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Abstract

Introduction—Both reverse-phase and HILIC chemistries are deployed for liquid-

chromatography mass spectrometry (LC-MS) metabolomics analyses, however HILIC methods 

lag behind reverse-phase methods in reproducibility and versatility. Comprehensive metabolomics 

analysis is additionally complicated by the physiochemical diversity of metabolites and array of 

tunable analytical parameters.

Objective—Our aim was to rationally and efficiently design complementary HILIC-based polar 

metabolomics methods on multiple instruments using Design of Experiments (DoE).

Methods—We iteratively tuned LC and MS conditions on ion-switching triple quadrupole (QqQ) 

and quadrupole-time-of-flight (qTOF) mass spectrometers through multiple rounds of a workflow 

we term COLMeD (Comprehensive optimization of LC-MS metabolomics methods using design 

of experiments). Multivariate statistical analysis guided our decision process in the method 

optimizations.

Results—LC-MS/MS tuning for the QqQ method on serum metabolites yielded a median 

response increase of 161.5% (p<0.0001) over initial conditions with a 13.3% increase in 

metabolite coverage. The COLMeD output was benchmarked against two widely used polar 

metabolomics methods, demonstrating total ion current increases of 105.8% and 57.3%, with 

median metabolite response increases of 106.1% and 10.3% (p<0.0001 and p<0.05 respectively). 

For our optimized qTOF method, 22 solvent systems were compared on a standard mix of 

physiochemically diverse metabolites, followed by COLMeD optimization, yielding a median 

29.8% response increase (p<0.0001) over initial conditions.

Conclusions—The COLMeD process elucidated response tradeoffs, facilitating improved 

chromatography and MS response without compromising separation of isobars. COLMeD is 

efficient, requiring no more than 20 injections in a given DoE round, and flexible, capable of class-

specific optimization as demonstrated through acylcarnitine optimization within the QqQ method.
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1 Introduction

An ideal metabolomics platform would profile all the metabolites in a living system. 

Complementary approaches such as gas-chromatography mass spectrometry (GC-MS), 

liquid chromatography mass spectrometry (LC-MS), or nuclear magnetic resonance (NMR) 

can be employed to enhance analytical coverage of the metabolome, however the high 

physiochemical diversity in metabolites and technological limitations confine any individual 

analyses to a relatively small subset of the metabolome. Within LC-MS, multiple column 

chemistries are also increasingly incorporated into metabolomics workflows to further 

enhance coverage (Want et al. 2010). Hydrophilic interaction chromatography (HILIC) 

methods hold significant promise for comprehensive analysis of polar metabolites, however 

reverse-phase methods are routinely used for small polar molecules (New et al. 2008), in 

part due to a longer history of reproducible chromatography. The choice of MS detection is 

also critical for augmenting metabolome coverage. For instance, untargeted high-resolution 

instruments can provide good coverage and sensitivity (Want et al. 2010), while modern 

triple quadrupole (QqQ) or ion-trap instruments provide ion-switching and fast-scanning 

capabilities for targeted metabolite identification and quantification (Yuan et al. 2012; Gika 

et al. 2012; Lv et al. 2011). Holistic improvement of both chromatography and detection 

parameters requires bespoke methods to address a large multivariate problem space (Gika et 

al. 2014). This problem has been previously addressed using genetic algorithms and large-

scale Bayesian networks (Napoles et al. 2014; Correa et al. 2011), however these approaches 

do not concurrently optimize numerous parameters inherent in the comprehensive LC-MS 

methodology, nor have they been applied to HILIC, which is often sensitive to small LC 

parameter adjustments (Nguyen et al. 2008; Hao et al. 2008). An alternative approach for 

complex method optimization is Design of Experiments (DoE), which incorporates 

multivariate modeling of many response variables simultaneously (Eriksson et al. 2006). 

DoE allows for the manipulation of several factors concurrently and efficiently searches for 

interaction effects, as opposed to simply changing one factor at a time. Typical DoE 

workflows start with screening objectives, where the most important factors and their 

appropriate ranges are chosen and subsequently optimized iteratively. DoE has been used in 

optimizing other steps of the typical metabolomics workflow, including sample preparation 

and data processing (A et al. 2005; Eliasson et al. 2012; Zheng et al. 2013). LC-MS methods 

have also been improved in this manner, however the response of interest has typically been 

targeted to one metabolite or a single class of compounds (Zhou et al. 2009; Székely et al. 

2012; Kostić et al. 2013; Riter et al. 2005).

Here we demonstrate that a DoE-driven approach has potential for large-scale metabolomics 

method development by improving metabolome coverage without overtly sacrificing 

individual metabolite chromatography and MS response. Our main objective was to design 

and optimize a polar metabolomics platform, while addressing the idiosyncrasies of targeted 

and untargeted LC-MS metabolomics. We coin this method comprehensive optimization of 
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LC-MS methods through DoE (COLMeD) as a workflow procedure and assess the 

capability of DoE to improve responses on a diverse set of polar metabolites. We find this 

workflow is robust to method development across MS detection methods, tailoring the 

COLMeD approach to an LC-MS electrospray positive ionization (ESI+) method using 

high-resolution quadrupole time-of-flight (qTOF) detection subsequent to the initial 

polarity-switching QqQ optimization. We show that the results are robust to multiple sample 

types and can be tailored in a class-specific manner by specifically optimizing acylcarnitines 

from the comprehensive QqQ method. We note improvements over commonly used methods 

(Yuan et al. 2012; Paglia et al. 2012), and our workflow informed parameter decisions to 

limit response tradeoffs. Moreover, we describe a generalized procedure, bearing in mind the 

utility of this approach for efficiently optimizing other facets of analytical method 

development.

2 Methods

2.1 Chemicals

All chemical standards used in this study were minimally analytical grade and obtained from 

commercial sources (Table S1). Optima grade acetonitrile and methanol were purchased 

from Fisher Scientific (Fair Lawn, NJ) for the mobile phase and standard solutions. Optima 

LC/MS ammonium acetate and formic acid and TraceMetal grade ammonium hydroxide 

were used as mobile phase additives and also obtained from Fisher Scientific. All water used 

in this study was deionized and filtered (18.2MΩ, 0.22μm).

2.2 Preparation of Standard Solutions and Biological Samples

Standard solutions for positive mode qTOF DoE were prepared as 1mg/mL stocks in 100% 

methanol and diluted to 1μg/mL in 3:1 acetonitrile:methanol. All samples were centrifuged 

at 18787g for 5 minutes before LC-MS injection. Gibco horse serum (Invitrogen, Grand 

Island, NY) and homogenized Drosophila melanogaster samples were prepared using a 

modified Bligh-dyer extraction (Bligh et al. 1959). Briefly, 120μL of 2:1 

methanol:chloroform was added to 20μL of serum or 40mg of fly tissue, followed by a brief 

vortex and 15 minute sonication. 40μL of both chloroform and water were added to the 

solution, followed by centrifugation at 18787g for 7 minutes to form the bilayer. The top 

layer, containing the aqueous fraction, was isolated and dried down overnight. The dried 

pellet was resuspended in either 100μL or 400μL of 50:50 water:acetonitrile for serum and 

fly respectively before LC-MS injection.

2.3 LC-MS Conditions

Chromatographic separations for the ion-switching DoE were performed on an XBridge 

BEH Amide column (2.1x100mm, 2.5μm, Waters Corporation, Milford, MA) with a 

2.1x5mm Vanguard pre-column. DoE chromatography for untargeted qTOF analysis was 

performed on an ACQUITY UPLC BEH Amide column (2.1x150mm, 1.7μm), with a 0.2μm 

in-line filter. Both methods utilized an ACQUITY H-Class UPLC (Waters Corporation). The 

mobile phases for the ion-switching analysis were initially taken from Yuan et al., where the 

aqueous mobile phase consisted of 95:5 water:acetonitrile with 20mM ammonium acetate 

and ammonium hydroxide, pH 9, with the organic mobile phase as 100% acetonitrile. 
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Mobile phase A for the qTOF LC-MS method was comprised of 95:5 water:acetonitrile with 

2mM ammonium acetate and 0.2% formic acid, while mobile phase B consisted of 90:10 

acetonitrile:water with 2mM ammonium acetate and 0.2% formic acid, which was 

determined through experimental testing as described later in the text. Mass spectrometry 

was performed on either a Waters TQD or Waters G2-S qTOF in positive ion mode using 

electrospray ionization (ESI+), using Leucine-enkephalin for the lock-mass calibration. As a 

basis of comparison for our approach, the LC-MS methods described by Yuan et al. (Method 

1) and from a Waters HILIC Application Note (Paglia et al. 2012, Method 2) were followed 

as published. Chromatograms were processed using TargetLynx under MassLynx version 

4.1. Statistical analyses and plotting was performed in R version 3.2, and comparisons 

between DoE rounds were made via paired Wilcoxon signed-rank tests.

2.4 Model Generation, Design, and Optimization in the COLMeD Process

DoE serves to discover important predictor variables which contribute to one or many 

desired responses to determine optimal factor tuning (Eriksson et al. 2006). To deal with the 

complexity of tuning multiple factors to manipulate the many responses in our metabolomics 

methods, our DoE-driven COLMeD approach employs a partial least squares (PLS) fitting 

algorithm. Specifically, PLS fits a model to the variation of all responses with the variation 

of the factors by accounting for their covariance. This method of fitting is more efficient 

than multiple linear regression (MLR), which is also common in multivariate optimization 

problems, since MLR fits separate regression models for each response. MLR also suffers 

when handling missing data points, which we had encountered in our response matrix, given 

some chromatographic peaks were not always present depending on the LC-MS factor 

settings. In our case, dependent variables are the original analytical responses (e.g. 

metabolite peak area and chromatographic values), which are tuned to independent LC-MS 

factors by transformation into latent variables. The number of latent variables, or PLS 

components, were determined through the default mechanism in MODDE v11 (Umetrics, 

Umeå, Sweden), whereby components were added to improve goodness of fit (R2) until the 

goodness of prediction (Q2) was compromised by overfitting the model. The predictive 

performance of the model was computed via 7-fold cross validation. A major advantage of 

this approach is the ability to weigh one response more than another across DoE rounds, 

which we utilize heavily in our COLMeD process. For example, responses with significant 

peak area under the curve (AUC) after the first round were downweighted in the predictive 

modeling to favor LC-MS settings which improve other features with lower responses. AUC 

responses were set to be maximized in the modeling, while the peak widths were tailored 

such that peak width objectives were either 4 seconds for the untargeted qTOF method or 15 

seconds for the QqQ method, which benefits from slightly wider peaks due to tradeoffs of 

scanning over hundreds of MRMs. Additionally, the response objectives can be adjusted 

round over round to achieve iterative improvement. After modeling, a new set of 

experiments are generated, in the form of LC-MS settings. This process constitutes one 

round of DoE, which would be repeated until optimal conditions are met (specific COLMeD 

processes listed in Table 1).

In a regularly shaped design region, central composite or full factorial designs are typically 

chosen to explore the edges of the design space. However, D-Optimal designs generated in 
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MODDE can accommodate experiments with irregular design regions (Eriksson et al. 2006), 

which allowed us to impose constraints on our LC-MS settings which were not feasible or 

desirable, for example long LC gradients coupled with high flow rates. We tested the edges 

of the irregular design space in addition to replicate LC-MS injections in the center of the 

space to gauge reproducibility and model validity. In addition, we performed a conserved 

triplicate injection at the end of each DoE round as a quality control measure across batches. 

To rationalize the LC-MS parameters for the next round of experiments, we utilized both 

visual representations of optimal regions within the design space and a quantitative 

optimizer function which generated a list of parameters to yield an optimized solution using 

the PLS model. In addition to the model statistics and predictive functions of the PLS model, 

we also evaluated the VIP value, which is a multivariate metric used to identify the relative 

importance of an original predictor variable (i.e. before transformation) to the model 

(Eriksson et al. 2006). These values identify non-significant contributions of LC-MS 

parameters to the metabolite responses, which allowed us to assign fixed values and simplify 

the design space for the next DoE round. We chose to use MODDE software due to 

integrated cross-validated model fitting, model fit visualizations, and predictive capabilities. 

Open-source platforms for each of the steps in the COLMeD process could be alternatively 

used to build an in-house workflow.

2.5 Ion-Switching COLMeD

While the ultimate goal was to optimize both LC and MS conditions, the initial experimental 

design space including LC gradients was too large to combine with MS parameters and 

therefore required a two-stage approach, outlined in Table 1. A screening linear objective 

design of LC-only tuning was chosen for this initial round, omitting interaction effects and 

requiring only 13 LC-MS injections. Response measurements were taken on multiple 

sample types, horse serum and homogenized fly samples, which provided an added measure 

of confidence in designing the next round of experiments. The total initial response 

optimization consisted of a set of 33 responses in horse serum (Table S2), as well as unique 

responses found in fly tissue but uncommon in serum in order to enhance overall coverage in 

the initial screen (Table S3). Measured response variables were chosen based on criteria 

designed to elucidate a broad physiochemical range of metabolites and the presence of 

marginally detectable metabolites, in addition to measures of peak quality. We tailored the 

responses to reflect particular considerations of MRM-based analysis. For example, 

glutamine and lysine have overlapping MRMs, thus we fit the PLS model to predict 

maximal retention time separation. MRM transitions and voltages were optimized by using 

pure standards or from the METLIN and HMDB mass spectrometry databases (Smith et al. 

2005; Wishart et al. 2013). For AUC response optimization, the objective defined in the PLS 

fitting was set by using the mean AUC from the LC-MS injections of that DoE round as a 

threshold, from which the optimizer and design space plots were used to find conditions 

predicted to increase AUC for the subsequent DoE round.

Factors considered for the LC optimization included the initial LC flow rates (0.1–0.25mL/

min, continuous variable) and gradient types (1–4, Figure S1, discrete). The gradients were 

rationalized from both published (Yuan et al. 2012) and unpublished work. The LC-MS 

parameters proposed by Yuan et al. (Gradient 1) served as a starting point to build our 
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metabolomics platform, however we felt the COLMeD process could improve response 

within the QqQ method as well as and LC solvents as Yuan et al. for the QqQ method, we 

relaxed the LC parameters in an exploratory manner before refined tuning in later rounds. 

The MS parameters were initially set as close to the published settings as possible while 

aligned with vendor-specific voltage parameters. Initial gradient times (10–16min) were 

purposefully imposed to achieve reasonably high throughput. The gradient time refers to the 

time of injection until the wash step.

2.6 Modular Workflow Optimization

After Rounds 2 and 3, we sought to further optimize the method for a specific class of 

compounds with shared chemical properties, in which case the parent method could be used 

to tune the response for specific compounds, such as carnitines. The analytical factors were 

analogous to other rounds of QqQ DoE, but the responses were limited to peak AUCs and 

peak widths for carnitine, acetylcarnitine, propionylcarnitine, and butrylcarnitine. The data 

from DoE rounds 2 and 3 were combined and used as inclusions in a D-Optimal quadratic 

design, whereby only an additional six test runs were needed to finish out the model design. 

The experimental space in which the method optimum predictions from Rounds 2 and 3 

overlapped with predictions based off of these additional test runs with good model statistics 

confirmed the optimized method and thus completed the class-specific DoE.

2.7 Untargeted qTOF COLMeD

Optimizing chromatography for an untargeted method requires additional considerations due 

to the large number of unknown responses. Rather than optimizing responses on a serum 

sample, which would contain many unknown features, we initially developed the qTOF 

method on a standard mix of 48 diverse polar metabolites injected at 1μg/mL (Table S1). 

Prior to DoE, 22 LC solvent systems were compared using the standard mix. These solvents 

were based on a literature search and are listed in Table S4 (Want et al. 2010; Kivilompolo et 

al. 2013; Ivanisevic et al. 2013; Zhou et al. 2013). Mass spectrometry settings were based on 

data from the ion-switching method development, where desolvation temperature and gas 

flow were set to 500°C and 1000L/Hr respectively. Unless specified by a particular 

published method, the gradients were aligned across each solvent system, with 45°C column 

temperature. Given the solvents used in the QqQ method are pH 9, new solvents were 

required for a qTOF method in positive ionization. Aggregate measures of peak capacity, 

peak skew, peak resolution between any two pairs of peaks, number of peaks, MS response, 

and peak widths were all compared to choose the initial LC solvents (Table S5). These 

metrics were used in addition to inspection of chromatography to choose the best solvents 

manually. We found that some solvents yielded split peaks and prohibited detection of all the 

metabolites in our mix, thus we felt the need to inspect these results and choose accordingly 

before proceeding to strictly quantitative optimization of the method using DoE. After 

selecting the LC solvents, the COLMeD approach was divided into two parts to optimize LC 

and MS settings separately, which was in large part guided by our QqQ COLMeD findings. 

Three rounds of DoE were performed for the LC factors (Table S6), which included 

responses for isobar separations of leucine/isoleucine and alanine/sarcosine, with fixed MS 

parameters. For ease of comparison, peak response (AUC), peak width, and peak skew were 

converted to rank-based values, whereby each injection was ranked in each of these metrics 
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across every injection from a given DoE round. The holistic peak metrics used as responses 

in the qTOF COLMeD are more amenable to peak-picking methods used in untargeted data 

processing algorithms. Our objective with the initial LC DoE was to heavily favor 

optimization of chromatography, which naturally derives from the variety of peak quality 

metrics (peak shape, width, separation, etc..) chosen compared to a singular readout of pure 

metabolite response on the MS. In addition, automated integration of peaks can be difficult 

when flow rates and gradients are tuned, which does not change during MS factor tuning. 

AUC was thus one of several responses optimized in the LC DoE, but subsequently the sole 

response variable used in the MS DoE after chromatography was fixed.

Thus we maintained a similar workflow to the QqQ COLMeD procedure, with additional fit-

for-purpose modifications to the developmental process. After LC optimization, two rounds 

of DoE were performed for the MS parameters in ESI+. Similar to the polarity switching 

design, the LC factors consisted of flow rate (0.2–0.5mL/min), gradient slope (4–9, which 

was calculated by percent change in solvent B divided by gradient time), and column 

temperature (30–60°C). By having a simpler design space with only three factors, we could 

employ a more complex a D-Optimal quadratic model (20 runs). We were able to further 

simplify the design by eliminating non-significant factors and perform rounds 2 and 3 as full 

factorial designs (12 runs each, in a 2x2x3 design). A full factorial design allows for 

simultaneously testing three levels of each factor and support a quadratic model. While 

typically experimentally costly, with only two factors, this design space can be tested with 

only 12 injections, including center point replicate injections. This design is thus identical to 

the central composite face-centered (CCF) analysis, which is recommended for full scale 

investigations and optimization after elimination of less important factors from earlier DoE 

rounds (Eriksson et al. 2006). Our criteria for removing factors included both analysis of 

coefficient plots and displaying a VIP score below 1. The detailed models informed tradeoffs 

in analyte response, while also considering conditions providing sufficient chromatographic 

resolution between isobars. The MS factors consisted of sampling cone voltage (20–40V), 

desolvation temperature (400–550°C), source temperature (90–150°C), cone gas flow (20–

80L/Hr), and source offset (60–100V). The sole response optimized for the MS DoE was 

average AUC rank for each injection on the 48 standards. DoE was completed when we 

were able to identify the LC-MS parameters that met our response thresholds, the 

elucidation of tradeoffs in the method, and weak PLS model statistics, which indicated a 

tightly constrained design space with minimal gains for further improvement.

3 Results and Discussion

3.1 Round 1: Initial LC Screening for Polarity Switching Method

The initial screening batch for the comprehensive quadrupole method LC conditions 

consisted of 13 injections, repeated for both horse serum and fly samples. Predictive design 

space plots and optimizer analysis of both data sets yielded similar trends for all three 

factors (Figure 1). Notably, lower flow rates and/or longer gradients were predicted to 

improve response, with gradients 3 and 4 yielding predicted design space regions with the 

most response criteria met. Some differences in the predicted gradient time optimum likely 

result from slightly different response lists across sample types. However, given both flow 
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rate and gradient time had significant impact (VIPs of 1.43 and 1.08 respectively), also 

supported by analysis of PLS loadings plot (Figure S2), our initial estimates of factor ranges 

based on a priori rationale and desirability of run time and flow rates needed to be expanded. 

The model statistics from Round 1 serum analysis gave us confidence in obtaining the 

method optimum via expanding these factor ranges (Table S7).

3.2 Continued DoE with LC and MS Factors

After adjusting the LC factors from Round 1, the MS factors and column temperature were 

added to the design. While displaying a relatively weak effect compared to other factors, 

gradient 4 slightly outperformed gradient 3 (nonsignificantly), and was arbitrarily selected 

and fixed in future designs. Running multiple optimizations predicted flow rates above 

0.15mL/min to improve results. To some degree this prediction contradicts the predictions 

from Round 1, which may be resolved with increased sampling. Given that flow rate 

maintained an important contribution to the PLS model (VIP = 1.09), the flow rate was 

restricted to regions of the design space where the predictive plots and optimization 

functions overlapped in optimum predictions (0.15–0.3mL/min). Desolvation temperature 

also had a large effect on response as demonstrated by the largest VIP value (1.19) amongst 

LC-MS factors. Consequently, this factor was restricted to 300–500°C for Round 3 based on 

the predictive plots and optimizer function. The predicted optimal gradient times were 

variable, however given the desire to increase throughput, 12–18 minute gradients were set 

for Round 3. Column temperature had less effect on the model compared to the other factors 

(VIP=0.89), and these temperatures were restricted to 40–55°C for Round 3 based on the 

predictions. Desolvation gas flow was retained as a factor in the subsequent model despite a 

minimal contribution (VIP=0.8), albeit restricted to maintain compatibility with the 

desolvation temperatures according to the manufacturer’s recommendations.

3.3 Further Refinement of Design Space

The updated factor ranges were used for the fractional factorial design in Round 3, 

necessitating 17 runs. Predictions from the model yielded slightly shifted but generally 

consistent results with Round 2. Flow rate and desolvation temperature again were the most 

significant factors, (VIP of 1.88 and 1.37, respectively). Optimal flow rates gravitated 

towards the low end of the 0.15–0.3mL/min range. Conversely, higher desolvation 

temperatures were predicted to perform better. Gradient times were consistent from 

predictions from Round 2, likewise, column temperature and desolvation gas flow were 

largely irrelevant, with the factor ranges being unaffected by the updated predictions. Over 

the course of the three rounds we noticed marked improvement in multiple endpoints, 

including MS response, peak width (towards our goal of 15sec widths at half height), and 

number of metabolites (Figure 2a).

3.4 Acylcarnitine-specific DoE

To explore the notion of targeting subsets of metabolites from the comprehensive parent 

method, data from rounds 2 and 3 of the polarity switching DoE were combined to generate 

predictions for increased AUC and optimized peak width of carnitine, acetylcarnitine, 

propionylcarnitine, and butrylcarnitine. Based on this data, lower flow and longer gradients 

were expected to improve response and peak width. Analysis of the acylcarnitine-specific 
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LC-MS runs generated from modeling the data in rounds 2 and 3 revealed consistencies in 

the predictions and improved AUC response and peak width with strong PLS fitting (Table 

S7), demonstrating successful confirmation of the predictions and optimization of a 

compound class specific method (Figure S4).

3.5 Refinement and Validation of Comprehensive Method

We primarily attributed improvements in the acylcarnitines across Rounds 2 and 3 to 

adjustments in desolvation temperature. Given this information, we then evaluated the 

original 33 responses chosen in the comprehensive method with the acylcarnitine-specific 

experimental design to observe tradeoffs between response improvement of the carnitines, 

which exhibit positive ionization, versus other metabolites in both ESI+ and ESI- modes 

(labeled as Round 4 in Figure 2b). While not a true round 4 DoE design for the 

comprehensive method, we can leverage this extra information to refine our final COLMeD 

output. We found that between Round 4 and Round 1, which contained the maximal spread 

of desolvation temperatures, the median carnitine AUC increase was 82.2% compared to 

54.9% for all other metabolites. We subsequently adjusted desolvation temperature to 450°C 

as a final tuning of the comprehensive method which contains both ESI+ and ESI- 

metabolites. The final parameters for the comprehensive QqQ method were 0.15mL/min 

flow rate, 20 minute gradient time (Mobile phase B changed from 85–30% over the first 5 

minutes and held until the wash step at 20 minutes), 950L/Hr gas flow and 45°C column 

temperature. The overall COLMeD progression of LC-MS parameters is listed in Table 2. 

Manufacturer’s notes from Waters suggest 400°C and 800L/Hr desolvation settings for a 

0.15mL/min flow rate, corroborating optimized and safe conditions. Although the flow rate 

is below the optimum efficiency for a 2.5μm particle size, the COLMeD approach optimized 

our methods to be fit-for-purpose. Additional injections of horse serum were analyzed at 

these conditions as a validation measure of the final method (labeled as ‘COLMeD Final’ in 

Figure 2b). Improvements were noted over Round 1 in both the percent AUC increase 

(median increase of 161.5%, p=7.76e-16, Figure 2b) and the number of metabolites 

detected, from 163 to 188.

3.6 Benchmarking the COLMeD Result

We compared our final method to two other well utilized methods: a polarity-switching 

method utilizing the same solvents and column from Yuan et al., (Method 1) as well as a 

vendor published method optimized for high-resolution untargeted qTOF analysis 

compatible with our instrumentation (Waters) used in several metabolomics studies (Want et 

al. 2010; Paglia et al. 2012; Bruce et al. 2009, Method 2). We observed a total ion current 

increase in measured metabolite channels of 105.8% and 57.3% over these two methods 

respectively, (Figure 2c), with a median 106.1% increase in metabolite response over 

Method 1 (paired comparison, p=1.46e-13) and a median 10.3% increase over Method 2 

(p=0.042). We were also able to maintain broad metabolite coverage with the COLMeD 

output method, yielding 188 metabolites compared to 181 and 190 in Methods 1 and 2 

respectively, meeting our overall objective of developing sensitive and deep polar 

metabolomics methods. The coefficient of variation across replicate injections also 

decreased for a given metabolite compared to Methods 1 and 2 (p=6.27e-03 and p=7.16e-04 

respectively, Figure S5), suggesting improved method precision.
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3.7 Untargeted qTOF DoE

Given the difference between triple quadrupole and untargeted qTOF-based metabolomics, 

we employed a modified COLMeD approach. Ranked-based metrics (Table S5) and visual 

inspection of chromatography were used to choose the initial LC solvents between 22 

solvent combinations in ESI+ mode before further DoE optimization of chromatography 

(Table S4, 2mM ammonium acetate with 0.2% formic acid chosen as the final additives). Of 

the six interaction variables for LC and MS factors in the PLS model for the Round 4 QqQ 

DoE, only gradient time with desolvation temperature yielded a VIP score over 1, while four 

of these six factors had a VIP score below 0.8. Thus we felt the interaction of LC and MS 

factors were small enough to optimize LC and MS on the qToF separately (Table S8). After 

the first round of DoE, optimizing LC parameters only, predicted response optimums resided 

around 0.3–0.4mL/min with 3–5 gradient slope. Both of these factors contributed 

significantly to the data (VIP values of 1.9 and 1.65), unlike column temperature 

(VIP=0.62). Consequently, column temperature was fixed at 40°C for Rounds 2 and 3, 

which facilitated full factorial designs for optimizing flow rate and gradient slope (Figure 3). 

Results were consistent after Round 2, and flow rates were focused to 0.35–0.4mL/min with 

a gradient slope between 4 and 5. In this process, important tradeoffs were noted. For 

example, 0.35mL/min was the minimum flow rate to maintain a Leucine/Isoleucine and 

Alanine/Sarcosine resolution of at least 1.2. Peak capacity also improved with higher flow 

rates, but AUC ranks improved towards 0.3mL/min, thus 0.35mL/min was considered a 

good compromise for these responses (with a 5 gradient slope as defined in the methods and 

40°C column temperature chosen as the final conditions, Figure 4a). The PLS fitting to data 

from the Round 1 LC dropped significantly by Round 3, informing us of a highly 

constrained design space where there existed little room for improvement (Table S7). 

Chromatographic parameters improved with minimal sacrifice to response, particularly in 

regards to decreasing the spread of peak widths and peak skews (Figure 4b). These settings 

also closely follow the UPLC linear velocity for the 1.7μm column while maintaining safe 

backpressures. Thus for the final LC conditions, the gradient was changed from 100–20.6% 

B over 15 minutes at 0.35mL/min, followed by a wash of 100% A for 5 minutes. Mobile 

phase B was changed from 0–100% from 20–22 minutes and held for column equilibration 

until 30 minutes. For the MS parameters, analysis of the initial linear screening batch 

produced a compelling model (Table S7) with desolvation temperature as the dominant 

factor (VIP=2). Positive correlation of AUC and desolvation temperature is also in line with 

the QqQ method optimization. Desolvation temperature was then fixed for Round 2 to 

reduce design complexity. Source offset was the only other factor which weighed 

significantly in the PLS models (VIP=1.75), improving AUC rank at minimum voltages. The 

other factors had low VIP scores (all below 0.9) and nonsignificant coefficient values, 

though the trends in improving response were consistent in both rounds. Two rounds of DoE 

were considered sufficient to improve response to complete the LC-MS optimization of the 

untargeted method in a highly efficient manner. Round 2 yielded an average response 

increase of 29.8% (p=3.016e-05), while the chosen parameters within the Round 2 factor 

settings only yielded a 2.9% increase over the average AUC for the entire round, indicating 

minimal room for further improvement. Final conditions were 550°C desolvation 

temperature, 25V cone voltage, 60V source offset, 120°C source temperature, and 50L/Hr 

cone gas flow (Figure S6).
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4 Concluding Remarks

In this study, the COLMeD approach is demonstrated as an efficient and flexible tool to 

optimize multiple LC-MS metabolomics methods with different objectives. This may be 

particularly useful due to differences between results an individual lab compared to literature 

parameters. Improvements from the starting points of the LC-MS design space were noted 

for metabolite responses and their chromatography using a limited number of injections. We 

also noted improvements in these responses over other established polar metabolomics 

methods. We do acknowledge that while all columns tested in this study and the 

benchmarked methods have an amide chemistry, the column dimensions vary which may 

impact the data. A subset of metabolites with similar chemical properties were further 

optimized within the comprehensive method, which could allow for acylcarnitine-specific 

analyses without needing to switch solvents or columns. We feel this modular approach can 

efficiently optimize analyses of other particular metabolite groups of interest. Tailoring the 

COLMeD approach for untargeted metabolomics on the qTOF also yielded improved 

chromatography and response while maintaining sufficient isobar separation. Consequently, 

it is important to note that there are many ways to optimize these methods within the 

COLMeD framework. One could optimize only LC factors, using more thorough designs 

after the screening round to add confidence in obtaining the method optimum, followed by a 

similar workflow for the MS factors, which was the route was taken for the untargeted qTOF 

method development. This approach may require more injections and time, but has the 

advantage of being amenable to more automated methods for peak analysis once the 

chromatography is fixed. Conversely, we felt our combined LC-MS linear model approach 

for the polarity-switching method could yield our desired output while minimizing 

injections, given most of the coefficients for the interaction variables to be among the lowest 

in both rounds 3 and 4 of the QqQ COLMeD process (Table S8). A combination of more 

detailed model designs, along with a smaller initial design space, will likely yield a stronger 

predictive model, as we had found with the separated LC and MS optimizations (Table S7). 

We generally recommend separating LC and MS optimizations if time allows and additional 

rigor is required, however without parallel analysis of combined versus sequential LC-MS 

optimizations, we cannot definitively say if the response gains would be significant. In 

addition, broader assessments of peak quality and response are more suitable for optimizing 

untargeted metabolomics methods. In our case, optimizing these aggregated metrics met our 

objective of developing comprehensive metabolomics methods, as opposed to more focused 

and quantitative metrics such as limits of detection and response variance. Others have 

recently used a Derringer function approach to comprehensively assess peak characteristics 

in a multi-analyte mixture (Sampsonidis et al. 2015), similar to what we employed here. We 

stress that during optimization of complex methods over many responses, not every response 

can be maximally improved and thus requires analysis of tradeoffs. However, one benefit in 

utilizing these statistical models is the ability to stress the optimization of more important 

metabolites or responses. We also note that in method development for LC-MS 

metabolomics, the method optimum is largely defined by the user, and thus the response 

selection must be fit for the experimental purpose. Future studies will further validate these 

methods with different sample types and responses, such as the compounds found in our 

homogenized fly samples but not horse serum. More importantly, we have laid out a 
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thorough description of the COLMeD workflow from which we hope can be useful in not 

only LC-MS metabolomics but other complex method types which require adjusting 

multiple factors to optimize multiple responses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) Predictive plots displaying design space regions with predicted optimal response, based 

on initial LC screening (round 1) with horse serum and fly samples. Green indicates design 

space where a maximal number of endpoint response thresholds are predicted to be met. Red 

boxes indicate regions predicted to improve responses for the next round. (b) Factor settings 

before and after analysis of serum and fly samples us-ing the optimizer function. These 

complementary approaches rationalize LC-MS parameters for the next round of experiments
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Figure 2. 
(a) Chromatographic improvement in selected metabolites after three rounds of DoE in the 

QqQ COLMeD process. Signal-to-noise (S/N) and peak width (full width half height) 

measurements were generated from vendor software after limited peak smoothing and 

integration. (b) Percent response increase by metabolite across each round. (c) Cumulative 

AUC plots for QqQ COLMeD benchmarking
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Figure 3. 
Visualization of the design space changes across each LC qTOF DoE Round, including the 

reduction of 3-D to 2-D design spaces formed after fixing column temperature. The black 

plane within the box depicts an initial constraint on the space. The black, blue, and green 

spheres represent the parameter settings tested for each round. The final conditions were 

chosen within the plane of the green dots
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Figure 4. 
(a) Response contour plots after Round 3 of LC DoE for un-targeted qTOF metabolomics, 

demonstrating the tradeoffs to be considered in finding a method optimum. (b) Decreased 

spread of peak widths and peak skews (with a target objective of 4 seconds widths and 

minimized skews) across three rounds. These improvements are without compromising the 

MS response (depicted here as log-transformed AUC values)
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Table 1

COLMeD Workflow for both QqQ and qTOF Methods

Workflow QqQ qTOF

Initial factor
range and
response
selection

Factors: LC only
(round 1),

followed by LC-
MS

Responses:
Metabolites
from horse

serum (Table S2)

Factors LC and
MS optimization

separate
Responses:

Standard mix,
both LC and MS
response (Tables

S5 and S6)

Pilot LC-MS
batch

D-Optimal linear
screening

design: 13 runs

D-Optimal
quadratic design
for LC: 20 runs

D-Optimal linear
for MS: 13 runs

Data processing
and fitting to
PLS models

Main effect plots and PLS loadings
for data assessment

Model analysis
and optimum
predictions

Predictive design space plots, and
optimizer function for optimum

predictions, VIP > 1 for important
factors

Update factor
settings and

constrain design
space for next
round; change

design as needed

1 round for LC
(13 runs)

3 rounds for LC-
MS (13, 17, 9

runs)

3 rounds for LC
(20, 12, 12 runs)
2 rounds for MS

(13, 12 runs)
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Table 2

COLMeD Factor Settings for Comprehensive Ion-Switching Analysis

Factor Round 1 Round 2 Round 3 Final

Flow Rate
(mL/min)

0.1–0.25 0.05–0.3 0.15–0.3 0.15

Gradient 1–4 3–4 4 4

Time (min) 10–16 12–20 12–18 20

Desolvation
Temp (°C)

Not
tested

200–650 300–500 450

Desolvation
Gas (L/Hr)

Not
tested

750–1100 800–1100 950

Column Temp
(°C)

Not
tested

30–60 40–55 45
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