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Abstract

Speech production is studied from both psycholinguistic and motor-control perspectives, with little 

interaction between the approaches. We assessed the explanatory value of integrating 

psycholinguistic and motor-control concepts for theories of speech production. By augmenting a 

popular psycholinguistic model of lexical retrieval with a motor-control-inspired architecture, we 

created a new computational model to explain speech errors in the context of aphasia. Comparing 

the model fits to picture-naming data from 255 aphasic patients, we found that our new model 

improves fits for a theoretically predictable subtype of aphasia: conduction. We discovered that the 

improved fits for this group were a result of strong auditory-lexical feedback activation, combined 

with weaker auditory-motor feedforward activation, leading to increased competition from 

phonologically related neighbors during lexical selection. We discuss the implications of our 

findings with respect to other extant models of lexical retrieval.

Keywords

Speech production; Computational models; Neuropsychology

Speech production has been studied from several theoretical perspectives, including 

psycholinguistic, motor control, and neuroscience, often with little interaction between the 

approaches. Recent work, however, has suggested that integration may be productive, 

particularly with respect to applying computational principles from motor control, such as 

the combined use of forward and inverse models, to higher-level linguistic processes 

(Hickok, 2012, 2014a, 2014b). Here we explore this possibility in more detail by modifying 

Foygel and Dell’s (2000) highly successful psycholinguistic, computational model of speech 

production, using a motor-control-inspired architecture, and assess whether the new model 

provides a better fit to data and in a theoretically interpretable way.

We first present the theoretical foundations for this work by (1) describing the motivations 

behind Foygel and Dell’s (2000) semantic–phonological model (SP), (2) briefly 

summarizing the motor-control approach, (3) highlighting some principles from our recent 

conceptual attempt to integrate the approaches, and (4) describing our modification of SP 
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using a fundamental principle from motor-control theory to create our new semantic–

lexical–auditory–motor model (SLAM). We then present the computational details of both 

the SP and SLAM models, along with simulations comparing SP with SLAM. To preview 

the outcome of these simulations, we found that SLAM outperforms SP, particularly with 

respect to a theoretically predictable subcategory of aphasic patients. We conclude with a 

discussion of how the new model relates to some other extant models of word production.

The SP model

SP has its roots in Dell’s (1986) theory of retrieval in sentence production, which was 

developed to account for the speech errors, or slips of the tongue, found in large collections 

of natural speech. To this end, the theory integrated psychological and linguistic concepts: 

From psychology it adopted the notion of computational simultaneity, in which multiple 

internal representations compete for selection prior to production, and from linguistics it 

incorporated hierarchical levels of representation, as well as the separation at each level 

between stored lexical knowledge and the applied generative rules.

Dell, Schwartz, Martin, Saffian, and Gagnon (1997) proposed a computational model that 

limited the focus to single-word production, but extended the theoretical scope to include 

explanations of speech errors in the context of aphasia. The basic idea was that the pattern of 

aphasic speech errors reflects the output of a damaged speech production system, which 

could be modeled by adjusting parameters in the normal model to fit aphasia data. The 

model’s architecture consisted of a three-layer network with semantic, lexical, and 

phonological units, and the connections among the units were selected by the experimenters 

to approximate the structure of a typical lexical neighborhood (Fig. 1). Word production was 

modeled as a spreading-activation process, with noise and decay of activation over time. 

Damage was implemented by altering the parameters that control the flow of activation 

between representational levels. Simulations were then used to identify parameter values 

that generated frequencies of error types that were similar to those made by aphasic patients.

Due to the computationally intensive nature of the simulation method, however, 

comprehensive explorations were effectively limited to only two parameters at a time. 

Nevertheless, in a series of articles beginning with Foygel and Dell (2000), two free 

parameters in the model were identified that account for an impressive variety of the data 

derived from a picture-naming task, including clinical diagnostic information (Abel, Huber, 

& Dell, 2009), lexical frequency effects (Kittredge, Dell, Verkuilen, & Schwartz, 2008), 

characteristic error patterns associated with different types of aphasia (Schwartz, Dell, 

Martin, Gahl, & Sobel, 2006), characteristic patterns of recovery (Schwartz & Brecher, 

2000), and interactive error effects (Foygel & Dell, 2000). These two free parameters were 

the connection strengths between semantic and lexical representations (the s-weight) and 

between lexical and phonological representations (the p-weight), an architecture known as 

SP. SP has been used to explain performance on other tasks, as well, such as word repetition 

(Dell, Martin, & Schwartz, 2007), and to predict the location of neurological damage seen in 

clinical imaging (Dell, Schwartz, Nozari, Faseyitan, & Branch Coslett, 2013), although here 

we will focus primarily on its relevance to picture-naming errors.
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SP pertains specifically to computations that occur between the semantic and phonological 

levels. It is assumed that the output of the model is a sequence of abstract phonemes that 

must then be converted into motor plans for controlling the vocal tract. We next turn to some 

fundamental constructs that have come out of research on how motor effectors are, in fact, 

controlled.

Motor-control theory

At the broadest level, motor control requires sensory input to motor systems for initial 

planning and feedback control. It requires input for planning to define the targets of motor 

acts (e.g., a cup of a particular size and orientation and in a particular location relative to the 

body) and to provide information regarding the current state of the effectors (e.g., the 

position and velocity of the hand relative to the cup). Without sensory information, action is 

impossible, as natural (Cole & Sedgwick, 1992; Sanes, Mauritz, Evarts, Dalakas, & Chu, 

1984) and experimental (Bossom, 1974) examples of sensory deafferentation have 

demonstrated. Sensory information has also been shown to provide critical feedback 
information during movement (Wolpert, 1997; Wolpert, Ghahramani, & Jordan, 1995), 

which provides a mechanism for error detection and correction (Kawato, 1999; Shadmehr, 

Smith, & Krakauer, 2010). When precise movements are performed rapidly, however, as in 

speech production, feedback mechanisms may be unreliable, due to feedback delay or a 

noisy environment. In this case, a state feedback control system can be supplemented with 

forward and inverse models (Jacobs, 1993), enabling the use of previously learned 

associations between motor commands and sensory consequences to guide the effectors 

toward sensory goals. This arrangement implies that the motor and sensory systems are 

tightly connected, even prior to online production or perception.

In the case of speech, the most critical sensory targets are auditory (Guenther, Hampson, & 

Johnson, 1998; Perkell, 2012), although somatosensory information also plays an important 

role (Tremblay, Shiller, & Ostry, 2003). Altered auditory feedback has been shown to 

dramatically affect speech production (Houde & Jordan, 1998; Larson, Burnett, Bauer, 

Kiran, & Hain, 2001; Yates, 1963), and changes in a talker’s speech environment can lead to 

“gestural drift”—that is, changes in his or her articulatory patterns (i.e., accent; Sancier & 

Fowler, 1997). Additionally, neuroimaging experiments investigating covert speech 

production have consistently reported increased activation in auditory-related cortices in the 

temporal lobe (Callan et al., 2006; Hickok & Buchsbaum, 2003; Okada & Hickok, 2006).

Some particularly relevant evidence for the role of the auditory system in speech production 

has come from neuropsychological investigations of language. Striking patterns of impaired 

and intact language-processing abilities resulting from neurological injury have led theorists 

to propose separate auditory and motor speech representations in the brain (Caramazza, 

1991; Jacquemot, Dupoux, & Bachoud-Lévi, 2007; Pulvermüller, 1996; Wernicke, 

1874/1969). Patients with conduction aphasia (Goodglass, 1992), for example, have fluent 

speech production, suggesting preserved motor representations. These patients also have 

good auditory comprehension and can recognize their own errors, suggesting spared 

auditory representations. Despite these abilities, they make many phonemic errors in 

production and have trouble with nonword repetition. This pattern is typically explained as 
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resulting from damage to the interface between the separate auditory and motor systems 

(Anderson et al., 1999; Geschwind, 1965; Hickok, 2012; Hickok et al., 2000). This point 

regarding conduction aphasia has important theoretical implications, as we discuss below.

Conceptual integration

The hierarchical state feedback control (HSFC; Hickok, 2012) model provides a theoretical 

framework for the integration of psycholinguistic notions with concepts from biological 

motorcontrol theory. This conceptual framework is organized around three central 

principles. The first is that speech representations have complementary encodings in sensory 

and motor cortices that are activated in parallel during speech production, all the way up to 

the level of (at least) syllables. The second principle is that a particular pattern of excitatory 

and inhibitory connections between the sensory and motor cortices, mediated by a 

sensorimotor translation area, implements a type of forward/inverse model that can robustly 

guide motor representations toward sensory targets, despite the potential for errors in motor 

program selection during early stages of motor planning/activation. The third principle is 

that the sensorimotor networks supporting speech production are hierarchically organized, 

with somatosensory cortex processing smaller units on the order of phonemes (or more 

accurately, phonetic-level targets such as bilabial closure, which can be coded as 

somatosensory states), and auditory cortex processing larger units on the order of syllables 

(i.e., acoustic targets). A schematic of the HSFC framework is presented in Fig. 2; it is clear 

that the top portion (darker colors) embodies the two steps of SP but breaks down the 

phonological component into two subcomponents, an auditory–phonological network and a 

motor–phonological network. This conceptual overlap has inspired our creation of a new 

computational model that is directly related to the first principle and is partially related to 

the other two principles. We reasoned that the architectural assumptions of the HSFC model 

can be evaluated, in part, by integrating them with an established and successful 

computational model of naming, SP; if the architectural changes led to improved modeling 

performance, this would provide support for the new framework.

The SLAM model

SLAM is a computational model of lexical retrieval that divides phonological 

representations into auditory and motor components (Fig. 3). The dual representation of 

phonemes directly follows from the first HSFC principle. The choice to label the sensory 

units as auditory representations is motivated by the third principle—specifically, that this 

level of coding is larger than the phonetic feature. Neither SP nor SLAM includes inhibitory 

connections, and thus the second HSFC principle is not directly implemented; however, the 

pattern of connections in the SLAM model does implement a type of forward/inverse model 

that can reinforce potentially noisy motor commands. Our goal here was to modify the 

computational assumptions of SP as little as possible in order to assess the effects of the 

architectural assumption of separate motor and sensory phonological representations.

During picture-naming simulations, activation primarily flows from semantic to lexical to 

auditory to motor units— hence the model’s acronym, SLAM. There is also a weaker, direct 

connection between lexical and motor units. The existence of this lexical–motor connection 
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acknowledges that speech production may occur via direct information flow from lexical to 

motor units, an assumption dating back to Wernicke (1874/1969), which is needed to explain 

preserved fluency and spurts of error-free speech in conduction aphasia. However, the 

connection is always weaker than the lexical–auditory route (again, Wernicke’s original 

idea), motivated by several points. First, the auditory–lexical route is presumed to develop 

earlier and to be used more frequently than the lexical–motor route. Longitudinal studies 

have shown that children begin to comprehend single words several months before they 

produce them, and they acquire newly comprehended words at nearly twice the rate of newly 

produced words (Benedict, 1979). Second, motor-control theory dictates that motor plans are 

driven by their sensory targets. During development, the learner must make reference to 

auditory targets, in order to learn the mapping between speech sounds and the motor 

gestures that reproduce those sounds (Hickok, 2012; Hickok, Houde, & Rong, 2011). Third, 

in the context of aphasia, comprehension deficits tend to recover more than production 

deficits (Lomas & Kertesz, 1978), suggesting a stronger association between lexical and 

auditory–phonological representations.

The assumption that the lexical-auditory mapping is always stronger than the lexical–motor 

mapping has an important consequence: It means that the SLAM model is not merely the SP 

model with an extra part; in fact, there is effectively zero overlap in the parameter spaces 

covered by SP and SLAM. The reason for this is as follows. Given the SLAM architecture 

shown in Fig. 3, it is clear that one could implement SP simply by setting the connection 

weights in the lexical–auditory and auditory–motor mappings to zero and letting the lexical–

motor weights vary freely. This would make SP a proper subset of SLAM, allowing SLAM 

to cover a parameter space (and therefore fits to data) identical to that of SP. However, this 

architectural possibility was explicitly excluded by implementing our assumption that 

lexical–auditory weights are always stronger than lexical–motor weights: If the lexical–

auditory weights are zero, then the lexical–motor weights must also be zero and cannot vary 

freely—thus effectively excluding the parameter subspace used by SP. This further allows us 

to test SLAM’s assumption that the lexical-auditory route is the primary one used in naming. 

We can also examine model performance with the opposite constraint—namely, when the 

lexical-auditory weights are always less than the lexical–motor weights—a variant we might 

call “SLMA” to reflect the lexical–motor dominance and that would include SP parameter 

space as a subset. SLAM and SLMA have the same numbers of free parameters, both of 

which are more than that of SP, but with different assumptions regarding the connection 

strength patterns. If SLAM were to do better than SLMA, even though SLMA implements 

SP as a proper subset of its parameter space, it would demonstrate that the primacy of the 

lexical–auditory route is not only theoretically motivated, but also necessary for the observed 

improvements.

To summarize, we hypothesized that SLAM would characterize deficits in the general 

aphasia population at least as well as SP, and would primarily benefit the modeling of 

conduction aphasia. Recall that conduction aphasia is best explained as a dysfunction at the 

interface between auditory and motor speech representations that affects the phonological 

level, in particular (Hickok, 2012; Hickok et al., 2011). Thus, a naming model that 

incorporates a mapping between auditory–phonological and motor–phonological 

representations should provide a better fit for speech errors resulting from dysfunction in 
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this mapping. To test this hypothesis, we compared the SP and SLAM model fits to a large 

set of aphasic picture-naming data.

Computational implementation

Patient data

All data were collected from the Moss Aphasia Psycholinguistic Project Database (Mirman 

et al., 2010; www.mappd.org). The database contains deidentified data from a large, 

representative group of aphasic patients, including responses on the Philadelphia Naming 

Test (PNT; Roach, Schwartz, Martin, Grewal, & Brecher, 1996), a set of 175 line drawings 

of common nouns. All patients in the database had postacute aphasia subsequent to a left-

hemisphere stroke, without any other diagnosed neurological comorbidities, and they were 

able to name at least one PNT item correctly. We analyzed the first PNT administration for 

all patients in the database with the demographic information available, including aphasia 

type and months postonset (N=255). The cohort consisted of 103 anomic, 60 Broca’s, 46 

conduction, 35 Wernicke’s, and 11 other aphasics with transcortical sensory, transcortical 

motor, postcerebral artery, or global etiologies. The median months poststroke was 28 [1, 

381], and the median PNT percent correct was 76.4 [1, 99].

Computational models

As we mentioned above, SP was first presented by Foygel and Dell (2000). The model’s 

approach to simulating picture naming instantiates an interactive, two-step, spreading-

activation theory of lexical retrieval and consists of a three-layer network, with individual 

units representing semantic, lexical, and phonological symbols (Fig. 1). The number of units 

and the pattern of connections are intended to approximate the statistical probabilities of 

speech error types in English, by implementing the structure of a very small lexical 

neighborhood consisting of only six words, one of which is the target. The model includes 

six lexical units, with each connected to ten semantic units representing semantic features. 

Semantically related words share three semantic units, meaning that on a typical trial, with 

only one word that is semantically related to the target, the network has a total of 57 

semantic units. Each lexical unit is also connected to three phonological units, 

corresponding to an onset, vowel, and coda. There are ten phonological units total: six 

onsets, two vowels, and two codas. Words that are phonologically related to the target differ 

only by their onset unit, and the network always consists of two such words. Finally, the 

remaining two words in the network are unrelated to the target, with no shared semantic or 

phonological units. On 20 % of the trials, one phonologically related word is also 

semantically related, creating a neighbor that has a “mixed” relation to the target.

Simulations of picture naming begin with a boost of activation delivered to the semantic 

units. Two parameters, S and P, specify the bidirectional weights of lexical-semantic and 

lexical–phonological connections, respectively. Activation spreads simultaneously between 

all layers, in both directions, for eight time steps according to a linear activation rule with 

noise and decay. Then, a second boost of activation is delivered to the most active lexical 

unit, and activation continues to spread for a further eight time steps. Finally, the most active 

phonological onset, vowel, and coda units are selected as output to be compared with the 
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target. Production errors occur due to the influence of noise as activation levels decay, which 

can be mitigated by strong connections. Responses are classified as correct, semantic, 

formal, mixed, unrelated, or neologism. For a given parameter setting, a multinomial 

distribution over these six response types is estimated by generating many naming attempts 

with the model. These distributions may then be compared with those that result from the 

naming responses produced by aphasic patients.

SLAM retains many of the details of SP, consistent with our aim to primarily assess the 

effects of the architectural modification. The semantic and lexical units remain unchanged, 

but there is an additional copy of the phonological units, with one group designated as 

auditory and the other as motor (Fig. 3). Four parameters specify the bidirectional weights of 

semantic–lexical (SL), lexical–auditory (LA), lexical–motor (LM), and auditory–motor 

(AM) connections. The LA and LM connections are identical to the P connections in the SP 

model, with each lexical unit connecting to three auditory and three motor units, whereas the 

AM connections are simply one-to-one. Simulations of picture naming are carried out in the 

same two-step fashion as with SP, with boosts delivered to the semantic and then the lexical 

units, and phonological selection occurring within motor units.

Fitting data

In order to fit data, the model is evaluated with different sets of parameters that yield 

sufficiently different output distributions, creating a finite-element map from parameter 

space to data space, and vice versa. This process involves, first, selecting a set of parameter 

values (e.g., S and P weights), then generating many naming attempts with the model using 

that parameter set, in order to estimate the frequency of each of the six types of responses 

that occur with that particular model setup. Once those frequencies have been determined, 

that weight configuration becomes associated with the output distribution in a paired list 

called a map. Each point in the map represents a prediction about the type of error patterns 

that are possible when observing aphasic picture naming. One way to evaluate a model, then, 

is to measure how close its predictions come to observed aphasic error patterns. The distance 

between an observed distribution and the model’s nearest simulated distribution is referred 

to as the model’s fit for that data point. The root mean squared deviation (RMSD) is an 

arbitrary but commonly used measure of fit, which can be interpreted as the average 

deviation for each response type. For example, an RMSD of .02 indicates that the observed 

proportions deviate from the predicted proportions by .02, on average (e.g., predicted=[.50, .

50]; observed=[.48, .52]). Thus, a lower RMSD value indicates a better model fit. 

Immediately, the question arises of how many points one should generate, and how to select 

the parameters to avoid generating redundant predictions.

In their Appendix, Foygel and Dell (2000) provided guiding principles for generating a 

variable-resolution map of parameter space, along with an example algorithm. They noted 

that the particular choice of mapping algorithm likely would have little impact on the fit 

results, as long as it yielded a comprehensive search; however, given the inherently high 

computational cost of mapping, a particular algorithm may affect the map’s maximum 

resolution in practice. A second algorithm for parameter space mapping was given by Dell, 

Lawler, Harris, and Gordon (2004), and these maps are considered to be the standard for SP, 
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since they are available online and have been used in subsequent publications. This SP map 

has 3, 782 points with 10,000 samples at each point and required several days of serial 

computation to generate. Clearly, the computational cost associated with the mapping 

procedure represents a considerable bottleneck for developing and testing models. Adding 

new points to the map improves the chances of a prediction lying closer to an observation, 

with diminishing returns as the model’s set of novel predictions winnows. As Dell has 

suggested, because the goal is to find the best fit, adding more points to improve model 

performance is probably a worthy pursuit (G. Dell, personal communication, July 12, 2013). 

Moreover, because SLAM has two additional parameters, we needed to modify the mapping 

procedure to generate maps more efficiently.

We greatly improved efficiency by redesigning the mapping algorithm to take advantage of 

its inherent parallelism. There are two main iterative steps in the mapping algorithm: point 

selection and point evaluation. The coordinates of a point in parameter space are defined by 

a possible parameter setting for the model (point selection), and a corresponding point in 

data space is defined by the proportions of response types generated with that parameter 

setting (point evaluation). The point evaluation step is extremely amenable to parallelization, 

because the simulations involve computations across independent units, independent 

samples, and independent parameter sets. Point selection, however, required a new approach 

to foster parallelism: Delaunay mesh refinement.

The Delaunay triangulation is a graph connecting a set of points, such that the circumcircle 

of any simplex does not include any other points in the set. This graph has many favorable 

geometric properties, including the fact that edges provide adjacency relationships among 

the points. The new point selection algorithm takes advantage of these adjacency 

relationships. Beginning with the points lying at the parameter search range boundaries and 

their centroid, if the separation between any two adjacent points in parameter space exceeds 

a threshold distance (RMSD) in data space, their parameter space midpoint is selected for 

evaluation and is added to the map. These new points are then added to the Delaunay mesh, 

and the process reiterates until all edges are under threshold. Thus, on each iteration, the 

point selection algorithm yields multiple points to be evaluated in parallel across the entire 

parameter search range. Parallel processing was executed on a graphics processing unit 

(GPU) to further improve efficiency.1

Before statistically comparing SP’s and SLAM’s performances, we studied the effects of 

map resolution on the model fits. First, we generated a very high-resolution map for each 

model using a low RMSD threshold of .01 to encourage continued exploration of the 

parameter space. Each map included 10,000 samples at each point, and the parameters 

varied independently in the range [.0001, .04]. The maximum parameter values were 

selected to be near the lowest values that yielded the highest frequency of correct responses, 

1At the time of writing the manuscript, the authors were unaware of any freely available parallel algorithm to incrementally construct 
the Delaunay triangulation in arbitrary dimensions. We therefore implemented point evaluation and edge bisection using CUDA C and 
the Thrust library, executing these steps on a GPU, while the Delaunay triangulation was constructed on the computer’s central 
processing unit (CPU) using the CGAL library. Performance tests comparing the parallel point evaluation step to a serial C++ 
implementation, running on an Nvidia Tesla K20Xm GPU and an Intel 1,200-MHz 64-bit CPU, respectively, demonstrated a speedup 
by a factor of 26.0.
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so that reduced values would lead to more errors. Due to the use of a low mapping threshold, 

the algorithm was halted before completion, after generating an arbitrarily large number of 

points. Early termination is not a great concern, because the algorithm efficiently selects 

points over the full search range. This fact also makes it a trivial matter to reduce the map 

resolution while still covering the full space.

The mapping procedure generated an initial 31,593 points for the SLAM model, with 

parameters freely varying; then, in accordance with the SLAM architecture, all points with 

LM ≥ LA were removed, yielding a SLAM map with 17,786 points. The full SP map had 

57,011 points. Next, we created 50 lower-resolution maps for each model by selecting 

subsets from the larger maps, with logarithmically spaced numbers of points from 5 to 

17,000. For each map, we calculated the mean fit for the aphasic patients as a whole and for 

each of the diagnosis groups, excluding the heterogeneous diagnosis group. Figure 4 plots 

the fit curves. As we expected for both models, adding points improved the fits with 

diminishing returns. The relative fit patterns appeared to stabilize around 2,321 points, 

marked by vertical lines in the figure. We therefore chose to compare SP and SLAM at this 

map resolution; our findings should apply to any higher-resolution map comparisons, with 

trends favoring SLAM as resolution increases.

To compare the new parallel-generated maps with the standard serially generated maps, we 

also identified a parallel SP map resolution that yielded similar performance in terms of 

mean and maximum fit to the values reported in Schwartz et al. (2006). For this set of 94 

patients, a parallel SP map with 189 points resulted in a mean and a maximum RMSD of .

0238 and .0785, as compared with the reported values of .024 and .084, respectively. As 

expected, the parallel algorithm selected points much more efficiently than the serial 

algorithm, requiring many fewer predictions to achieve similar performance. We used this 

lower map resolution as a baseline, to compare the effects of adding points to the standard 

SP map with the effects of augmenting SP’s structure. Because our fitting routine yielded 

better fits than the standard SP maps that have been available to researchers online (Dell et 

al., 2004), we have provided our fitting routine, with adjustable map resolutions, along with 

our new model, at the following Web address: http://cogsci.uci.edu/~alns/webfit.html

Results

First, we examined our hypothesis that SLAM would fit the data at least as well as SP for the 

general aphasia population. All analyses were performed using the MATLAB software 

package. As we mentioned above, we chose to use RMSD as our measure of fit (where a 

lower value means a better fit). Table 1 provides descriptive statistics of the model fits for 

the entire sample of patients, as well as for the five subtypes of aphasia. Figure 5 shows a 

scatterplot comparing the SP and SLAM fits. The solid diagonal line represents the 

hypothesis that the models are equivalent, and the dotted lines indicate one standard 

deviation of fit difference in the sample. It is clear that both models do quite well overall, 

with the majority of patients clustering below .02 RMSD. Although the models tend to 

produce similar fits in general, it is also clear that a subgroup of patients falls well outside 

the 1-SD boundaries. The inset in Fig. 5 shows a bar graph comparing the numbers of 
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patients who were better fit (>1 SD) by SP or SLAM, demonstrating that SLAM provides 

better fits for a subgroup of patients without sacrificing fits in the general population.

Next, we examined our hypothesis that SLAM would improve the model fits specifically for 

conduction aphasia. Figure 6 displays the RMSD differences between the models for 

individual patients, grouped by aphasia type; positive difference values indicate improved 

fits for SLAM over SP. It is clear that the SLAM model provides the largest and most 

consistent fit improvements for the conduction group, and a majority of the fits for 

Wernicke’s patients also benefit from the new model. The fact that Wernicke’s aphasia was 

also better fit by SLAM is consistent with the HSFC theory. Wernicke’s aphasia is 

associated with neuroanatomical damage very similar to that of conduction aphasia, and 

acute Wernicke’s aphasia often recovers to be more like a conduction profile, suggesting a 

partially shared locus of impairment. For a statistical comparison of the fit improvements 

between the five aphasia subtypes, we performed a one-way analysis of variance (ANOVA) 

on the RMSD changes, which indicated at least one significant difference between the group 

means (p < .001). A follow-up multiple comparison test indicated that the conduction group 

benefited more from SLAM than any other group, since the 95 % confidence interval for the 

mean fit improvement did not overlap with that of any other group, including Wernicke’s.

To further validate these results, we tested whether fit improvements due to increasing the 

SP map resolution specifically favored any of the diagnosis groups. Unlike our theoretically 

motivated structural changes, this method of improving model fits was not expected to favor 

any particular group. We compared the model fits for an SP map with 189 points, which on 

average is equivalent to the standard SP map in the literature, to the higherresolution SP map 

with 2,321 points. For the group of 255 patients, increasing the number of SP map points 

significantly improved the average fit from .0230 RMSD to .0206 RMSD (p < .001). The 

improvement in fit was significant for all diagnosis groups (all ps < .001); however, a one-

way ANOVA with follow-up multiple comparison tests showed that no group had 

significantly greater improvement than every other group (no disjoint confidence intervals), 

unlike the result produced by our structural changes, which specifically favored the 

conduction group. Instead, the Wernicke’s group improved most, whereas the anomic group 

improved least, consistent with the observation that these groups are already the worst and 

best fits for SP, respectively. The implication is that the improvements in fit caused by our 

theoretically motivated manipulation of the SP model’s architecture are qualitatively 

different from the improvements gained by other methods.

We also hypothesized that the conduction naming pattern should be fit by a particular SLAM 

configuration: strong LA and weak AM weights. For the patients who exhibited the greatest 

improvements in fit, this was indeed the case. Figure 7 uses boxplots to display the SLAM 

weight configurations for the 20 patients (13 conduction, five Wernicke’s, one anomic, one 

Broca’s) who exhibited the greatest fit improvements (>2 SDs). Figure 8 shows data from an 

example patient with conduction aphasia, along with the corresponding SP and SLAM 

model fits. The best-fitting weights in the SP model were .022 and .017, for S and P, 

respectively. The SLAM model for this patient yielded .023 and .013 for SL and LM, 

respectively, whereas the LA weight was maximized at .04, and the AM weight was 

minimized at .0001. For this patient, SLAM reduced the SP fit error by .0135 RMSD. This 
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example also illustrates that SLAM’s largest fit improvements over SP are accompanied by a 

consistent increase in the predicted frequency of formal errors, along with a consistent 

decrease in semantic (and in unrelated) errors. This trade-off in formal errors for semantic 

errors is most likely to occur at the first, lexical-selection step. The dual nature of formal 

errors, that they can occur during either lexical or phonological selection, is one of the 

hallmarks of the SP model. Foygel and Dell (2000) showed that formal errors during lexical 

selection increase when phonological feedback to lexical units outweighs the semantic 

feedforward activation. In conduction aphasia, large LA weights provide strong 

phonological feedback to lexical units, whereas small AM and LM weights provide weak 

phonological feedforward to the motor units. With LM greater than AM, more activation 

flows from the incorrect, phonologically related lexical items, thereby increasing formal 

errors at the expense of semantic errors. The implication, that strong auditory–phonological 

feedback influences lexical selection in conduction aphasia, represents a novel prediction of 

our model that is supported by the data.

Finally, we tested the criticality of our assumption that LA weights must be greater than LM 

weights. We repeated our original analysis, this time comparing SP to SLMA, an alternative 

version of SLAM that has lexical–motor dominance instead of lexical–auditory dominance. 

SLMA was fit with a four-parameter map with 2,321 points, the same size as the SLAM 

map, culled from the 13,807 discarded SLAM points, ensuring that LM weights were always 

greater than or equal to the LA weights. Figure 9 is a scatterplot comparing the SP and 

SLMA model fits; the diagonal lines are the same as those in Fig. 5. When this alternative 

model architecture was used, there were no noticeable improvements over SP; the maximum 

change in fit was only .0038 RMSD. Thus, the mere presence of additional parameters in 

SLAM was not what caused the observed fit improvements; their theoretically motivated 

arrangement was necessary, as well.

We also explored the necessity of the LM weights, testing the importance of our two routes. 

We fixed the LM weights at .0001 (effectively zero) by using 323 points from the full SLAM 

map to fit the data, thus yielding a three-parameter model, and we compared these fits with 

the fits from an SP map that had the same number of points. This three-parameter model that 

lacked direct LM connections did much worse than the two-parameter SP model, yielding an 

average fit of .10 RMSD. This catastrophic failure was due to the fact that not enough 

activation reached the motor units via the lexical–auditory–motor route. Recall that 

activation is multiplied by a fraction at each level, yielding lower activation after two steps 

through the lexical–auditory–motor route than after the one-step lexical–motor route. 

Without the combined inputs to motor units from the two routes, the model could only 

produce a maximum estimate of 65 % correct responses. Although HSFC theory does 

predict that direct lexical–motor connections are required for normal levels of correctness, 

the weaker input to motor units from the auditory–motor route raises the concern that our 

initial choice of SLAM parameter constraints gave more prominence to the lexical–motor 

route than the HSFC theory warrants. We therefore explored the SLAM parameter space 

further, and we discovered alternative parameter constraints that yielded qualitatively similar 

results: In the “healthy model,” the SL and LA weights have the usual maximum value of .

04, whereas the LM weights have a maximum of .02, and AM weights have a maximum of .

5; in aphasia, the parameters are free to vary below those values. This parameter 
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arrangement ensures that the primary source of phonological feedback to the lexical layer is 

usually from auditory units, enables the auditory–motor route to provide strong activation to 

motor units during naming, and removes the previous constraint that in damaged states, the 

LM weights must always be lower than the LA weights. As with the original choice of 

SLAM parameter constraints, we observed fits similar to that of SP in the general population 

(Fig. S1), with noticeable improvements for the conduction naming pattern (Fig. S2), 

accompanied by high LA and low AM weights. With this alternative arrangement, a three-

parameter model with LM weights fixed at .0001 still does not perform as well as the two-

parameter SP model (Fig. S3), although the failure is no longer catastrophic, due to 

compensation by strong AM weights. To summarize, these investigations confirm our main 

finding that a second source of phonological feedback, predicted by HSFC theory to come 

from the auditory system, is the critical component for improving model fits.

Discussion

We put forward a new computational model of naming, SLAM, inspired by a recent 

conceptual model, HSFC, aimed at integrating psycholinguistic and motor-control models of 

speech production. SLAM implemented the HSFC claims that sublexical linguistic units 

have dual representations within auditory and motor cortices, and that the conversion of 

auditory targets to motor commands is a crucial computation for lexical retrieval, even prior 

to overt production.

We showed that augmenting the well-established SP model to incorporate auditory-to-motor 

conversion into the lexical-retrieval process allowed the model to explain general aphasic 

naming errors at least as well as the original SP model, while improving the model’s ability 

to account for conduction naming patterns in particular. The improvements in model fits 

were predicted to result from parameter settings with strong LA and weak AM weights. 

Examining the naming responses of 255 aphasic patients—the largest analysis of PNT 

responses to date—we confirmed our predictions, and additionally demonstrated that, unlike 

our theoretically motivated structural changes, improvements due to added map resolution 

were not specific to any aphasia type. We also discovered that the predicted weight 

configuration, which yielded the greatest fit improvements, did so by increasing formal 

errors at the expense of semantic errors. It is worth noting in this context that Schwartz et al. 

(2006) identified three anomalous subgroups whose naming patterns significantly deviated 

from SP’s predictions, one of which exhibited too many formal errors. Two of the patients in 

this subgroup had conduction aphasia, and the other had Wernicke’s aphasia. SLAM 

provides a plausible explanation for this subgroup. The increase of formal errors at the 

expense of semantic errors in conduction aphasia suggests that a significant proportion of 

their phonologically related errors were generated at the lexical-selection stage, rather than 

the phonological-selection stage, a novel prediction of our model. We also found that two 

separate phonological routes were required to produce the effect. Although the auditory–

motor integration loop described by HSFC theory currently is not modeled in detail within 

SLAM, parallel inputs and feedback to separate auditory and motor systems are a 

prerequisite for state feedback control. The results of our modeling experiments thereby 

support the assumptions of the HSFC framework.
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Although we pitted SP and SLAM against one another, they share many of their essential 

features. Thus, much of SLAM’s success can be attributed to the original SP model’s 

assumptions. The notions of computational simultaneity, hierarchical representation, 

interactivity among hierarchical layers, localized damage, and continuity between random 

and well-formed outputs are what enabled good predictions. The fact that we were able to 

successfully extend the model reinforces the utility of these ideas. Similarly, much of the 

criticism of SP applies equally to SLAM. For instance, the very small lexicon can only 

approximate the structure of a real lexicon, and the semantic representations are arbitrarily 

defined. Although the model is interactive, it does not include lateral or inhibitory 

connections, which are essential features of real neurological systems. Also, the model does 

not deal directly with temporal information, which constitutes a large body of the 

psycholinguistic evidence regarding speech processing. Nevertheless, for examining the 

architectural assumptions of the HSFC, SP provided a useful test bed, in that it has been the 

best computational model available.

One further advantage of SLAM over SP (and over similar models that assume a unified 

phonological network) is that SLAM provides a built-in mechanism for repetition. 

Repetition is often used in addition to naming as a test of lexical-retrieval models, because 

repetition involves the same demands on the motor production system as naming, but lacks 

the semantic search component. In order to simulate repetition, however, some form of 

auditory representation is necessary, even if it is implicit. In Foygel and Dell (2000), the 

single-route SP model was used to simulate repetition, without explicitly modeling the 

auditory input, by assuming that perfect auditory recognition delivers a boost directly to 

lexical units, essentially just the second step of naming. Later, to account for patients with 

poor naming but spared repetition abilities, a direct input-to-output phonology route was 

added to the model (Hanley, Dell, Kay, & Baron, 2004). This dual-route model grafts the 

“nonlexical” route on to SP, leaving the architecture and simulations of naming unchanged; 

the two routes are used only during repetition. Although several studies have generated 

empirical support for the idea that the two routes are indeed used in repetition (Nozari, 

Kittredge, Dell, & Schwartz, 2010), our study suggests that both routes are used in naming 

as well, potentially providing a more cohesive account of the computations underlying these 

tasks. Given that SLAM already requires the auditory component for naming, we intend to 

develop it to simulate repetition as well, allowing for more direct comparisons to this 

alternative dual-route model in the future.

Although SLAM does not employ learning or time-varying representations, another lexical 

retrieval model that does implement these features has also adopted a similar separation of 

auditory and motor speech representations. Ueno, Saito, Rogers, and Ralph (2011) presented 

Lichtheim 2, a “neurocomputational” model, which simulates naming, repetition, and 

comprehension for healthy and aphasic speech processing, using a network architecture in 

which each layer of units corresponds to a brain region. Lichtheim 2 does not categorize 

speech error types according to SP’s more detailed taxonomy, however, making it hard to 

compare directly with SLAM. Furthermore, since our goal with SLAM was to investigate 

the effects of the separate phonological representations, and Lichtheim 2 shares this 

architectural assumption, we did not compare the models directly. In Lichtheim 2, the 

phonology of the input and the output is represented by a pattern of phonemic features 
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presented one cluster at a time, and semantic representations are temporally static and 

statistically independent of their corresponding phonological representations. The model is 

simultaneously trained on all three tasks, and hidden representations are allowed to form in a 

largely unconstrained manner. The trained network can then be “lesioned” in specific 

regions to simulate aphasic performance. We see much in common between our approaches 

in terms of their theoretical motivations, proposing psycholinguistic representations 

grounded in neuroanatomical evidence. Furthermore, the use of a single network to perform 

multiple tasks is very much in line with our plans to develop the SLAM model. One major 

difference between SLAM and Lichtheim 2 is that SLAM maintains an explicit hierarchical 

separation between lexical units and phonological units, allowing for selection errors at 

either stage. This hierarchical separation was essential for making our successful predictions 

regarding conduction naming patterns. It remains to be seen how our proposed architecture 

will cope with multiple tasks simultaneously.

Another model of lexical production, WEAVER++/ARC (Roelofs, 2014), has been proposed 

as an alternative to Lichtheim 2. Although this model uses spreading activation through 

small, fixed networks, as SP does, it also employs condition-action rules to mediate task-

relevant selection of the network’s representations, thereby implementing a separation of 

declarative and procedural knowledge. Like Lichtheim 2, this model does not apply the 

detailed error taxonomy examined by SLAM, and so we did not compare them directly. 

Importantly, though, WEAVER++/ARC and Lichtheim 2 largely agree on most cognitive 

and computational issues, especially the primary one investigated by SLAM: the 

participation of separate auditory and motor–phonological networks in speech production. 

Additionally, like SLAM and Lichtheim 2, WEAVER++/ARC simulates the conduction 

aphasia pattern by reducing weights between the input and output phonemes. The primary 

disagreement between WEAVER++/ARC and Lichtheim 2 is an anatomical one: Should the 

lexical-motor connections for speech production be associated with the (dorsal) arcuate 

fasciculus or the (ventral) uncinate fasciculus? At present, the SLAM model is compatible 

with either position.2 WEAVER++/ARC does differ from SLAM with respect to one 

important theoretical point, however. In WEAVER++/ARC, the input and output lexical 

units are separated, and in naming, activation primarily flows from lexical output units to 

motor units. Auditory units then provide stabilizing activation to motor units through an 

auditory feedback loop (i.e., motor to auditory to motor), rather than being activated by a 

single lexical layer in parallel with motor units to serve as sensory targets. This runs contrary 

to our finding that strong lexical–auditory feedback influenced lexical selection for 

conduction aphasia. Again, it remains to be seen whether our assumption of a single lexical 

layer can account for multiple tasks as Lichtheim 2 and WEAVER++/ARC do, which we 

intend to explore in future work.

The SLAM model falls into a broad class of models that can be described as “dual-route” 

models—that is, models that posit separate but interacting processing streams controlling 

behavior. Much of this work relates directly to Hickok and Poeppel’s (2000, 2004, 2007) 

2One might wonder whether the lexical–motor and auditory–motor connection weights were generally correlated in our sample. They 
were not (r = .10, p = .09). This seems to indicate that these mappings are functionally and anatomically distinct; however, WEAVER+
+/ARC also allows these routes to be independently lesioned, so this is not necessarily a strong point of disagreement.
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neuroanatomical dual-stream framework for speech processing, in that the mapping between 

auditory and motor speech systems corresponds to the dorsal stream, whereas the mapping 

between auditory and lexical-semantic levels corresponds to the ventral stream. Although 

Hickok and Poeppel discussed this cortical network from the perspective of the auditory 

speech system, which diverges into the two streams, picture naming traverses both streams, 

going from conceptual to lexical to auditory (ventral stream) and from auditory to motor 

(dorsal stream). One difference between the SLAM model and the Hickok and Poeppel 

framework is that explicit connectivity is assumed between the lexical and motor–

phonological networks. Hick-ok and Poeppel assumed (but didn’t discuss) connectivity 

between conceptual and motor systems, but did not specifically entertain the possibility of 

lexical-to-motor speech networks. The present model, along with the HSFC, thus refines the 

Hickok and Poeppel dual-stream framework.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The semantic-phonological (SP) model architecture
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Fig. 2. 
A schematic diagram of the hierarchical state feedback control (HSFC) framework (Hickok, 

2012)

Walker and Hickok Page 19

Psychon Bull Rev. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
The semantic–lexical–auditory–motor (SLAM) model architecture
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Fig. 4. 
Mean fit curves for (A) all patients and (B) diagnosis groups. The black vertical lines in the 

panels indicate the maps that were used for statistical comparisons
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Fig. 5. 
Scatterplot comparing model fits between SP and SLAM. The solid diagonal line represents 

equivalent fits; the dotted lines represent 1 SD of fit difference in the sample. The majority 

of patients are fit well by both models, and a subgroup of patients are fit notably better by 

SLAM (inset)
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Fig. 6. 
Individual fit changes between the SP and SLAM models. Positive values indicate better 

SLAM fits

Walker and Hickok Page 23

Psychon Bull Rev. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Boxplots showing the SLAM weights for the group of 20 patients with the greatest fit 

improvements. As expected, a model profile with high lexical–auditory and low auditory–

motor weights leads to the greatest improvements over the SP model

Walker and Hickok Page 24

Psychon Bull Rev. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
Naming response distribution from an example patient with conduction aphasia, along with 

the corresponding SP and SLAM model fits. Arrows indicate how SLAM improves the fit to 

data, by increasing formal at the expense of semantic and unrelated errors. The SLAM 

model reduced the fit error for this patient by .0135 RMSD
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Fig. 9. 
Scatterplot comparing model fits between SP and the semantic–lexical–motor–auditory 

(SLMA) model, an alternative architecture with the same number of parameters as SLAM, 

but with lexical–motor dominance instead. The lines are the same as in Fig. 5. Unlike 

SLAM, SLMA provides no obvious fit improvements over SP
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