and Intelligent 
Systems, 2009; ICINIS’09. Second International Conference on; IEEE; 2009. p. 693-696.

2. Raveendranathan N, Galzarano S, Loseu V, Gravina R, Giannantonio R, Sgroi M, Jafari R, Fortino 
G. From modeling to implementation of virtual sensors in body sensor networks. Sensors Journal, 
IEEE. 2012; 12(3):583–593.

Kale et al. Page 11

Proc Wirel Health. Author manuscript; available in PMC 2017 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Zhou, M., Wong, M. Efficient online subsequence searching in data streams under dynamic time 
warping distance. Data Engineering, 2008; ICDE 2008. IEEE 24th International Conference on; 
IEEE; 2008. p. 686-695.

4. Smrdel A, Jager F. Automated detection of transient st-segment episodes in 24h electrocardiograms. 
Medical and Biological Engineering and Computing. 2004; 42(3):303–311. [PubMed: 15191074] 

5. Turaga P, Chellappa R, Subrahmanian V, Udrea O. Machine recognition of human activities: A 
survey. Circuits and Systems for Video Technology, IEEE Transactions on. 2008; 18(11):1473–
1488.

6. Lewis J. Fast normalized cross-correlation. Vision interface. 1995; 10(1):120–123.

7. Sakoe H, Chiba S. Dynamic programming algorithm optimization for spoken word recognition. 
Acoustics, Speech and Signal Processing, IEEE Transactions on. 1978; 26(1):43–49.

8. Muscillo, R., Conforto, S., Schmid, M., Caselli, P., D’Alessio, T. Classification of motor activities 
through derivative dynamic time warping applied on accelerometer data. Engineering in Medicine 
and Biology Society, 2007; EMBS 2007. 29th Annual International Conference of the IEEE; IEEE; 
2007. p. 4930-4933.

9. Myers C, Rabiner L, Rosenberg A. Performance tradeoffs in dynamic time warping algorithms for 
isolated word recognition. Acoustics, Speech and Signal Processing, IEEE Transactions on. 1980; 
28(6):623–635.

10. Rath, T., Manmatha, R. Word image matching using dynamic time warping. Computer Vision and 
Pattern Recognition, 2003; Proceedings 2003 IEEE Computer Society Conference on; IEEE; 2003. 
p. II-521.

11. Lukowicz P, Ward J, Junker H, Stäger M, Tröster G, Atrash A, Starner T. Recognizing workshop 
activity using body worn microphones and accelerometers. Pervasive Computing. 2004:18–32.

12. Kunze, K., Lukowicz, P. Dealing with sensor displacement in motion-based onbody activity 
recognition systems. Proceedings of the 10th international conference on Ubiquitous computing; 
ACM; 2008. p. 20-29.

13. Woolard, A. Vicon 512 User Manual. Vicon Motion Systems; Tustin CA: Jan. 1999 

14. Spong, M., Hutchinson, S., Vidyasagar, M. Robot modeling and control. New York: Wiley; 2006. 

Kale et al. Page 12

Proc Wirel Health. Author manuscript; available in PMC 2017 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
(a) Euclidean distance (b) DTW distance

Kale et al. Page 13

Proc Wirel Health. Author manuscript; available in PMC 2017 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
An example of a DTW path
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Figure 3. 
(a) TelsoB mote (b) Placement of the motes
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Figure 4. 
Comparison of accelerations along the X, Y, Z axis between IMU and reconstructed 

accelerations from Vicon®
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Figure 5. 
Comparison of gyroscope along the X, Y axis between IMU and reconstructed angular 

velocities from Vicon®
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Figure 6. 
A space vector P showing the position and angles along Vicon® axis. Space vector P′ 
denotes the shifted version of the original vector.
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Figure 7. 
Effect on the accelerations of Z-axis.
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Figure 8. 
Effects of translation on accelerations of Z-axis
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Figure 9. 
DTW distance distribution for sit-to-stand movement template for thigh sensor compared to 

various non-target movements
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Figure 10. 
DTW distance distribution for kneeling movement template for ankle sensor compared to 

various non-target movements
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Figure 11. 
DTW distance distribution for kneeling movement template for ankle sensor compared to 

various non-target movements
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Figure 12. 
DTW distance distribution for turn right 90° template movement for thigh sensor compared 

to various non-target movements
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Figure 13. 
Comparison between Sit-to-Stand and Walking DTW distances for thigh sensor. The dotted 

horizontal line denotes the threshold.
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Figure 14. 
Comparison between kneeling and Walking DTW distances for waist sensor. The dotted 

horizontal line denotes the threshold.
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Figure 15. 
Accuracy against degree of rotation for thigh sensor for detection of sit-to-stand movement
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Figure 16. 
Accuracy against degree of rotation for ankle sensor for detection of kneeling movement
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Figure 17. 
Accuracy against degree of rotation for waist sensor for detection of turn left 90° movement
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Figure 18. 
Accuracy against degree of rotation for waist sensor for detection of stand to sit movement
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Figure 19. 
Accuracy against degree of rotation for thigh sensor (gyroscope) for detection of sit-to-stand 
movement

Kale et al. Page 31

Proc Wirel Health. Author manuscript; available in PMC 2017 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 20. 
Accuracy against degree of rotation for waist sensor (gyroscope) for detection of kneeling 
movement
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Figure 21. 
The tradeoff of rotation and translation along the vertical axis on the DTW distance value.
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