Skip to main content
. 2017 Mar 23;16:36. doi: 10.1186/s12938-017-0327-x

Table 3.

Equations used in describing bioheat transfer phenomena based on basic Pennes model [133]

Eq. no. Parameter Equation expression Nomenclature
Pennes model (1948)
12 Bioheat transfer equation ρcTt=-k2Tr2+1rTr+1r2T+2TZ2+qm+qb ρ density of medium (kg m−3)
c medium specific heat (J kg−1 K−1)
13 Heat transfer from blood to tissue, qb  (J m−3 s−1) qb=(ρc)bω(Ta-T) T tissue temperature (K)
k tissue specific thermal conductivity (W m−1 K−1)
14 Temperature dependent blood flow, ω (s−1) ω=ω0(1+γT) qm heat production rate of tissue (J m−3 s−1)
qb heat transfer rate from blood to tissue (J m−3 s−1)
r,,Z cylindrical coordinate
ω blood perfusion (s−1)
ρb blood density (kg m−3)
cb blood specific heat (J kg−1 K−1)
Ta arterial blood temperature (K)
ω0 baseline of volumetric flow rate of blood (s−1)
γ time dependent blood flow coefficient (K−1)
Chen and Holmes model (1980)
15 Thermal equilibrium length, le (m) le=A(ρc)bV¯U·P A flow area (m2)
V¯ local blood velocity (m s−1)
U overall heat transfer coefficient (W m−2 K−1)
P circumference (m)
u¯ net volume flux (m s−1)
kp heat transfer coefficient of contributing vessel(W m−2 K−1)
properties of large blood vessel
16 Bioheat transfer equation ρcTt=·kT+(ρc)bωTa-T-ρcbu¯T+·kpT+qm
Weinbaum, Jiji and Lemons model (1984)
17 Countercurrent arteries ρcbπrb2V¯·dTads=-qa rb blood vessel radius (m)
qa heat loss rate at artery wall (J m−1 s−1)
qv heat gain rate at vein wall (J m−1 s−1)
g blood bleed off rate (m s−1)
Tv venous blood temperature (K)
n vessel number density (m−2)
s direction along a blood vessel
18 Countercurrent veins ρcbπrb2V¯·dTvds=-qv
19 Bioheat transfer equation ρcTt=·kT+2nπrbρcbgTa-Tv-nπrb2ρcbV¯·dTa-Tvds+qm