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Abstract

Background: The significant social and economic loss as a result of bovine tuberculosis (bTB) presents a continuous
challenge to cattle industries in the UK and worldwide. However, host genetic variation in cattle susceptibility to bTB
provides an opportunity to select for resistant animals and further understand the genetic mechanisms underlying
disease dynamics.

Methods: The present study identified genomic regions associated with susceptibility to bTB using genome-wide
association (GWA), regional heritability mapping (RHM) and chromosome association approaches. Phenotypes
comprised de-regressed estimated breeding values of 804 Holstein-Friesian sires and pertained to three bTB indicator
traits: i) positive reactors to the skin test with positive post-mortem examination results (phenotype 1); ii) positive reactors
to the skin test regardless of post-mortem examination results (phenotype 2) and iii) as in (i) plus non-reactors and
inconclusive reactors to the skin tests with positive post-mortem examination results (phenotype 3). Genotypes based
on the 50 K SNP DNA array were available and a total of 34,874 SNPs remained per animal after quality control.

Results: The estimated polygenic heritability for susceptibility to bTB was 0.26, 0.37 and 0.34 for phenotypes 1, 2 and 3,
respectively. GWA analysis identified a putative SNP on Bos taurus autosomes (BTA) 2 associated with phenotype 1, and
another on BTA 23 associated with phenotype 2. Genomic regions encompassing these SNPs were found to harbour
potentially relevant annotated genes. RHM confirmed the effect of these genomic regions and identified new regions on
BTA 18 for phenotype 1 and BTA 3 for phenotypes 2 and 3. Heritabilities of the genomic regions ranged between 0.05
and 0.08 across the three phenotypes. Chromosome association analysis indicated a major role of BTA 23 on susceptibility
to bTB.

Conclusion: Genomic regions and candidate genes identified in the present study provide an opportunity to further
understand pathways critical to cattle susceptibility to bTB and enhance genetic improvement programmes aiming at
controlling and eradicating the disease.
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Background

Bovine tuberculosis (bTB) is a chronic disease caused by
Mycobacterium bovis (M. bovis) and usually manifests
with tuberculous lesions predominantly in the respira-
tory tract, although lesions could also be found else-
where [1]. Despite the implementation of nationwide
compulsory bTB eradication schemes that were intro-
duced in the United Kingdom in 1950 [2], the incidence
of bTB has been marked by a general upward trend
since the 1990s [3] resulting in large financial losses for
the bovine industry. In Great Britain, the greatest impact
of animal and financial losses are experienced in South-
Western England and Wales [4]. During 2010/2011, an
estimated £152 million was spent on management and
control of the disease in these areas [5]. Scotland was
certified officially free of bTB (OTF) in 2009 [6].

In Great Britain, bTB control and eradication programme
involves routine testing and compulsory slaughter of in-
fected animals and cattle movement restrictions in the af-
fected herds. Routine testing is based on the administration
of the single intradermal comparative cervical tuberculin
(SICCT) or ‘skin’ test to each animal, which entails simul-
taneous injection of both M. bovis and M. avium tubercu-
lins side-by-side into the skin of the neck, followed by
examination for evidence of localised inflammation after
72 h. Interpretation of the test follows a standard procedure
applied internationally [7]. When reaction to M. bovis tu-
berculin injection is estimated to be less than or equal to
that to M. avium tuberculin injection then the skin test is
deemed negative. A positive skin test result, also known as
a ‘reactor; is asserted when the reaction to M. bovis tuber-
culin exceeds that to M. avium tuberculin by more than
4 mm. In all other cases, the test is considered inconclusive
and retesting is done at 60-day intervals to resolve their sta-
tus. A breakdown (bTB incident) is declared once at least
one reactor is discovered in a herd, prompting animal
movement restrictions, suspension of the OTF status of the
herd and testing of all animals in the herd at 60-day inter-
val. Animals with a positive or two consecutive inconclusive
skin tests are slaughtered and examined at the abbatoir for
visible lesions of bTB in their organs. Samples of tissue
from a representative number of infected animals from
each breakdown are sent to the laboratory where M. bovis
culture is performed. A positive post-mortem examination
result, i.e. presence of lesions and/or positive M. bovis cul-
ture (confirmed case) elicits a change of the herd’s OTF sta-
tus from ‘suspended’ to ‘withdrawn’. The breakdown
remains ‘open’ and skin testing continues in the herd until
two consecutive negative herd tests are obtained.

Given the difficulties in eradicating bTB, breeding for
resistance has been considered as an additional comple-
mentary control measure [8]. Most of earlier research on
bTB was mainly focused on environmental risk factors
for bTB infection [9-11], whilst limited attention was

Page 2 of 10

given towards identifying possible genetic factors in the
bovine host. However, it was not until recently that gen-
etic studies established the presence of between animal
variation in dairy and beef cattle susceptibility to the dis-
ease with heritability estimates ranging between 0.09 and
0.23 [12-16]. Furthermore, some genome-wide associ-
ation (GWA) and regional heritability mapping (RHM)
analyses aiming at identifying Quantitative Trait Loci
(QTL) underlying cattle susceptibility to bTB have been
undertaken. GWA analysis by Finlay et al. [17] and
Richardson et al. [18] identified genomic regions associ-
ated with bTB susceptibility on Bos taurus autosomes
(BTA) 22 and 23, respectively, in Irish Holstein-Friesian
dairy cattle. Bermingham et al. [19] found regions on
BTA 13 in Northern Irish Holstein-Friesian dairy cattle
using both GWA and RHM approaches. Tsairidou et al.
[20] applied RHM to perform a meta-analysis using the
datasets from previous studies in the Republic of Ireland
[17] and Northern Ireland [19], and identified a new
region on BTA 6. Furthermore, Kassahun et al. [21] also
identified a SNP on BTA 6 associated with bTB in a
mixed breed cattle population in Ethiopia; however, this
region was distinct from that of Tsairidou et al. [20]. In
general, genomic studies performed to date have not
revealed any major common QTL; therefore further
studies with independent populations are required.

Our objective was to conduct a first study of the
genomic architecture of susceptibility to bTB in the Brit-
ish Holstein-Friesian cattle population. We used GWA,
RHM and chromosome association approaches to
analyse alternative definitions of bTB susceptibility that
have not been genomically addressed before.

Methods

Phenotypes

Data for the present study were sire genetic evaluations
that had been previously generated from the official
genetic and genomic evaluation system for bTB resist-
ance [15, 22]. These genetic evaluations had been based
on skin test and post-mortem examination records of
Holstein-Friesian cows obtained from breakdowns
(herds with bTB incidents) that occurred between the
years 2000 and 2014. Susceptibility to bTB was based
on the health status of each animal in a breakdown,
i.e. either infected (case) or healthy (control). Three
alternative definitions of “infected” from Banos et al.
[15] were considered:

i) Phenotype 1: positive reactors to the skin test with
positive post-mortem examination results consisting
of visible lesions of bTB and/or positive M. bovis
culture. This phenotype represented the conservative
definition of infected, which requires infection to be
confirmed by post-mortem examination.
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ii) Phenotype 2: positive reactors to the skin test
regardless of post-mortem examination results,
based on the very high specificity of the skin test
(ca. 99%) and the trivial number of false positives
expected [7]. Phenotype 2 included all phenotype 1
animals and those without positive post-mortem
examination results.

iii) Phenotype 3: as in (ii) plus non-reactors and
inconclusive reactors to the skin test who had been
slaughtered and had positive post-mortem examination
results, in order to include possible false negative skin
tests in this definition [8]. The majority (97.3%) of this
phenotype included phenotype 2 animals plus a
few inconclusive (2.6%) and non-reactors (0.1%)
to the skin test.

In all cases, healthy animals were defined as live non-
reactors to the skin test or slaughtered non-reactors with
negative post-mortem examination results. Animals de-
fined as healthy were all from the same breakdowns as
the infected ones.

Following the above trait definitions, a linear mixed
model was used to calculate sire EBVs based on the phe-
notypes of their daughters. Each sire received three
EBVs, one for each of the above trait definitions. More
information about the genetic model used to derive
these sire EBVs may be found in Banos et al. [15]. In the
current study, sire EBVs were deregressed and used as
phenotypes. The deregression was necessary because ac-
tual EBVs have been found to be unsuitable phenotypes
for GWAS as they are usually regressed depending on
pedigree structure and number of daughters per sire,
and also include familial information all of which have
the potential to reduce power, increase the rate of false
positive results and misestimate QTL effect size [23].
The de-regression process accounted for sire EBV
reliability and parental average effects, and followed the
procedure described by Garrick et al. [24]. Consistent
with the common genetic evaluation practice, de-
regression was applied to sire EBVs with a minimum
reliability of 0.30.

Genotypes

Whole-genome genotypes based on the 50 K SNP
[llumina BeadChip were available for 804 Holstein-
Friesian sires with de-regressed EBVs for susceptibility
to bTB. Genotype data were subjected to quality control
using the software PLINK [25]. Quality control removed
SNPs with minor allele frequency below 0.05 and call
rates below 0.90, and significantly deviated from Hardy-
Weinberg equilibrium (P < 1 x 107°). Quality control also
removed animals with individual call rates below 0.90. A
total of 34,874 autosomal SNPs and 803 individuals
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passed the quality control criteria and were retained for
the subsequent analyses.

The genomic data (sire genotypes) were explored for
underlying population substructure using multi-
dimensional scaling based on the genomic kinship
matrix estimated from all SNPs in the analysis. The
genomic kinship matrix was calculated as outlined by
Amin et al. [26].

Subsequently, three alternative approaches were
used to test for associations of genotypes with bTB
susceptibility traits: GWA, RHM and chromosome as-
sociation analyses. Each bTB trait was analysed separ-
ately. Prior to the association analyses, deregressed
EBVs were weighted using the formula outlined by
Garrick et al. [24]:

_ 1-1n?
[c+ (1-r2)/r2)h?

]

where w; is the weighting factor of the deregressed
EBV of the ith animal; h® is the heritability of the
trait (h?=0.09 [15]); r7 is the reliability of the dereg-
ressed EBV of the ith sire and c is the genetic vari-
ance not accounted for by the SNPs. A value of 0.20
[27] was considered for c.

Furthermore, Pearson correlations between the three
sets of sire EBVs were calculated.

Genome-wide association analysis

GWA analysis was performed by regressing the dereg-
ressed EBV on each individual SNP using the following
model:

y=u+Xb+Za+te (1)

where y is a vector of observations on the trait (de-
regressed bull EBV); p is the population mean; b is a
vector of SNP fitted as a fixed effect; a is a vector of
additive polygenic random effect including the genomic
relationship matrix among individual animals; X and Z
are incidence matrices for fixed effects and random ef-
fects, respectively; and e is the vector of residuals.

GWA analyses were conducted with the R-based stat-
istical package GenABEL [28]. After Bonferroni correc-
tion, the genome-wide significant threshold (P =0.05)
was defined at P =1.43 x 10~° which corresponds to a —
log,0(P) = 5.84, whereas the suggestive threshold (i.e. one
false positive per genome scan) was defined at P =2.87 x
107° corresponding to a —log;y (P) = 4.54. The P-values
obtained from the GWA analysis were adjusted for infla-
tion using the genomic inflation factor, A, which
accounts for any systematic deviation of observed from
expected P-values. The estimated polygenic heritability
was calculated as h* = (0‘3/0‘5) in which the phenotypic
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variance (0}2,) was obtained by summing the additive gen-
etic (02) and residual variance (0?) from model 1.

SNPs found to be significant in the previous step were
further tested by fitting the respective genotypes indi-
vidually as a fixed effect in a mixed model similar to
model 1. These analyses were conducted with the
ASReml software package [29]. The genotypic effect so-
lutions were used to estimate the additive and domin-
ance effects of the respective loci. The proportion of
genetic variance of each trait explained by each SNP was
estimated using the following equation:

Proportion of genetic variance explained by SNP
= [2pq(a + d(q-p))’] /0%

where a, d, p and q were respectively additive effects,
dominance effects, allele frequencies at the SNP locus
and o7 is the total genetic variance of the trait calculated
with model 1 excluding the SNP effect.

Significant SNPs were also explored for linkage disequ-
librium (LD) with other nearby SNPs. Pairwise LD, mea-
sured with r* was calculated in the software PLINK [25]
with LD and haplotype blocks visualised in Haploview
software [30]. The haplotype blocks were identified using
Wang’s method [31]. QTL regions surrounding signifi-
cant SNPs were defined by the farthest neighbouring
SNPs that had a minimum LD of 0.40 with the signifi-
cant SNP in question. Subsequently, in order to identify
candidate genes, the QTL regions were then matched
onto the bovine reference genome that is publicly avail-
able through the Bos_taurus UMD _3.1.1 project of the
National Centre for Biotechnology Information [32].

Regional heritability mapping
The same data described above were analysed with the
RHM approach, in which genomic regions of 100 SNPs
were defined by sliding ‘windows’ shifting every 50 SNPs
along each autosomal chromosome. A detailed descrip-
tion of RHM was given by [33].

The following model was applied for the RHM:

y=pu+Xb+Za+Zr+e (2)

where r is a vector of region (consisting of 100 SNPs) fit-
ted as a random effect; with other terms in the model
defined as in model (1).

RHM analyses were performed using the DISSECT
software [34]. The significance of genomic regions was
assessed with the likelihood ratio test (LRT) statistic,
which was used to compare model (2) that fitted a
genomic region as a random effect against the base
model that excluded this effect. The LRT was derived as
twice the difference between the log-likelihoods of the
model including and excluding the regions in question.
A total of 713 regions were tested across the genome, of
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which half were used in the Bonferroni correction to ac-
count for the shifting of regions every 50 SNPs. The
LRT thresholds were 13.20 (P =1.40 x 10™%) and 8.93 (P
=280 x 107%) for the genome-wide and suggestive
significance thresholds, respectively. The phenotypic
variance was calculated as 01% =02+ 02 + 02, while the
regional (r) heritability was subsequently estimated as
h? = o7/

Chromosome association analysis

In a separate set of analyses, the entire autosomal
chromosome effect was fitted in model 2 instead of gen-
omic region. After Bonferroni correction, the LRT sig-
nificance thresholds for the genome-wide and suggestive
levels were 8.55 (P=1.72x 1073) and 4.47 (P=3.45x 10
), respectively. The phenotypic variance was calculated
as GI% =02+ 0° + 02, where o was the variance due to the
chromosomal genetic effect. The chromosomal (c) herit-
ability was subsequently estimated as h2 = 62/ 05.

Results

The multi-dimensional scaling analysis indicated that
the sample population was homogenous, manifested by
a single cluster of individuals (Additional file 1). The
mean de-regressed EBVs for susceptibility to bTB among
the traits ranged from 0.38 to 0.47 with mean reliabilities
of deregressed EBVs ranging between 0.69 and 0.74
(Additional file 2). Correlation between sire de-regressed
EBVs was high between phenotypes 2 and 3 (0.99), and
lower between phenotypes 1 and 2 (0.54) and between
phenotypes 1 and 3 (0.57).

GWA analysis

Association between individual SNPs and bTB suscepti-
bility traits are illustrated in the Manhattan plots in
Fig. 1, with corresponding quantile-quantile plots in
Additional file 3. Estimated polygenic heritability for the
three bTB traits was moderate and ranged from 0.26 +
0.07 to 0.37 +0.07, with heritabilities for phenotypes 2
and 3 being similar but both a little higher than for
phenotype 1 (Additional file 2).

We identified three suggestive SNPs associated with
the studied traits (Table 1). Two of these SNPs, ARS-
BFGL-NGS-40833 (P =256 x 10™°) and Hapmap38114-
BTA-57971 (P=148 x 107°) were associated with
phenotype 1 on BTA 2 and 24, respectively. The other
SNP, BTA-56563-no-rs (P =1.99 x 10’5) on BTA 23 was
associated with phenotype 2. The SNP identified to
affect phenotype 2 also reached but did not exceed
the suggestive significance threshold for phenotype 3
(Fig. 1).

Additive and dominance effects of these SNPs and the
proportion of the genetic variance explained by them are
shown in Additional file 4. SNPs on BTA 2 and 23 had
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Fig. 1 Manhattan plots displaying results of genome-wide association analyses of three bovine tuberculosis susceptibility traits. a phenotype 1, positive
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positive reactors to the skin test regardless of post-mortem results; ¢ phenotype

significant (P <0.01) additive effects on phenotypes 1

and 2, respectively. However, there was no significan
additive effects found for the SNP on BTA 24. The addi

tive (allele substitution B to A) effect for the SNP on
BTA 2 was 0.57 and the SNP accounted for 14% of the
total genetic variance of susceptibility to bTB as defined
by phenotype 1. The SNP on BTA 23 had an additive
(allele substitution B to A) effect of 0.81 and explained
3% of the genetic variance of susceptibility to bTB as
defined by phenotype 2. In both cases, the minor allele

A was associated with increased resistance to bTB infec

tion. No significant dominance effects (P >0.05) were

found for any SNP locus.

Table 1 SNPs identified in the genome-wide association analysis to
be significantly associated with bovine tuberculosis traits. Phenotype

1, positive reactors to the skin test with positive post-mortem results;

phenotype 2, positive reactors to the skin test regardless of post-
mortem results

Putative QTL regions were defined based on the LD of
our two significantly additive SNPs with neighbouring
SNPs. The LD structure for these regions is presented in
Additional files 5 and 6 for SNPs on BTA 2 and 23,
respectively. The SNP on BTA 2 was located within a QTL
region spanning 1.29 Mb. One relevant gene in the bovine
reference genome found within this region, PARD3B, was
about 157 Kb upstream of the SNP. The SNP identified on
BTA 23 was located within a QTL region covering 1.2 Mb.
The most relevant gene found in the region was RNF144B,
located upstream of BTA-56563-no-rs.

Overall, the GWA analysis results showed that, al-
though some SNPs are significantly associated with the
traits of study, a considerable proportion of the genetic
variance still remains unaccounted for. This is expected
for traits with largely complex polygenic architectures.

t

RHM analysis

The RHM analysis revealed two regions that crossed the

Phenotype  SNP name BTA  Position P-value

1 ARS-BFGL-NGS-40833 2 93065483  2.56x 10~
Hapmap38114-BTA-57971 24 35403612 148x107°

2 BTA-56563-no-rs 23 38412668 1.99%x10°°

genome-wide significance threshold for phenotypes 2
and 3 on BTA23 (Table 2; Fig. 2). Additional regions
reached the suggestive significance threshold on BTA 3,

18 and 23 across the three traits (Table 2; Fig. 2).
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Table 2 Genomic regions identified with regional heritability mapping (100-SNP windows) affecting three bovine tuberculosis traits.
Phenotype 1, positive reactors to the skin test with positive post-mortem results; phenotype 2, positive reactors to the skin test regardless of
post-mortem results; phenotype 3, as phenotype 2 plus non-reactors and inconclusive reactors with positive post-mortem examination results

Phenotype BTA Genomic regions (SNP name and position (bp)) LRT h2(SE)
Start End
1 18 Hapmap57004-rs29011610 ARS-BFGL-NGS-1116 941° 0.06(0.03)
4463083 9539002
2 23 ARS-BFGL-NGS-78313 BTA-56563-no-rs 15.12° 0.05(0.03)
30222836 38412668
23 ARS-BFGL-NGS-107881 BTB-00870908 20412 0.07(0.03)
33961556 41672507
23 Hapmap31420-BTA-137383 ARS-BFGL-NGS-41732 9.27° 0.05(0.03)
38521106 44897933
3 ARS-BFGL-84593 ARS-BFGL-NGS-26427 9.48° 0.07(0.03)
114388249 119113936
3 23 ARS-BFGL-NGS-78313 BTA-56563-no-rs 15.98° 0.05(0.03)
30222836 38412668
23 ARS-BFGL-NGS-107881 BTB-00870908 2137° 0.08(0.03)
33961556 41672507
23 Hapmap31420-BTA-137383 ARS-BFGL-NGS-41732 9.76° 0.05(0.03)
38521106 44897933
3 ARS-BFGL-84593 ARS-BFGL-NGS-26427 1037° 0.08(0.04)
114388249 119113936

h? regional heritability, SE standard error
2Genome-wide significance level; PSuggestive significance level

Three overlapping regions were identified on BTA 23
affecting both phenotype 2 and 3: region 1 (30.2 -
38.4 Mb), region 2 (33.9 - 41.6 Mb) and region 3 (38.5 -
44.8 Mb). The SNP identified on BTA 23 with the GWA
analysis was located within regions 1 and 2. The regional
heritability estimates ranged from 0.05 to 0.08 (Table 2).

Two new significant regions on BTA 3 and 18, associ-
ated with phenotypes 2 and 3, and phenotype 1, respect-
ively, were revealed. The GWA analysis had not
identified any significant SNPs in these regions. Corre-
sponding regional heritability estimates ranged between
0.06 and 0.08 (Table 2).

Another region on BTA 24 associated with phenotype
1, within which the SNP identified with the GWA ana-
lysis had been located, was just below the suggestive
threshold of RHM (Fig. 2).

Chromosome association analysis
The chromosomal association study (Additional file 7) re-
vealed that BTA 23 had the greatest impact on phenotypes
2 and 3, and the highest LRT of 15.88 and 15.26, respect-
ively. This is consistent with the GWA and RHM results.
Corresponding chromosomal heritability estimates were
0.07 £ 0.03 and 0.08 + 0.04 for the two traits, suggesting the
regions identified with RHM in the present study were en-
tirely responsible for this chromosome’s effect.

Regarding phenotype 1, the highest significant LRT
was observed on a different chromosome (BTA 11),

where neither GWA nor RHM analyses had revealed
any significant associations. The corresponding chromo-
somal heritability was 0.08 + 0.04 and was probably due
to an aggregation of moderate effects of different gen-
omic regions along this chromosome. Similarly, neither
BTA 18 nor BTA 24, where RHM had revealed genomic
regions with suggestive effects, reached a significance
level in the chromosomal association analysis of pheno-
type 1 (Additional file 7).

Discussion

Our results offer insights into the genomic architecture
of susceptibility to bTB in British Holstein-Friesian
dairy cattle. This is the first genomic study of this
population that explores three different case pheno-
types based on the bTB testing regime undertaken in
Great Britain. In all cases, we used de-regressed sire
EBVs as phenotypes. The latter are considered robust
phenotypes for genomic analyses [23, 24, 35], repre-
senting the aggregate adjusted records for disease inci-
dence of multiple progeny per sire.

The findings of the present study collectively suggest
that considerable heritable variation at the genomic level
influences differences in the inherent bTB susceptibility
among animals. We found that heritability for bTB sus-
ceptibility was moderately high in this population and
therefore selection for resistance is a feasible strategy to
reduce the incidence of bTB nationwide. Other studies
[12-16] corroborate these findings. Tsairidou et al. [13]
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and Bermingham et al. [19], respectively reported poly-
genic heritabilities of 0.23 and 0.21 for susceptibility to
bTB, which were similar to the estimate for phenotype 1
in our study, based on positive skin test reactors with
positive post mortem examination results. However,
these heritability estimates were lower than those ob-
tained for phenotypes 2 and 3 in the present study; these
two trait definitions account for skin test imperfections
and therefore, are likely to represent a different pheno-
type compared to conventionally confirmed cases. This
finding is further supported by the relatively lower corre-
lations between sire EBVs for phenotype 1 and those of
the other two traits, which are in agreement with results
from Banos et al. [15].

GWA analysis conducted in the present study identi-
fied two QTL regions that may influence animal suscep-
tibility to bTB. The global Holstein-Friesian cattle
population has high levels of genetic relatedness among
animals (population structure) manifested by a small
effective population size, which may result in false
associations [36]. However, in the present study,
inclusion of the genomic relationship matrix in the model
accounted for the population structure. Relatively few
individual SNPs with a significant effect on the bTB

traits were identified through GWA analysis. This
could be explained by the complex genetic architec-
ture underlying susceptibility to bTB and the polygenic
nature of the disease as suggested by Bermingham et al.
[19]. It could also be partly attributed to the conser-
vativeness of the Bonferroni correction method used
to adjust for multiple testing, which often inflates
type II errors [37].

The present study identified two additive SNPs in
moderate LD with neighbouring SNPs on BTA 2 and 23
that were significantly associated with different traits of
susceptibility to bTB. In both cases, the allele with the
minor frequency had the favourable additive effect, con-
ferring increased resistance to bTB in the studied popu-
lation. A similar result reported by Bermingham et al.
[19] indicated that the major frequency alleles of SNPs
on BTA 2 (different region compared to our study) and
13 were associated with a greater risk of bTB infection.
Richardson et al. [18], however, found that the major fre-
quency alleles of SNPs located on BTA 1 and 23 (differ-
ent region compared to our study) were associated with
bTB resistance. In all cases, different SNPs and cattle
populations are involved. The SNPs identified in the
present study provide possible markers for selecting
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against susceptible individuals with the potential to im-
prove inherent resistance to the disease in the British
Holstein population.

The length of the putative QTL regions defined in the
present study (1.20-1.29 Mb) was similar to those re-
ported by Kim and Kirkpatrick [38] where the median
physical distance between pairs of markers at a mean LD
of 0.48 was about 1.13 Mb in Holstein cattle. We identi-
fied candidate genes within these regions with possible
underlying effects on disease susceptibility. The signifi-
cant SNP on BTA 2 was located close to gene PARD3B,
which has been implicated in protection against disease
progression in patients affected by the human immune
deficiency virus and acquired immune deficiency syn-
drome (HIV/AIDS) [39]. Similarly to bTB in cattle, HIV/
AIDS is a chronic, progressive illness of humans. The
most relevant gene close to the SNP on BTA 23 was
RNF144B. This protein coding gene has been found to
play a role in the regulation of NF-kB in human macro-
phages. NF-kB regulates the expression of various genes
involved in diverse cellular processes including inflam-
mation and immunity [40] and has been associated with
endometriosis in humans [41]. Other functions of the
RNF144B gene include roles in regulation of apoptosis
and cell proliferation, making the gene a possible can-
didate for therapeutic treatment of endometrial cancer
[42]. Further studies based on expression profiles and
pathway analyses may shed more light into the func-
tion of the above genes in relation to cattle suscepti-
bility to bTB.

The present study did not confirm QTL identified in
previous association studies on bTB susceptibility [17-
21], which further supports the notion of a polygenic
trait controlled by multiple genes. The closest GWA re-
sults on BTA 23 were reported by Richardson et al. [18]
who identified a QTL about 28 Mb downstream on the
same chromosome for Irish dairy cattle. Richardson et
al. [18] also used de-regressed EBVs based on a pheno-
type similar to phenotype 2 in our study.

The RHM analysis overcame some of the limitations
of GWA due to the former’s capacity to consolidate a
proportion of genomic variation based on multiple
neighbouring marker effects [33]. In the present study,
RHM identified significant new genomic regions on BTA
18 for phenotype 1 and BTA 3 for phenotypes 2 and 3,
where GWA had not identified individual SNPs with a
significant effect on the respective traits. This suggests
that RHM may identify regions harbouring individual
SNPs with moderate or even non-significant effects,
which, however, may collectively have a significant im-
pact on bTB susceptibility. Importantly, RHM also
identified significant genomic regions including the indi-
vidual SNPs with a significant effect in the GWA ana-
lysis, thereby corroborating the suggestion of a QTL
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presence. The three genomic regions identified on BTA
23 support the possibility of a large region with overlap-
ping genetic variants. RHM has previously been used in
association studies of susceptibility to bTB in a different
cattle population [19, 43]. Although no common regions
with those of our study were reported, Wilkinson et al.
[43] identified a region further downstream (at 6.6 -
7.1 Mb) of our region on BTA 23 affecting positive reac-
tors to the skin test with negative post-mortem results
(unconfirmed cases).

Furthermore, the present study has highlighted a
major overall chromosomal influence of BTA 23 on sus-
ceptibility to bTB, when the definition of the latter is not
restricted to post-mortem confirmed cases but includes
all positive skin test reactors and all animals with a posi-
tive post-mortem result. Actually, chromosome 23 was
the only chromosome that featured in the significant re-
sults of all our analyses (GWA, RHM, chromosomal as-
sociation). Notably, BTA 23 harbours the major
histocompatibility complex (MHC), which plays a cen-
tral role in immune response to infection [44, 45]. Our
region was located about 10 Mb upstream of the MHC
region based on GWA and 2 Mb based on RHM results.
In addition, Zare et al. [46] found genomic regions on
BTA 23 (at 35.3 and 44.4 Mb) associated with paratuber-
culosis in Jersey cattle, a disease with certain similarities
to bTB. These regions corresponded to our RHM identi-
fied regions on BTA 23.

Previous genomic studies on cattle susceptibility to
bTB have not resulted in consistent outcomes to support
a common genomic mechanism underlying the trait.
Some of our results might have added to the wealth of
diverse findings. As discussed, reasons for such discrep-
ancies include the complexity of the phenotype, the
largely polygenic inheritance mode of the trait, genetic
differences between populations and differences in
methodologies used across studies. Additional reasons
may be different allele frequencies of either the marker
or causative mutation even when the same QTL is segre-
gating in various populations, and possible mutation
linkage phases that may not be the same between popu-
lations [20, 47]. Moreover, bTB is an infectious disease
whose profile and transmission dynamics may differ
across populations and geographic regions, thereby fur-
ther complicating the genomic study of the underlying
control mechanism. All these reasons together suggest
that scientific results are likely to be relevant primarily
to the studied population and trait definitions on which
they were based.

Conclusions

Our results suggest that bTB susceptibility in the British
Holstein cattle population is a moderately heritable poly-
genic trait, potentially amenable to improvement with
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selective breeding. Our findings may inform genomic
predictions (genomic EBV calculations) within a gen-
omic selection programme, where differential emphasis
can be placed on specific genomic regions identified to
have significant effects on the trait. At the same time, it
would be useful to quantify the impact of such a selec-
tion process on the disease dynamics as well as other
traits of the breeding goal. Our results may also provide
target areas for possible future gene editing applications
within a genetic improvement programme.
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