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Impact statement
We utilized mass spectrometry-based tar-

geted metabolic profiling of 221 metabol-

ites to evaluate the associations between

metabolite profiles and established MetS

criteria. To our best knowledge, the find-

ings of this study provide the first evidence

that metabolic profiles can be used to dif-

ferentiate participants with MetS from

similarly obese individuals who do not

meet established criteria of MetS.

Furthermore, the study demonstrated that

within MetS participants, their unique

metabolic profiles correlated to the

number of criteria used for MetS deter-

mination. Taken together, this metabolic

profiling approach can potentially serve as

a novel tool for MetS detection and moni-

toring, and provide useful metabolic infor-

mation for future interventions targeting

obesity and MetS.

Abstract
Both obesity and the metabolic syndrome are risk factors for type 2 diabetes and cardiovas-

cular disease. Identification of novel biomarkers are needed to distinguish metabolic syn-

drome from equally obese individuals in order to direct them to early interventions that reduce

their risk of developing further health problems. We utilized mass spectrometry-based tar-

geted metabolic profiling of 221 metabolites to evaluate the associations between metabolite

profiles and established metabolic syndrome criteria (i.e. elevated waist circumference,

hypertension, elevated fasting glucose, elevated triglycerides, and low high-density lipopro-

tein cholesterol) in plasma samples from obese men (n¼ 29; BMI¼ 35.5� 5.2 kg/m2) and

women (n¼ 40; 34.9� 6.7 kg/m2), of which 26 met the criteria for metabolic syndrome (17

men and 9 women). Compared to obese individuals without metabolic syndrome, univariate

statistical analysis and partial least squares discriminant analysis showed that a specific

group of metabolites from multiple metabolic pathways (i.e. purine metabolism, valine, leu-

cine and isoleucine degradation, and tryptophan metabolism) were associated with the pres-

ence of metabolic syndrome. Receiver operating characteristic curves generated based on

the PLS–DA models showed excellent areas under the curve (0.85 and 0.96, for metabolites

only model and enhanced metabolites model, respectively), high specificities (0.86 and 0.93), and good sensitivities (0.71 and 0.91).

Moreover, principal component analysis revealed that metabolic profiles can be used to further differentiate metabolic syndrome

with 3 versus 4–5 metabolic syndrome criteria. Collectively, these findings support targeted metabolomics approaches to distin-

guish metabolic syndrome from obesity alone, and to stratify metabolic syndrome status based on the number of criteria met.
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Introduction

Metabolic syndrome (MetS) is a growing public health chal-
lenge worldwide, primarily due to the increasing rates of
urbanization, excess energy intake, obesity, and sedentary
lifestyles.1,2 MetS is defined by the presence of �3 cardio-
metabolic risk factors, including abdominal (central) obes-
ity, hypertension, elevated fasting glucose, and
dyslipidemia.3 Tragically,�34% of the American population
and �47% of those �60 y of age meet the criteria for MetS,2

which increases the risk of developing type 2 diabetes mel-
litus (T2DM) by 5-fold and cardiovascular disease (CVD) by
2-fold over the next 5–10 years.4

MetS is a multifactorial disease. Therefore, individuals
afflicted with MetS will present with varying combinations
and degrees of metabolic abnormalities. Not all obese indi-
viduals will develop MetS and those with MetS will differ in
the pathology they develop (i.e. CVD, T2DM, or both).1

Therefore, it is important to enhance the prognostic value
of established MetS criteria (i.e. waist circumference, blood
pressure, and blood glucose and lipid levels) by identifying
novel metabolic markers to differentiate MetS from obese
non-MetS individuals and to stratify the risk of MetS status
based on the incremental number of clinical criteria
fulfilled.
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Metabolic profiling techniques, such as nuclear magnetic
resonance spectroscopy (NMR)- and mass spectrometry
(MS)-based metabolomics, have been used to differentiate
between MetS/diabetes and healthy populations by mea-
suring alterations of tens to hundreds of metabolites.5–7

Studies that define differential metabolic profiles of obese
individuals compared with those equally obese but meeting
MetS criteria have not been investigated, but are warranted
in light of the continued growth of the prevalence of MetS.2

Due to the physiological heterogeneity inherent to obesity
and MetS, not all obese individuals eventually develop
MetS. Moreover, the degree of obesity is not necessarily
linked with metabolic complication.1 Therefore, approaches
that can differentiate MetS from equally obese non-MetS
individuals using a cluster of metabolite biomarkers from
multiple biochemical pathways are needed to provide
better health status monitoring and to potentially direct
individuals to early intervention strategies. In the present
study, targeted metabolic profiling by HPLC-MS/MS was
conducted to detect metabolic profile differences between
obese individuals with MetS and equally obese individuals
not meeting the MetS criteria (obese non-MetS group). The
targeted metabolic profiling approach provided specific
screening of 221 metabolites from most relevant metabolic
pathways (e.g. citric acid cycle, glycolysis and amino acids
metabolism). We hypothesized that metabolite biomarkers
identified using a targeted metabolic profiling approach
would differentiate a group of heterogeneous MetS partici-
pants from obese non-MetS participants, by utilizing their
metabolic profiles to build statistical diagnostic models, and
that differences in metabolic profiles would predict the
incremental number of clinical criteria used for MetS
determination.

Methods
Participants

The protocol for this study was approved by the
Institutional Review Boards at the University of
Connecticut and The Ohio State University. Written
informed consent was obtained from all participants
before enrolling, and plasma samples were completely de-
identified prior to analysis. Plasma samples were obtained
after an overnight fast from individuals who underwent
screening for inclusion into a previously published clinical
study.8 Participants were non-diabetic, non-smokers, and
were not using any vasoactive medications (e.g. blood
pressure medications, statins) or dietary supplements.
Obese (body mass index (BMI) �30 kg/m2) men and pre-
menopausal women were screened for the presence of�3 of
the following established risk factors for MetS3: waist cir-
cumference �102 cm for men and �88 cm for women, fast-
ing triglycerides�150 mg/dL, fasting glucose�100 mg/dL,
resting systolic (�130 mmHg) and diastolic (�85 mmHg)
blood pressure, and HDL-cholesterol <40 mg/dL for men
and <50 mg/dL for women. Of the 69 participants
screened, 26 were classified as MetS and 43 as obese non-
MetS (Table 1).

Reagents

Authentic standards corresponding to the measured metab-
olites were purchased from Sigma-Aldrich (Saint Louis,
MO, USA) or IROA Technologies (Boston, MA, USA).
Stable isotope-labeled amino acid mix (20 AA U-13C, 97–
99%; U-15 N, 97–99%) was purchased from Cambridge
Isotope Laboratories (Tewksbury, MA, USA). HPLC-MS
grade acetonitrile, ammonium acetate, and acetic acid
were all purchased from Fisher Scientific (Pittsburgh, PA,
USA).

Clinical chemistries

Plasma triglycerides, total and HDL-cholesterol, and
glucose were measured as previously described8 using
commercially available clinical assays (Pointe Scientific,
Canton, MI, USA). Plasma LDL-cholesterol was calculated.9

Sample preparation

Plasma samples were prepared following the same protocol
from our previous work.10,11 In brief, samples were kept at
�80�C until sample preparation steps. Prior to sample prep-
aration, samples were randomized for analysis to ensure no
batch effects and prevent experimental bias. Samples were
thawed at 4�C, vortexed, and 50 mL was aliquot to a tube
prior to adding 50mL spiking solution (stable isotope-
labeled amino acid mix, used for quality control purpose
during mass spectrometry runs) and 250mL methanol that
contained a mix of 21 internal standards. After vortexing for
2 min, and incubating at �20�C for 20 min, samples were
centrifuged (22024.6 g for 20 min. The supernatant (150 mL)
was collected and dried at 30�C using a speedvac system.
Samples were then reconstituted with in a 1:1 mixture of
mobile phase A and B, and injected on the HPLC-MS/MS
system for analysis.

Table 1 Participant characteristics

Obese non-MetS

(n¼ 43 (12 men))

MetS (n¼ 26

(17 men))

Age (y) 29.3�10.3 27.4�9.8

BMI (kg/m2) 35.2�6.8 35.6�4.5

Waist circumference (cm) 109.1�15.9 112.1�9.2

SBP (mmHg) 115.7�11.4 122.7�11.9*

DBP (mmHg) 78.6�7.4 82.6�7.7*

MAP (mmHg) 90.9�8.2 96.1�8.2*

HR (bpm) 70.0�12.4 71.1�10.4

Glucose (mg/dL) 94.7�8.4 106.9�11**

TG (mg/dL) 76.9�29.4 154.2�61.3**

Total cholesterol (mg/dL) 160.5�27.7 165.5�39.4

HDL-C (mg/dL) 52.1�10.2 38.0�9.6**

LDL-C (mg/dL) 93.0�24.8 96.8�34.8

Note: Data are means�SD. DBP: diastolic blood pressure; HDL-C: high density

lipoprotein-cholesterol; LDL-C: low density lipoprotein-cholesterol; MAP: mean

arterial pressure; SBP: systolic blood pressure; TG: triglyceride.

*P value<0.05.

**P value<0.005.
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Targeted HPLC-MS/MS metabolic profiling

Targeted metabolomics of plasma samples was performed
according to validated procedures,10,11 with minor modifi-
cations. In brief, chromatographic separation and analyte
detection was performed using a Thermo Fisher Scientific
Dionex Ultimate 3000 HPLC system with inline TSQ-
Quantiva triple quadrupole tandem mass spectrometer
(MS/MS) equipped with an electrospray ionization (ESI)
source. Each sample was injected twice to perform detec-
tion in both negative and positive ionization modes.
Regardless of ionization mode, chromatographic separ-
ations of primarily polar metabolites were performed on a
Xbridge BEH hydrophilic interaction chromatography
column (Waters Corporation, Milford, MA, 150� 2.1 mm,
3.0mm). HPLC separation was performed (0.30 mL/min)
with the autosampler thermostatted to 4�C, and the
column compartment to 40�C. Mobile phase A consisted
of 5 mM ammonium acetate prepared in 10% acetonitrile
containing 0.2% acetic acid and mobile phase B was 5 mM
ammonium acetate prepared in 90% acetonitrile containing
0.2% acetic acid. Total running time for both ionization
modes was 20 min with chromatographic gradient separ-
ation (0–2 min, 70% B; 5 min, 30% B; 9 min, 30% B; 11 min,
70% B; 20 min, 70% B). The HPLC-MS/MS was controlled
by Xcalliber version 2.0 (Thermo Fisher Scientific). The tar-
geted metabolic profiling was performed in selected-reac-
tion-monitoring (SRM) mode, established by running
multiple authentic chemical standards first, and then
using the obtained retention time and SRM transition infor-
mation to identify metabolites from samples. The 221
metabolites were selected according to our published
work,10–12 and consistent with previous studies that these
represent key metabolites of interest from relevant meta-
bolic pathways.13,14 The detection parameters for these
metabolites are listed in supplementary Table S1. The detec-
tion ability and measurement reliability for each of the
metabolites using our mass spectrometry system were
also factors in determining which metabolites to include
in the analysis. The average inter-assay coefficient of vari-
ation for the quality control samples was below 15%, and
indicated excellent reproducibility of our targeted meta-
bolic profiling approach.

Data analyses

A Student’s paired t-test was used to evaluate participant
characteristic data between groups. All raw metabolomics
data were manually processed by the Quanbrowser module
of Xcalibur version 2.0 (Thermo Fisher Scientific). Mass
spectral data were normalized using pooled human
serum quality control samples (QC). The coefficient of vari-
ation values were calculated for every metabolite. To search
for potential metabolite biomarkers of MetS (metabolite
selection), model building was performed using SPSS
Version 22.0 (IBM Analytics, Armonk, NY, USA) and JMP
Pro12 (SAS Institute, Cary, NC, USA). The statistical meth-
ods applied in this study are Mann–Whitney U test, prin-
ciple components analysis (PCA), and generation of
receiver operating characteristic (ROC) curve. Partial least
squares discriminant analysis (PLS-DA) and Monte Carlo

cross validation (MCCV, developed using in-house scripts)
were also performed using Mathlab software (Mathworks,
Natick, MA, USA) installed with the PLS toolbox. MCCV
was applied to prevent the over-optimization of statistical
model. It was conducted with 500 iterations, using data
from 70% of the samples (randomly selected) as the training
set while the remaining 30% served as the testing set for
each iteration. Three specificities, 0.95, 0.85, and 0.75, for the
training sets were used to determine the thresholds of PLS-
DA-predicted Y values. The same thresholds were then
applied to the test set to determine sensitivities and specifi-
cities. The sample classification can be correctly assigned,
termed ‘‘true class,’’ or the sample class information can be
randomly permuted, which is referred to as ‘‘random per-
mutation.’’ The PLS-DA models can only be considered
validated if the MCCV tests turn out that true model did
not overlap with random permutation model. Metabolic
pathway analysis was performed using the online tool
MetaboAnalyst 3.0 (http://www.metaboanalyst.ca/).15

Results

There were 69 obese individuals screened for inclusion into
the previously complete clinical study,8 of which 26 met the
criteria for MetS (Table 1). MetS participants had three
(n¼ 11), four (n¼ 11), or all five MetS criteria (n¼ 4),
whereas obese non-MetS participants had �2 criteria.
Obesity status was similar between groups on the basis of
BMI and waist circumference. However, SBP, DBP, MAP,
plasma glucose and triglycerides were higher, and plasma
HDL-C lower, in MetS versus obese non-MetS participants
(P< 0.05).

To differentiate the metabolic profile between obese non-
MetS and MetS participants, a recently developed HPLC-
MS/MS approach was used.12 Of the 221 metabolite targets
considered for analysis, 144 metabolites from more than 20
metabolic pathways were identified. Mann–Whitney U test
P value together with the fold changes between the two
groups is plotted in Figure 1. Several cutoff values were
applied using the U test, and the cutoff P value of 0.01
was chosen to limit the number of metabolites to be used
in subsequent multivariate statistical modelling. Fifteen
metabolites were identified to be differentially regulated
in MetS compared with obese non-MetS individuals
(Table 2). Variable importance in projection (VIP) analysis,
which estimates the contribution of each variable to the
classification, is reported in Table 2. Variables with a VIP
scores >1 can be considered important for the separation of
the two groups of participants.4 The VIP value of the
15 metabolites identified ranged from 1.59 to 2.43, which
suggested their potential use in a multivariate statistical
model that differentiates MetS and obese non-MetS status.
The fold change and effect size of each metabolite between
the two groups of study participants was also calculated
and reported in Table 2. Interestingly, all 15 significantly
changed metabolites from the MetS group were detected
at a higher level than in the obese non-MetS group.
The effect size was at medium to large level (0.57–0.87)
for all significantly changed metabolites, which takes the
group size into consideration, and again indicated the
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strong differences of these metabolites between these two
groups.

To put individual metabolite into the context of con-
nected metabolic pathways network, and to understand
the potential impact to these pathways from MetS, we con-
structed a metabolic pathways impact map using
MetaboAnalyst 3.0 (Figure 2). From the metabolome view
of all metabolites detected, 11 metabolic pathways showed

significant P value following exposure (top section with
y-axis higher or equal to 6), and seven metabolic pathways
showed great pathway impact (x-axis larger or equal to 0.3).
The major pathways that were increased by the presence of
MetS include purine metabolism (i.e. urate); valine, leucine
and isoleucine degradation; aminoacyl-tRNA biosynthesis;
tryptophan metabolism; cysteine and methionine metabol-
ism; lysine degradation; pyrimidine metabolism; arginine
and proline metabolism; glycine, serine and threonine
metabolism; taurine and hypotaurine metabolism; alanine,
aspartate and glutamate metabolism; pantothenate and
CoA biosynthesis.

Multivariate statistical analysis was performed to deter-
mine the extent to which metabolic profiles could differen-
tiate MetS from obese non-MetS individuals. Metabolites
with p< 0.005 were applied for initial PLS-DA analysis
(Figure 3(a)), specifically isoleucine/leucine, cysteine, 4-
hydroxyproline, alanine, N-alpha-acetyl-L-lysine, creatine,
and glutamic acid. As shown in Figure 3(a), PLS-DA model-
derived ROC curve is generated to distinguish the MetS
group from obese non-MetS group using metabolic profiles
detected in this study and AUROC of 0.85, sensitivity of
0.71, and specificity of 0.86 were obtained, which indicated
good diagnostic power of this metabolite model for detect-
ing MetS individuals and discriminating against those who
were only obese. Monte Carlo cross-validation (MCCV) was
then applied (Figure 3(b)) with 70% samples used as train-
ing set and the remaining 30% were used as testing set.
Sensitivities were calculated for test specificities of 0.95,
0.85, and 0.75. The sample classification can be correctly
assigned, termed ‘‘true class,’’ or the sample class informa-
tion can be randomly permuted, which is referred to as a
‘‘random permutation.’’ Three groups of error bar from true
class to random permutation group did not have any over-
lap, which indicates that clear separation between the obese
non-MetS and MetS groups can be achieved and validated.
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Figure 1 Volcano plot showing the P value (y-axis) and the fold changes (x-axis) of the metabolites detected in this study. Cutoff P value of 0.01 was used. The

metabolites above the horizontal line with significant P value are alanine, trans-4-hydroxyproline, N-alpha-acetyl-L-lysine, leucine/isoleucine, glutamic acid, creatine,

cysteine, kynurenine, inosine-50-diphosphate, urate, inosine, tryptophan, methionine, D-glucosamine-6-sulfate, (2R, 3R) – (�)-2, 3-butanediol. (A color version of this

figure is available in the online journal.)

Table 2 Metabolites with P value less than 0.01 in comparison of MetS

versus Obese non-MetS group

Metabolite P value

VIP

value

Fold

changes

Effect

size

Alanine 1.17E-04 2.43 1.18 0.87

Trans-4-

hydroxyproline

1.67E-03 2.06 1.19 0.73

N-alpha-acetyl-

L-lysine

1.73E-03 1.94 1.32 0.69

Leucine/isoleucine 1.98E-03 1.86 1.16 0.67

Glutamic acid 1.98E-03 1.81 1.23 0.65

Creatine 3.64E-03 1.93 1.22 0.69

Cysteine 4.71E-03 1.59 1.13 0.57

Kynurenine 5.02E-03 1.78 1.14 0.64

Inosine-50-

diphosphate

6.07E-03 1.94 1.37 0.69

Urate 6.66E-03 1.89 1.10 0.68

Inosine 7.77E-03 1.88 1.36 0.67

Tryptophan 8.01E-03 1.69 1.13 0.60

Methionine 8.25E-03 1.72 1.11 0.61

D-glucosamine-6-

sulfate

8.25E-03 1.77 1.13 0.63

(2R,3R)-(-)-2,3-

butanediol

8.77E-03 1.75 1.11 0.62
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Additionally, an enhanced PLS-DA model was estab-
lished by using these seven metabolites and combining
three clinical characteristics (plasma glucose, plasma TG
and HDL) that also have P values less than 0.005 in com-
parison to the two groups to test the possibility of model
performance enhancement. As shown in Figure 4, an ROC
curve is again generated, and the enhanced metabolite
mode showed excellent AUROC of 0.96 for differentiating
MetS participants from obese non-MetS, with sensitivity of
0.91 and specificity of 0.93, which is superior to the metab-
olites only model shown in Figure 3. MCCV was again

performed and indicated that robust detection of MetS par-
ticipants can be achieved by this enhanced PLS-DA model.
The successful establishment of these PLS-DA models
proved that shared changes of metabolites from a group
of heterogeneous MetS patients can be detected and used
for the differentiation of MetS from obese non-MetS
population.

Based on the findings of metabolic profiles differentiat-
ing obese non-MetS individuals from MetS participants in
this study, we considered that metabolite profiles would
also differ between MetS participants meeting 3 criteria
compared with those meeting �4 criteria. Metabolic profile
comparison of these two subgroups was conducted and
principal component analysis (PCA) was performed using
11 significantly changed metabolites (Table 3). Based on the
metabolic profiles, good separation between the subgroup
of 3 criteria and the subgroup of �4 criteria can be observed
in the PCA score plot (Figure 5(a)) with only a few excep-
tions. The loading plot (Figure 5(b)) showed the different
contribution of these 11 significantly different metabolites
to the separation of these two subgroups of MetS
participants.

Discussion

The findings of this cross-sectional study provide the first
evidence that metabolic profiles can be used to differentiate
participants with MetS from similarly obese individuals
who do not meet the established criteria of MetS.
Furthermore, the study demonstrated that within MetS par-
ticipants, their unique metabolic profiles correlated to the
number of criteria used for MetS classification.

In recent years, metabolomics has been broadly applied
to study comprehensive characterization of the small mol-
ecule metabolites found in living organism.16,17 Since the
metabolome investigated is closely tied to the phenotype
of an organism, and is also sensitive to perturbation such
as lifestyle and dietary changes, metabolomics provides a
unique approach to examine the pathophysiological status
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Figure 3 ROC (upper panel) and MCCV (lower panel) using metabolites with p<0.005 in comparison of MetS group versus Obese non-MetS in the metabolites only

model. Seven metabolites are used, AUROC¼ 0.85, sensitivity¼ 0.71 and specificity¼0.86. True: true class model; random: random permutation model. (A color

version of this figure is available in the online journal.)

Figure 2 A metabolome view showing all impacted metabolic pathways in

comparison between MetS and Obese non-MetS groups in this study. (a) Purine

metabolism; (b) valine, leucine and isoleucine degradation; (c) aminoacyl-tRNA

biosynthesis; (d) tryptophan metabolism; (e) cysteine and methionine metabol-

ism; (f) lysine degradation; (g) pyrimidine metabolism; (h) arginine and proline

metabolism; (i) glycine, serine and threonine metabolism; (j) taurine and hypo-

taurine metabolism; (k) alanine, aspartate and glutamate metabolism; (l) panto-

thenate and CoA biosynthesis. (A color version of this figure is available in the

online journal.)
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of individuals, and provides immediate feedback and guid-
ance for intervention and prevention. In this study, the
metabolic profile of participants afflicted with MetS was
particularly focused via a large-scale metabolomics investi-
gation of 221 targeted metabolites from more than 20 meta-
bolic pathways. The advantage of our targeted metabolic
profiling approach was that it provided broad coverage of
relevant metabolites while simultaneously enabling confi-
dent metabolite identification, thus avoiding tedious com-
pound database search and confirmation steps required for
untargeted metabolic profiling approaches.5 The metabolite
targets were carefully selected from metabolomics stu-
dies10,11,13,14 in which their detectability and measurement
reproducibility were validated. Thus, the metabolites
reported from the present study are readily interpreted
within their biological context to potentially address ques-
tions of public health and scientific significance.

In our study, 15 metabolites with statistical significance
were detected when comparing MetS and obese non-MetS
individuals, including nucleosides, amino acids and deriva-
tives, amino sugars, purine derivatives and polyols. Amino
acid levels have been reported to be associated with obesity.
Specifically, blood levels of branched chain amino acids
(BCAAs) are elevated in obese, insulin-resistant or T2DM
subjects relative to healthy controls.18 It is also suggested
that increased catabolism of BCAAs is induced by obesity,
and are correlated with insulin resistance even in obese
individuals that were deemed healthy but insulin resistant
relative to lean controls.19 In our study, the amino acids
alanine, trans-4-hydroxyproline, N-alpha-acetyl-L-lysine,
leucine/isoleucine, glutamic acid, cysteine, kynurenine,
tryptophan, and methionine were detected at higher
levels in MetS compared with obese non-MetS individuals.
MetS-mediated increases in these metabolites suggest
altered amino acid metabolism, which may play a patho-
genic role in the transition from obese non-MetS to MetS.

Glucose and energy metabolism are well established to
be altered in obesity in both animal and human studies.
Elevated level of free fatty acids and basal lipolysis has
also been linked to obesity, and their alteration is closely
related to CVD. Previous metabolomics studies have
reported that metabolic dysregulation of glucose and
lipids is the most relevant factor for the pathophysiology
of T2DM.20 In our study, we did not observe many signifi-
cantly altered glucose or lipid metabolites, which could
potentially be explained by the similar obesity status of
the MetS and obese non-MetS participants. As other studies
have compared those with MetS versus healthy controls,7

we focused on two equally obese groups distinguished by
the classification of MetS to provide alternative approach
for the early diagnostics of MetS, and better understanding
of their metabolic profile differences. Findings from our
study provide novel evidence by identifying a group of
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Figure 4 ROC (upper panel) and MCCV (lower panel) using p< 0.005 in comparison of MetS group versus Obese non-MetS, metabolites and clinical characteristics

(plasma glucose, plasma TG, HDL) combined model. AUROC¼0.96, sensitivity¼0.91, specificity¼ 0.93. True: true class model; random: random permutation model.

(A color version of this figure is available in the online journal.)

Table 3 Metabolites with P value less than 0.05 in comparison of

subgroups of MetS participants (3 factors versus 4 and 5 factors)

Metabolites P value

VIP

value

Fold

changes

Effect

size

Deoxyribose 1.81E-02 1.71 0.82 �0.73

Lactose 4.73E-02 1.60 0.83 �0.69

Mesoxalate 1.65E-02 1.80 0.90 �0.77

normetanephrine 3.55E-04 2.92 1.51 1.25

Hydroxybutyric acid 3.10E-02 1.61 0.98 �0.69

Glutamine 2.18E-02 1.85 0.89 �0.79

Cystine 1.81E-02 2.22 0.67 �0.95

Allantoin 4.01E-02 1.59 0.90 �0.68

Xanthosine 1.12E-02 2.00 0.78 �0.86

Urate 1.50E-02 2.16 0.88 �0.92

D-fructose-6-

phosphate

4.73E-02 1.83 0.75 �0.79
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altered metabolic pathways from MetS comparing to obese
non-MetS, which could be used as potential intervention
targets to prevent the transition from obesity to MetS in
the future. Furthermore, we discovered a potential meta-
bolic profile from MetS subgroups that are correlated to
the number of MetS criteria present.

While our findings are potentially clinically impactful,
many areas remain to be explored in future studies. First,
while a group of fatty acids were included in our detection
panel of targeted metabolites, other important lipid metab-
olites need to be investigated to advance an understanding
of alterations in lipid metabolism during MetS. Moreover,
linking the metabolic profiles to the heterogeneity of MetS,
such as different combinations of MetS criteria, was not
extensively explored in this study primarily due to limited
number of participants in each subgroup of MetS. Thus,
prospective studies are warranted to address these areas
and advance our understanding of the utility of metabolic
profiling to predict the risk for developing MetS.

Conclusion

Our results demonstrated a panel of plasma metabolites
from numerous physiologically significant metabolic path-
ways (i.e. purine metabolism, valine, leucine and isoleucine
degradation and tryptophan metabolism) can be integrated
into a PLS-DA model for MetS detection. Furthermore, with
the enhancement provided by the clinical criteria of MetS,
this metabolic profiling approach can potentially serve as a
novel tool for MetS detection and monitoring, and provide
useful metabolic information for future interventions tar-
geting obesity and MetS. While these findings from a
small sample size are promising, further validation and
prospective studies using a larger patient cohort will be
needed to substantiate the results, verify the important bio-
logical changes of these key metabolites, and determine the

association of pathophysiology of MetS to these metabolite
biomarkers.
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