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Function of neural stem cells in ischemic
brain repair processes
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Abstract

Hypoxic/ischemic injury is the single most important cause of disabilities in infants, while stroke remains a leading cause

of morbidity in children and adults around the world. The injured brain has limited repair capacity, and thereby only

modest improvement of neurological function is evident post injury. In rodents, embryonic neural stem cells in the

ventricular zone generate cortical neurons, and adult neural stem cells in the ventricular–subventricular zone of the

lateral ventricle produce new neurons through animal life. In addition to generation of new neurons, neural stem cells

contribute to oligodendrogenesis. Neurogenesis and oligodendrogenesis are essential for repair of injured brain. Much

progress has been made in preclinical studies on elucidating the cellular and molecular mechanisms that control

and coordinate neurogenesis and oligodendrogenesis in perinatal hypoxic/ischemic injury and the adult ischemic brain.

This article will review these findings with a focus on the ventricular–subventricular zone neurogenic niche and discuss

potential applications to facilitate endogenous neurogenesis and thereby to improve neurological function post perinatal

hypoxic/ischemic injury and stroke.
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Introduction

Hypoxic/ischemic (H/I) injury is the single most import-
ant cause of brain damage resulting from complications
during birth, leading to permanent neurological deficits.
Every year perinatal H/I injury afflicts approximately
1–2 per 1000 term births and roughly half of surviving
preterm infants. Many of these infants suffer long-term
handicaps that include learning disabilities, mental
retardation, epilepsy, and cerebral palsy.1

Stroke remains a major cause of morbidity around
the world.2 Tissue plasminogen activator (tPA) is the
only FDA approved treatment for patients with ische-
mic stroke onset within 4.5 h.3,4 Successful randomized
clinical trials show that endovascular thrombectomy
with or without tPA is effective for ischemic stroke
patients within 12 h after stroke onset, which suggest
that rapid recanalization and reestablishing cerebral
blood flow (CBF) can preserve vascular integrity, and
minimize brain hemorrhage and parenchymal cell
death.5–8 However, most patients, even with effective
thrombolysis will suffer neurological deficits during
stroke recovery because the ischemic brain has limited
repair capacity.9

Neurogenesis is essential for brain development and
for repair of injured brain. Embryonic neural stem cells
in the ventricular zone (VZ) generate cortical neu-
rons.10,11 In the adult mammalian brain, there are at
least two neurogenic regions: the ventricular-subventri-
cular zone (V/SVZ) of the lateral ventricle and the sub-
granular zone (SGZ) of the dentate gyrus.12–16

Perinatal H/I injury induces acute neurogenesis.17

Focal cerebral ischemia in the adult rodent promotes
neurogenesis primarily in the V/SVZ and induces
neuroblast migration from the V/SVZ to the ischemic
boundary.13,14,18–33 Newly generated neuroblasts are
involved in functional recovery after stroke.34 Stroke-
induced neurogenesis has also been demonstrated in the
adult human brain.35–37 Much progress has been made
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on elucidating the cellular and molecular mechanisms
that control and coordinate neurogenesis after peri-
natal H/I injury and in the adult ischemic brain. We
will review these findings with a focus on the V/SVZ
neurogenic niche and discuss potential applications to
facilitate endogenous neurogenesis and thereby to
improve neurological function post perinatal H/I
injury and stroke.

Perinatal H/I injury and stroke-induced
neurogenesis in the V/SVZ

During the embryonic stage, radial glial cells in the VZ
are neural stem cells.12,38 Actively dividing embryonic
neural stem cells in the VZ contribute to cortical neuro-
genesis, whereas a population of quiescent embryonic
neural stem cells constitute a majority (� 73%) of adult
neural stem cells.38,39 Using whole-mount tissue prep-
aration of adult rodent brain, in vivo studies show that
glial fibrillary acidic protein (GFAP) positive neural
stem cells in the SVZ directly contact the cerebrospinal
fluid (CSF) by extending their apical processes
anchored at the ependymal layer of the ventricular sur-
face, while the stem cells also project their long basal
processes to reach blood vessels in the SVZ just beneath
the ependymal layer. Thus, these studies demonstrate
the presence of adult neural stem cells in the V/SVZ,
although embryonic VZ is replaced by an ependymal
layer in the adult brain.40,41 Moreover, in vivo studies
using genetic approaches demonstrate coexistence of
quiescent and activated GFAP positive neural stem
cells in the V/SVZ, expressing phenotypes of GFAP/
CD133 and GFAP/CD133/epidermal growth factor
receptor (EGFR), respectively. Clonal analysis reveals
that quiescent neural stem cells constitute the primary
population of the cells responsible for adult neurogen-
esis. Upon activation, quiescent neural stem cells (type
B cells) become actively proliferative and convert to
short-live intermediate progenitor cells (type C cells),
which, in turn, differentiate into neuroblasts (type A
cells) and oligodendrocytes.12,39,42–44

Perinatal H/I injury induces proliferation of neural
stem and progenitor cells as well as neuroblasts in the
V/SVZ.45–47 Using a multimarker flow cytometry
approach, a study shows that perinatal H/I injury pro-
motes neural progenitor cell proliferation, but reduces

neural stem cell generation of neural progenitor cells,17

which may contribute to transient neurogenesis induced
by perinatal H/I injury (Table 1).

Experimental studies in early 2000 demonstrated
that focal cerebral ischemia in the adult rodent induces
neurogenesis in the ipsilateral V/SVZ. Newly generated
neuroblasts in the V/SVZ migrate to the ischemic
boundary where they exhibit neuronal pheno-
types.13,18,19,22 Stroke-induced neurogenesis is now
well established.25,32,54,55 Patients with stroke show an
increase in neural progenitor cells and neuroblasts in
the ischemic brain.35–37,56,57 However, a study using
genomic and carbon-14 dating approaches failed to
demonstrate the presence of neurogenesis in the
human neocortex after stroke.58

Studies on adult rodent ischemic brain show that
stroke activates neural stem cells to proliferate in the
V/SVZ.14,48 For example, depletion of actively dividing
neural progenitor cells, but not quiescent neural stem
cells, in the V/SVZ using an antimitotic agent (cytosine-
b-D-arabiofuranoside, Ara-C) leads to a rapid repopu-
lation of neural progenitor cells and neuroblasts in the
ischemic V/SVZ after termination of the Ara-C treat-
ment, suggesting that neural stem cells regenerate
ablated neural progenitor cells.14 Subsequent studies
based on the novel anatomical organization of the
adult neural stem cells within the V/SVZ niche support
this hypothesis by showing that stroke considerably
increases GFAP positive neural stem cells at the
center of a pinwheel structure composed of ependymal
cells, and that these GFAP positive neural stem cells are
actively proliferating. Proliferating neural stem cells in
the V/SVZ are observed even 30 days after ischemia.48

Together, these stroke studies along with clonal ana-
lysis data from non-stroke rodents suggest that in
response to ischemic insult, quiescent adult neural
stem cells in the V/SVZ can be activated and recruited
to an active pool to increase the neurogenic process.

In addition to neural stem cells, stroke promotes
proliferation of neural progenitor cells and neuro-
blasts.13,17–19,22,46 Studies based on clonal analysis and
whole-mount tissue preparation of the adult rodent
brain demonstrate that in the non-ischemic V/SVZ,
neural progenitor cells are actively dividing with a cell
cycle ranging from 18 to 25 h, and doublecortin (DCX)
positive neuroblasts have a cell cycle length of 18 h.59,60

Table 1. Comparison of neurogenesis and oligodendrogenesis between perinatal H/I injury and stroke.

Stem/progenitor cells Perinatal H/I injury Stroke References

Proliferation Short and transient" (weeks) Long lasting" (months) 17, 34, 45, 46, 48

Differentiation Neuroblasts, OPCs" Neuroblasts, OPCs" 17, 47, 49–53

Migration Neuroblasts to injured striatum Neuroblasts and OPCs to injured striatum and CC 47, 49–53
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The progenitor cells divide 3 times before converting
into neuroblasts while neuroblasts undergo one to
two time divisions prior to migrating out the V/
SVZ.43,61 Stroke transiently increases the percentage
of dividing neural progenitor cells from 15 to 21% in
non-ischemic V/SVZ to 31%.59,60 Analysis of cell cycle
phases of actively proliferating V/SVZ neural progeni-
tor cells at the population level reveals that stroke
reduces the cell cycle length of these mitotic cells from
19 h in non-ischemia to 11 h. Stroke-reduced cell cycle
length likely results from a decrease of the G1 phase of
the cell cycle, because the G2, M, and S phases are
unchanged.60,62 Stroke also induces rapid neuroblast
proliferation, and newly generated neuroblasts in the
ipsilateral V/SVZ migrate to the ischemic boundary,
which can be noninvasively imaged by MRI.13–15,63,64

These data indicate that shortening of the cell cycle
length of neural progenitor cells also contribute to
stroke-induced expansion of the progenitor pool and
neurogenesis (Table 1).

Perinatal H/I injury and stroke-induced
oligodendrogenesis

In addition to neuroblasts, neural stem cells in the
V/SVZ generate oligodendrocyte progenitor cells
(OPCs) that differentiate into myelin forming oligo-
dendrocytes.65,66 OPCs are vulnerable to perinatal H/I
injury, leading to permanent white matter damage.17,55

Fluorescence-activated cell sorting (FACS) analysis of
perinatal V/SVZ neural progenitor cells reveals the
presence of a heterogeneous population of NG2 (a
marker of OPCs) positive neural progenitor cells, and
that perinatal H/I injury promotes proliferation of sub-
populations of NG2 positive neural progenitor cells.17

These data suggest that perinatal V/SVZ neural pro-
genitor cells generate OPCs in response to perinatal
H/I injury. However, OPCs within the V/SVZ do not
migrate toward H/I injured brain regions, while
increased OPCs in the injured striatum originate from
proliferating OPCs within the striatum.47 It remains to
be determined whether perinatal H/I injury-increased
OPCs differentiate into myelinating oligodendrocytes.

In the adult rodent brain, OPCs originating from
V/SVZ neural progenitor cells comprise 3–9% of the
total cell number and distribute into the corpus callo-
sum, the striatum, and the cortex.65–67 OPCs continu-
ously differentiate into mature oligodendrocytes to
myelinate the previously unmyelinated axons through-
out the gray and white matter, and myelination in adult
brain contributes to maintaining axonal integrity,
neural plasticity, and circuitry function.68 OPCs also
act as a surveillance network to detect brain injury.69

Using a fate mapping strategy, studies demonstrate that
stroke increases neural stem cell lineage OPCs and

promotes these OPCs to differentiate into myelin form-
ing oligodendrocytes in peri-infarct white matter.49–53

These data suggest that OPCs generated by adult neural
stem cells contribute to oligodendrogenesis after stroke.

Signaling pathways are involved in
regulating perinatal H/I injury- and
stroke-induced neurogenesis

The Notch receptors are transmembrane proteins acti-
vated by Delta and Jagged ligands. On activation,
Notch triggers expression of transcription factors of
hairy and enhancer of split (Hes) family.70 The Notch
signaling pathway plays a pivotal role in maintaining
the embryonic neural stem cell pool and promotes glio-
genesis.71 Perinatal H/I injury upregulates Notch1,
Hes5, and EGFR expression in neural progenitor cells
prior to the injury-induced neural progenitor cell pro-
liferation,55 suggesting that the Notch pathway could
mediate perinatal H/I injury-induced neurogenesis.
Stroke also activates the Notch pathway in adult
neural progenitor cells by upregulating Notch and
Hes1 expression, leading to progenitor cell prolifer-
ation, whereas blockage of the Notch pathway
abolishes stroke-increased progenitor cell prolifer-
ation.72,73 In addition, inactivation of Notch signals
promotes ischemic neural progenitor cells to generate
neurons.73 Interestingly, a recent study shows that
inactivation of the Notch signaling pathway in striatal
astrocytes triggers the astrocytes to enter the neuro-
genic program in response to stroke, leading to the gen-
eration of neurons in peri-ischemic regions. These data
suggest that in addition to V/SVZ neurogenesis, striatal
resident astrocytes meditated by the Notch signaling
pathway may also contribute stroke-induced
neurogenesis.74

Sonic hedgehog (Shh) is a member of the family of
the hedgehog proteins. Shh binds to the transmem-
brane receptor protein, patched (ptc), which, activates
smoothened (Smo), leading to expression of the Gli
family of transcription factors. The Shh pathway regu-
lates patterning and growth in a large number of tissues
during embryogenesis.75–77 The Shh pathway is coupled
with the Notch signaling pathway and plays an import-
ant role in regulating progenitor cell proliferation and
differentiation.78,79 The Shh pathway mediates stroke-
induced neurogenesis.80 Stroke upregulates Shh expres-
sion in V/SVZ neural progenitor cells.81 Inhibition of
the Shh pathway reduces proliferation and differenti-
ation of neural progenitor cells, whereas intraventricu-
lar infusion of exogenous Shh enhances stroke-induced
neurogenesis.81,82

The bone morphogenic protein (BMP) and Wnt
pathways also regulate neurogenesis and oligodendro-
genesis. Overexpression of BMP7 in ependymal cells
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inhibits neural progenitor cell proliferation and neuro-
blast production. Transgenic mice with overexpression
of the BMP antagonist noggin driven by the neuron
specific enolase promoter show increased oligodendro-
genesis after perinatal H/I injury.83 Leukemia inhibi-
tory factor (LIF) has also been shown to regulate
expansion of a subset of intermediate neural progenitor
cells during acute recovery from neonatal H/I injury.17

In addition, stroke alters Wnt gene expression in the
V/SVZ.84 Overexpression of Wnt3a by intrastriatal
injection of lentivirus carrying Wnt3a increases
stroke-induced neurogenesis.85 Under non-ischemic
conditions, overexpression of Wnt3 in adult SVZ
neural progenitor cells increases OPCs.49 However,
the canonic Wnt pathway negatively regulates OPC
differentiation.86 Thus, the effect of the Wnt pathway
in mediating ischemia-induced oligodendrogenesis
remains to be investigated.

MicroRNAs and signaling pathways

MicroRNAs (miRNAs) are a family of short noncod-
ing RNA molecules of 20 to 25 nucleotides. They regu-
late gene function by decreasing gene expression
through mRNA destabilization and/or translational
repression.87 MiRNAs play an important role in neuro-
genesis and oligodendrogenesis.88 Deletion of a
miRNA biogenic machinery protein, Dicer, in nestin
lineage neural stem cells is embryonic lethal, and abla-
tion of Dicer in Olig 1 and 2 lineage cells impairs oli-
godendrogenesis.89–91 Cre-inducible ablation of Dicer
in NG2 lineage cells enhances OPC differentiation
into myelinating oligodendrocytes in the corpus callo-
sum after perinatal H/I injury.92 In addition, perinatal
H/I injury upregulates miR-338.92 Elevation of miR-
219 and miR-338 in OPCs promotes OPC differenti-
ation into myelinating oligodendrocytes by repressing
their target genes of platelet-derived growth factor
receptor a (PDGFRa), Sox6, and Hes5, which inhibit
OPC differentiation.89,90 These data suggest that
miRNAs play an important role in mediating oligoden-
drogenesis after perinatal H/I injury. Adult V/SVZ
neural progenitor cells express miRNAs, and stroke
induces robust alteration of miRNA profiles in these
cells.93–95 Stroke-altered miRNAs affect several signal-
ing pathways including Notch, Shh, and Wnt.93 For
example, stroke increases miR-124a, the most abundant
neuronal miRNA, expression in V/SVZ neural progeni-
tor cells, and upregulated miR-124a inactivates Notch
signaling by targeting a Notch ligand Jagged-1, which
promotes neuronal differentiation.96

The miR17-92 cluster comprises a cluster of six
miRNAs (miR-17, miR-18a, miR-19a, miR-20a, miR-
19b-1, and miR-92a-1).97 In the development of mouse
neurocortex, the miR17-92 cluster controls neural

progenitor cell proliferation by suppressing phosphat-
ase and tensin homolog deleted on chromosome
10 (PTEN) and the transcription factor Tbr 2.98,99

Ablation of the miR17-92 cluster in OPCs during
brain development reduces their proliferation, indicat-
ing that this cluster affects oligodendrogenesis.100

Stroke robustly increases miR17-92 cluster expression
in V/SVZ neural progenitor cells. The Shh pathway
likely triggers this upregulation because activation
and blockage of the Shh pathway in V/SVZ neural pro-
genitor cells increases and reduces miR17-92 expres-
sion, respectively. Overexpression of the miR17-92
cluster in V/SVZ neural progenitor cells enhanced
stroke-induced progenitor cell proliferation, whereas
attenuation of endogenous miR-17-92 cluster abolished
the stroke-increased proliferation. Suppression of
PTEN, that inhibits neural progenitor cell prolifer-
ation, by the miR17-92 cluster partially contributes to
this process. Collectively, these data indicate that the
Shh signaling pathway positively regulates miR17-92
cluster expression, while the upregulated miR-17-92
cluster represses its target gene PTEN, leading to
expansion V/SVZ neural progenitor cell pools in
response to stroke.88,101

In addition, miR-92 regulates bone morphogenetic
protein (BMP) signals, while Wnt/b-catenin signaling
represses Let 7.102,103 Stroke downregulates Let-7 and
miR-9 in neural progenitor cells88 and these miRNAs
regulate the TLX nuclear receptor to control the bal-
ance between the proliferation and differentiation of
adult neural stem cells.104 Thus, these data indicate
that miRNAs and the signaling pathways in V/SVZ
neural progenitor cells are closely connected and
thereby regulate neurogenesis and oligodendrogenesis
after brain injury, including perinatal H/I and stroke.

Coupling of neurogenesis and angiogenesis

Angiogenesis is the sprouting of new capillaries from
preexisting blood vessels, involving endothelial cell pro-
liferation, migration, tube formation, branching, and
anastomosis.105,106 The cerebral endothelial cells are
linked by complex tight junctions that along with astro-
cytes form the blood–brain barrier (BBB).105 In the
SVZ, cerebral blood vessels form a planar vascular
plexus that differs from the vascular structure in other
brain regions. This planar vascular plexus permits small
molecules to pass the BBB and to enter the SVZ.107–109

Adult neural stem cells anchored on the ventricular
surface extend their long processes to directly contact
blood vessels within this plexus, while actively prolifer-
ating intermediate neural progenitor cells in the SVZ
are localized to blood vessels.109 In addition to this
unique architecture, cerebral vasculature in the SVZ
releases factors, such as integrin a6 and b1, to regulate
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neural stem and progenitor cell biologic function,107,108

indicating a coupling of cerebral blood vessels with
neural stem cells in the adult V/SVZ neurogenic
niche.110 Stroke-increased neurogenesis is also coupled
with angiogenesis. In the V/SVZ niche, stroke robustly
increases neural stem cells and new blood vessels, while
neural stem cells directly contact blood vessels in the
SVZ.48 Co-culture of cerebral endothelial cells har-
vested from ischemic brain with non-ischemic V/SVZ
neural progenitor cells increases progenitor cell prolif-
eration and neuronal differentiation, whereas culture of
ischemic neural progenitor cells with non-ischemic cere-
bral endothelial cells promotes in vitro angiogenesis as
measured by a capillary tube formation assay.111 As a
further reflection of vascular and V/SVZ neural pro-
genitor and neuroblast interaction, stroke-increased
neuroblasts in the V/SVZ migrate along cerebral
blood vessels to ischemic boundary regions.54,63,112–114

Suppression of stroke-induced angiogenesis by endosta-
tin or a neutralizing antibody against the angiopoietin
receptor, Tie2, substantially reduces neuroblast migra-
tion to the ischemic region.54 Soluble molecules and
their receptors mediate coupling of angiogenesis and
neurogenesis, which include vascular endothelial
growth factor (VEGF), angiopoietin-1 (Ang1), stro-
mal-derived factor-1 a (SDF-1 a), and matrix metallo-
proteinases (MMPs) and receptors of VEGFR2, Tie2,
and CXCR4.54,63,111–114

Emerging data indicate that exosomes play vital
roles in intercellular communication by transferring
contained proteomic and genomic materials between
source and target cells. Exosomes are endosome-
derived small membrane vesicles (� 30–100 nm) and
are released by cells in all living systems.115 Treatment
of non-ischemic endothelial cells with exosomes derived
from ischemic V/SVZ neural progenitor cells enhances
angiogenesis, whereas application of exosomes har-
vested from ischemic cerebral endothelial cells to
non-ischemic neural progenitor cells augments neural
progenitor cell proliferation and neuronal differenti-
ation.116 These data suggest that exosomes regulate
coupling of neurogenesis and angiogenesis.

Therapies amplify stroke-induced
neurogenesis

New neurons generated from the V/SVZ in the adult
rodent integrate into local neuronal circuitry in the
olfactory bulb and participate in processing of sensory
information and olfactory memory.12 Although V/SVZ
derived new neurons in the ischemic boundary have
been shown to exhibit electrophysiologic characteristics
of mature neurons, their functional roles in brain repair
remain uncertain.117 In fact, only few new neurons
survive in the peri-infarct region after stroke and no

studies so far have conclusively shown that these neuro-
blasts mature into specific types of neurons that assem-
ble into local circuits, suggesting that replacing dead
neurons by V/SVZ derived new neurons does not pri-
marily contribute to brain repair after stroke. However,
there are substantial data that suggest a post stroke
restorative role for neuroblasts, in that stroke robustly
increases neuroblasts and this increase persists at least
for 6 months after stroke.31,48 In addition, specific abla-
tion of neuroblasts after stroke substantially impairs
brain repair and exacerbates functional recovery, sug-
gesting that neuroblasts contribute to ischemic brain
repair processes and functional outcomes.34 These
data suggest that in addition to differentiating into
mature neurons, neuroblasts facilitate brain repair.
Data from cell-based and pharmacologically based
therapies strongly support this view.118–121

Among cell-based therapies, treatment of stroke
with mesenchymal stromal cells (MSCs) substantially
increases neurogenesis and angiogenesis and improves
neurological function.110,118,120–122 MSCs stimulate
brain parenchymal cells to induce an array of molecules
leading to amplifying processes of endogenous neuro-
genesis and angiogenesis. This parenchymal cell stimu-
lation likely forms the cellular and molecular bases
underlying the therapeutic effect of cell-based therapies.
Pharmacological agents aimed at regulating these
endogenous molecules also foster neurogenesis and
angiogenesis and improve functional outcomes during
stroke recovery.123–134

Conclusion

Embryonic quiescent neural stem cells comprise a
majority of adult neural stem cells in the V/SVZ.
Adult neurogenesis shares many features of embryonic
neurogenesis. Much progress has been made to advance
our knowledge in the field of V/SVZ neural stem cells in
response to perinatal H/I injury and stroke. Perinatal
H/I injury depletes neural progenitor cells, leading to
reduction of neurogenesis and oligodendrogenesis, and
consequently to impairment of cognitive and motor
function. However, there is a subpopulation of neural
stem cells that are resilient to H/I injury. Future studies
need to investigate molecular mechanisms regulating
function of this cell population, which may lead to
development potential therapies to facilitate brain
repair for perinatal H/I injury.

Adult V/SVZ neural stem cells are relatively resistant
to stroke. However, stroke-induced neurogenesis is lim-
ited. Given the association of neurogenesis with neuro-
logical function, it will be important to investigate how
the signaling pathways and miRNAs in neural stem
cells and their progeny are modulated by stroke and
how these cells communicate among themselves and
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with other brain cells, and in turn regulate stroke-
induced neurogenesis. These studies may provide not
only novel insights into the function of neural stem
cells but also new strategies for enhancement of
stroke-induced neurogenesis and consequently means
to improve neurological function.

Although preclinical studies have provided strong
evidence that neurogenesis and oligodendrogenesis are
essential to brain repair processes, the contribution of
endogenous neural stem cells to repair processes in
human perinatal H/I injury and stroke brains remains
to be demonstrated.
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