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Abstract

We describe a new residual for general regression models, defined as pr(Y* < y) − pr(Y* > y), 

where y is the observed outcome and Y* is a random variable from the fitted distribution. This 

probability-scale residual can be written as E {sign(y, Y*)} whereas the popular observed-minus-

expected residual can be thought of as E(y − Y*). Therefore, the probability-scale residual is 

useful in settings where differences are not meaningful or where the expectation of the fitted 

distribution cannot be calculated. We present several desirable properties of the probability-scale 

residual that make it useful for diagnostics and measuring residual correlation, especially across 

different outcome types. We demonstrate its utility for continuous, ordered discrete, and censored 

outcomes, including current status data, and with various models including Cox regression, 

quantile regression, and ordinal cumulative probability models, for which fully specified 

distributions are not desirable or needed, and in some cases suitable residuals are not available. 

The residual is illustrated with simulated data and real datasets from HIV-infected patients on 

therapy in the southeastern United States and Latin America.
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1. INTRODUCTION

For model diagnostics and analyses of residual correlation, it is desirable to have a residual 

that is well defined, easily computable, and robust across many outcome types with a 

common scale. A well known residual in linear regression is y − ŷ, where y is an observed 

value and ŷ is a fitted value, typically an estimated conditional expectation. This observed-

minus-expected residual (OMER) is simple and has many desirable properties, but is not 

easily extendable to outcomes where a conditional expectation is not meaningful or readily 

calculated. For example, for ordinal outcomes there is no natural definition of difference or 

conditional expectation unless scores are assigned to the ordered categories; for right 

censored outcomes with partially defined fitted distributions one may not be able to calculate 

the conditional expectation. Furthermore, the OMER may be misleading with models where 
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one is fitting a non-symmetric distribution to data. This has led to context-specific residuals, 

e.g., martingale residuals for censored outcomes (Therneau et al., 1990); a general scheme 

for defining residuals in specific contexts (Cox and Snell, 1968); and residuals defined for 

generalized linear models, e.g., deviance and Pearson residuals (McCullagh and Nelder, 

1989); to mention just a few. Deviance residuals have many nice properties and are quite 

popular across a wide variety of models (Pierce and Schafer, 1986), but they involve disjoint 

components (the deviance and the sign) and they are not naturally constructed for some 

models including ordinal models and quantile regression.

One could define a residual as some measure of discrepancy between an observed value and 

a fitted distribution; for example, a contrast of the observed value with a random variable Y* 

from the fitted distribution. One such contrast is the difference, y − Y*, and its mean, E(y − 

Y*) = y − ŷ, is the OMER. A different contrast function that is useful more generally is 

sign(y, Y*). We refer to the mean of this contrast, E {sign(y, Y*)} = pr(Y* < y) − pr(Y* > y), 

as the probability-scale residual (PSR).

Li and Shepherd (2010, 2012) introduced the PSR for ordered categorical outcomes, and in 

that context, showed that it has several desirable properties including that it results in only 

one value per subject irrespective of the number of categories of the ordinal outcome, it does 

not require assigning arbitrary numbers to the categories, and it has expectation zero. These, 

and other properties, make the PSR useful for model diagnostics or tests of residual 

correlation with ordinal data. The residual has been used as a statistic for other purposes 

with ordinal data: it is closely related to a ridit (Bross, 1958), and it has been proposed as 

part of a test statistic in genetic analysis of ordinal traits (Zhang et al., 2006).

The PSR is actually remarkably useful across a wide variety of other outcome types and 

models because it does not require calculation of E(Y*). Although the PSR measures 

discrepancy using a probability scale, it does not require full specification of a fitted 

distribution, which makes it useful for models that are not fully parametric – e.g., Cox 

regression, quantile regression, or cumulative probability models; the latter two of which do 

not have a particularly suitable residual. It also has a nice connection with ranks. There are 

benefits to having a residual that has a common scale, is easy to compute, and is applicable 

across many outcome types. In this paper we study properties of the PSR, compare it with 

other residuals, and demonstrate its application to continuous, discrete, and censored data.

2. DEFINITION, NOTATION, AND GENERAL PROPERTIES

Let Y be an orderable random variable from a distribution F; Y can be continuous or 

discrete. An observed value of this random variable is designated as y. Let F* be an assumed 

or fitted distribution of Y. The PSR is defined as

where Y* is a random variable with distribution F*, F* (y−) = limt↑y F* (t), and sign(a, b) is 

−1, 0, and 1 for a < b, a = b, and a > b, respectively. The expectation is with respect to F*, 

Shepherd et al. Page 2

Can J Stat. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



which may be different from the true distribution of Y. The distribution F* may be 

conditional on covariates Z and parameters θ, and we will sometimes denote it as . We 

will also sometimes denote random variables or observations from subject i using subscripts. 

For subject i, let Yi be the outcome and  the assumed distribution of Yi given Zi. Given 

data (yi, zi) and a fitted model with parameter estimates θ̂, the PSR for subject i is 

.

The residual has several important and desirable properties. It is monotonic in y and 

monotonic in F* (with respect to stochastic ordering), and its range of possible values is 

symmetric about zero in [−1, 1]. By definition, full specification of the fitted distribution is 

not needed to compute the PSR; only the fitted cumulative probabilities at observed y and y− 

are needed. In particular,

Property 1. E {r(Y, F*)} = 0 if F* = F, which is proved in the Appendix.

3. CONTINUOUS OUTCOMES

3.1. Properties

If F* is continuous, then r(y, F*) = 2F* (y) − 1 and has the following additional properties:

Property 2. If F* (y1) + F* (y2) = 1, then r(y1, F*) = −r(y2, F*).

Property 3. If  , then .

Property 4. r {median(F*), F*} = 0.

Property 5. If a function r0(y, F*) is monotonic in y and satisfies Properties 2 and 3, 

then r0(y, F*) = g{r(y, F*)}, where g(t) is a strictly increasing odd function (i.e., g(t) = 

−g(t) for all t). The reverse is also true.

Property 6. The random variable r(Y, F*) ~ Unif(−1, 1) if F* = F.

Properties 2–4 are expected and are desirable for a residual based on a probability scale. In 

fact, as described in property 5, a residual satisfying properties 2–3 and monotonicity will be 

unique with respect to an odd function transformation; the proof is in the Appendix. An 

example odd function is g(t) = Φ−1{(t + 1)/2}, where Φ(·) is the standard normal cumulative 

distribution function. This leads to g{r(y, F*)} = Φ−1{F* (y)}, a ‘quantile residual’ defined 

by Dunn and Smyth (1996), and mentioned earlier by Davison and Tsai (1992). Property 6 

arises from the fact that the PSR is a re-scaling of the probability integral transformation, 

which can be used to assess goodness of fit (Pearson, 1938; David and Johnson, 1948; Cox 

and Snell, 1968).

In a model fitting scenario, if the estimated parameters θ̂ converge in probability to θ and F* 

is continuous at θ, then  and . Therefore, 

converges in distribution to Unif(−1, 1) if  is correctly specified. That is, if the sample 

size is sufficiently large, the PSR from the true model will be approximately uniformly 

distributed, with expectation 0 and constant variance (1/3) at all values of Z. Therefore, a 

residual-by-predictor plot that shows a trend in its expectation as a function of Z would 
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suggest poor model fit. In addition, a quantile-quantile (QQ) plot of the empirical quantiles 

of the PSR versus the theoretical quantiles of Unif(−1, 1) can be used to detect lack of fit.

3.2. Examples

3.2.1. Exponential Model—Suppose that conditional on Z = z, Y is exponentially 

distributed with rate e−z+z2
. When an exponential model is properly fit, there is no 

relationship between z and the PSR, and the residuals are uniformly distributed (Figure 1, 

column 1). In contrast, the need for a quadratic term can be spotted in residual-by-predictor 

plots using the PSR when only a linear relationship is assumed. Similar information can be 

obtained using deviance residuals (Figure 1, column 2), but not the OMER (Figure 1, 

column 3) unless the observed and fitted values are first transformed (Figure 1, column 4).

3.2.2. Cumulative Probability Regression Models—Consider a semi-parametric 

transformation model for continuous outcomes, Y = H(βZ + ε), where H(·) is an unspecified 

monotonic function and ε follows a specified distribution (Zeng and Lin, 2007). Harrell 

(2015) proposed fitting these models using ordinal cumulative probability regression 

models. Specifically, this approach models the distribution of Y with , 

where G is a link function (the inverse cdf of ε), θ = (α(y), β), and α(y) = H−1(y) are 

intercepts; when fit to observed data with n observations, this model results in n − 1 

intercepts and is therefore quite flexible. The PSR is a natural residual for these models, with 

, whereas other common residuals may be less useful and/or 

more difficult to compute.

We illustrate using biomarker data from 70 pre- or non-diabetic HIV-infected persons on 

stable antiretroviral therapy. HIV-infected persons have an increased risk of developing 

diabetes, so there is interest in modeling metabolic biomarkers. Here we focus on alpha-

ketoglutarate, which is a key intermediate in the Krebs cycle, through which aerobic 

organisms generate energy. Measurements of alpha-ketoglutarate were quite skewed in our 

dataset, ranging from 2.4 to 20.4 μM, with a median and mean of 4.6 and 5.2, μM, 

respectively. We considered three models for this biomarker: a linear model, a linear model 

after log-transforming the outcome, and an ordinal cumulative probability model with a 

probit link. Predictor variables were age, sex, race, body mass index, CD4 cell count, and 

duration of antiretroviral therapy.

Figure 2 shows QQ plots of PSRs from the 3 models versus the uniform(−1, 1) distribution. 

From these figures it is clear that the linear model is a poor fit, the linear model after log-

transformation is a better fit, and that the semi-parametric transformation model is the best 

fit. PSRs for the two linear models were computed as 2Φ {(yi − ŷi)/σ̂} − 1. Note that under 

the assumptions of normality, the PSR is simply a transformation of standardized OMERs. 

An alternative, empirical approach to computing the PSR from the linear models that does 

not assume normality is described in the Discussion; results using this empirical approach 

were similar (data not shown).

Although one could have detected the poor fit of the linear model and the better fit of the 

log-transformed linear model using OMERs, the use of the OMER for the semi-parametric 
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transformation model is less straightforward (see Supplemental Material). In contrast, 

computation of the PSR from the linear models was appropriate and simple. By investigating 

the distribution of the PSR for all three models, we were able to compare apples to apples, 

so to speak, illustrating the benefits of having a residual that is well-defined across a wide 

variety of statistical models.

3.2.3. Quantile Regression—The PSR is also useful with quantile regression (Koenker, 

2005). Suppose that conditional on Z = z, Y is a mixture of two normal distributions, πN(−z 
+ z2, 12) + (1 − π)N(0, 1002), with mixing probability π = 0.9 and Z following a standard 

normal distribution; this set-up is meant to create a setting with a substantial number of 

outliers. Median regression with a properly specified model results in consistent estimates of 

the conditional expectation of Y given Z. However, one might be unaware of the quadratic 

relationship between Y and Z and incorrectly fit a model assuming a linear relationship. 

Ideally, a residual-by-predictor plot would detect this lack of fit, but we are not aware of a 

residual specifically designed for median regression. Figure 3 (left column) shows the 

OMER from median regression, replacing the estimated conditional expectation with the 

conditional median, as a function of z for 100 simulated observations both with a model 

including the quadratic term (top row) and a model missing the quadratic term (bottom). 

Neither plot is very helpful for detecting the missing quadratic term because the figure is 

dominated by outliers. One could remove outliers or zoom in to observe the quadratic shape 

of the OMERs as a function of z. However, in some cases it may be difficult to decide which 

data points to remove. More importantly, outlier removal is contrary to the nature of median 

regression. In general, residuals are used to detect model misspecification, and if a model is 

properly specified then it is undesirable for a residual plot to detect misspecification to a 

model different from that used. Given that median regression is quite robust to outliers in the 

outcome, residual plots from a median regression model should ideally not be dominated by 

outliers in the outcome.

From median regression, we are unable to estimate F* (y), but we know whether it is in 

(0,0.5) or (0.5,1). Using this information, we can construct the PSR as either −0.5 or 0.5 

depending on whether y is less than or greater than its predicted median. Even in this case, 

the PSR can be informative with the help of smoothing (Figure 3, second column). 

Estimation of the PSR could be more refined by estimating additional quantiles of the 

outcome conditional on covariates, and then calculating the PSR as , 

where  is the estimated fitted distribution. For example, the third column of Figure 3 

shows a plot of the PSR as a function of Z when the fitted distribution was estimated using 

quantile regression for the 0.01, 0.02, …, 0.99 quantiles; the linear (quadratic) models were 

fit assuming a linear (quadratic) relationship between Z and each quantile of Y. This is a 

stronger assumption than that made in the original median regression models (which only 

assumed these relationships for the 0.5 quantile), but similar in spirit. The missing quadratic 

term is easy to spot (bottom row) and the PSR behave well when the quadratic term is 

included (top row). For comparison, the fourth column of Figure 3 shows the PSR with the 

fitted distribution correctly specified as a mixture of normals and parameters estimated using 
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the EM algorithm (Benaglia et al., 2009). The residuals based on quantile regression are 

very similar to the residuals where the mixture distribution was properly specified.

4. DISCRETE OUTCOMES

4.1. Properties

The PSR was originally proposed for ordered categorical outcomes and is directly applicable 

to other types of orderable discrete outcomes including count and binary data. The residual 

is 2F* (y) f* (y) − 1, where f* is the probability mass function of the fitted distribution F*. 

Although the range of the PSR for discrete outcomes is symmetric, the residual itself, 

typically, is not symmetric, its distribution is not uniform, and r(median(F*), F*) does not 

necessarily equal zero. When Y contains only 2 categories (0 or 1), the PSR reduces to y − 

pr(Y* = 1), which is the unscaled Pearson residual for binary outcomes (Hosmer and 

Lemeshow, 2000). The variance of the residual for discrete outcomes is {1 − Σ f* (y)3}/3 if 

F* = F, where the summation is over the support of Y*. As the number of outcome 

categories increases with the maximum probability mass decreasing to zero, the residual’s 

variance converges from below to 1/3 and the residual becomes uniformly distributed over 

(−1, 1). On the other hand, the PSR for discrete outcomes can be viewed as an integrated 

version (i.e., the expectation) of the PSR for some underlying latent continuous variable. 

Details and a proof are in the Appendix.

4.2. Example

The use of the PSR with ordered categorical outcomes was illustrated in Li and Shepherd 

(2012). Here we illustrate the PSR with count data.

Figure 4 shows residual-by-predictor plots under properly and improperly fit models. Count 

data were generated with mean eβ0+β1Z and with Z drawn from a standard normal 

distribution; β0 = 0 and β1 = 1. Data were first generated from a Poisson model and then fit 

with a Poisson model. Row A of Figure 4 shows probability-scale, deviance, and Pearson 

residuals from the properly specified model. Realized values of Y can be seen as bands in all 

plots. Row B shows the residuals when data were generated under a negative binomial 

model with dispersion parameter ϕ=3, corresponding to variance of eβ0+β1Z + e2(β0+β1Z)/ϕ, 

and analyzed with a properly specified negative binomial model. As stated in Property 1 and 

seen in rows A–B, the PSR have expectation 0; Pearson residuals behave similarly, although 

there is no such guarantee for deviance residuals. Row C shows data generated under the 

negative binomial model but incorrectly fitted using a Poisson model, thereby ignoring over-

dispersion. The PSR no longer has expectation 0; for larger values of Z the residual tends to 

be negative. Intuitively, with over-dispersion, as Z increases, the variance increases faster 

than that of a Poisson model; therefore the predicted distribution for larger values of Z is 

biased upward compared to what is actually observed, leading to residuals that tend to be 

negative. Over-dispersion cannot be detected using the expectation for the deviance or 

Pearson residuals (row C, columns 2–3).
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5. CENSORED OUTCOMES

5.1. Properties

We now consider the PSR with censored data. We focus on the classic right-censored time-

to-event setting, where T is the time to the event of interest, C is the time to censoring, T > 

0, C ≥ 0, Y = min{T, C}, and Δ = I{T≤C}. Rather than observing (T, C), we observe 

realizations of the random variables (Y, Δ).

If we could always observe the failure time, t, then the PSR would be its usual form, r(t, F*) 

= F* (t−) − {1 − F* (t)}, where F* is the assumed distribution of T. However, since we do not 

always observe t, the PSR, r(y, F*, δ), must be defined in terms of y and δ, the observed 

values of random variables Y and Δ. If δ = 1, then t = y and r(y, F*, 1) = F* (y−) − {1 − F* 

(y)}. If δ = 0, the failure time is unknown, except that it occurs some time after the 

censoring time y. In this case, the residual is computed as its conditional expectation given 

that t > y,

The proof is in the Appendix. Therefore,

The properties listed in Section 2 continue to hold for the PSR for censored outcomes, 

except that the expectation of the residual is 0 if the fitted distribution is correct and T is 

independent of C (denoted T ⊥ C). The proof is in the Appendix. Note that for censored 

observations the residual will always be non-negative; this is consistent with other popular 

residuals for time-to-event outcomes which also always have the same sign for censored 

observations (e.g., martingale residuals (Therneau et al., 1990), discussed in more detail 

below).

If T ⊥ C and F* = F, the distribution of T, then the variance of the PSR is

This implies that the variance of the residual depends on the distributions of both T and C. 

The quantity EC [{1 − F(C)}3] is the fraction of reduction in variance induced by censoring. 

Of note with continuous F, if Δ = 1 with probability 1, then F(C) = 1 and the variance equals 

its maximum, 1/3, the variance of Unif(−1, 1). As the probability of censoring increases, the 

residual becomes less uniformly distributed. We are unable to derive the distribution of the 

PSR in general for censored outcomes. In the special case where T and C are independent 

and exponentially distributed with means θ and β, respectively, the probability density 
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function of the residual can be written as a mixture distribution π [2Beta(1,1/π) − 1] + (1 − 

π)Beta(1,1/π), where π = β/(θ + β) = pr(Δ = 1); details are in Supplementary Material.

When a fully parametric model is fit to survival data (e.g., Weibull regression), computation 

of the PSR is straightforward. The PSR can also be easily computed after fitting a 

semiparametric model such as the Cox proportional hazards model, because the residual 

only requires estimates of the cumulative distribution at the event and censoring times in the 

data. For example, with a Cox model, one can estimate F* (y) for all observed y using an 

empirical estimator of the cumulative baseline hazard together with the estimated relative 

hazard conditional on subject covariates (Cox, 1972; Breslow, 1972).

The PSR offers a new suite of residuals parallel to the trio of martingale, Cox-Snell, and 

deviance residuals, each of which can be written as a one-to-one function of the PSR given 

δ. The Cox-Snell residual for subject i is the estimated cumulative hazard, 

, the martingale residual is mi = δi − ci, and the deviance residual is a 

transformed martingale residual to make it more symmetric and normally shaped, 

 (Therneau et al., 1990). The PSR with continuous 

failure time can be written as a transformation of the martingale residual: 

. The direction of the PSR is opposite to that of the 

martingale residual, but it is consistent with that of most residuals for continuous/discrete 

data: For example, a positive PSR indicates that the time-to-event was longer than expected 

whereas a positive martingale residual indicates that an event was observed sooner than 

expected. Like the martingale residual, the PSR can be used to examine the adequacy of the 

functional form of the model, although unlike the martingale residual, which ranges from 

−∞ to 1 and can therefore be quite skewed (Baltazar-Aban and Pena, 1995), the PSR has a 

symmetric range. A Cox-Snell-like PSR can be constructed as 

, which is simply the PSR evaluated at the observed time 

(ignoring censoring). With continuous data, , and similar to the Cox-Snell 

residual which corresponds to a censored exponential(1) distribution if the model is correct 

and the outcome continuous, this Cox-Snell-like PSR corresponds to a censored 

uniform(−1,1) distribution with which its Kaplan-Meier estimate can be compared to assess 

goodness of fit. Finally, analogous to the deviance residual, the PSR can be normalized, 

 to make the residual more normally shaped and more capable of 

detecting outliers. This normalized PSR extends the ‘quantile residual’ proposed by Dunn 

and Smyth (1996) to time-to-event data.

5.2. Example

Figure 5 demonstrates the use of the PSR with time-to-event data from 589 HIV-infected 

women ≥ 50 years of age initiating antiretroviral therapy at one of seven sites in Latin 

America and the Caribbean (McGowan et al., 2007). Researchers were interested in 

predicting survival probabilities based on patient characteristics and determining factors 

associated with an elevated risk of mortality. To this end, a Cox model was fit with the 

outcome of time from therapy initiation until death. Patients were followed for a median of 
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3.7 years. A total of 80 (13.6%) patients died during follow-up; the remaining patients were 

censored at the time of study close or loss to follow-up. The time to death was assumed 

independent of the time to censoring, conditional on model covariates. An initial model 

included age, prior AIDS-defining event, calendar year, and regimen class as predictors with 

a separate baseline hazard estimated per site.

The upper left panel of Figure 5 shows PSRs from this model plotted against CD4 count at 

therapy initiation, which was not included in the model. The PSRs for censored patients are 

≥ 0, whereas the PSRs for those who died are < 0 (although this need not always be the 

case). The figure includes a smoothed curve showing the relationship between the PSR and 

CD4. At low CD4 (e.g., < 150) the mean of the PSRs tends to be negative, suggesting that 

the fitted model is under-estimating the probability of death. The normalized PSRs (upper 

middle panel) lead to a similar conclusion. From the QQ-plot (upper right panel) we can see 

the fit is not bad, but the residual-by-predictor plots suggest that CD4 should be included in 

the model. The lower panels in Figure 5 show residuals from the model with CD4 included 

after square-root transformation and using natural splines to account for potential non-

linearity; the relationship between CD4 and the PSRs disappear. Figure 5 also shows similar 

residual plots using martingale, deviance, and Cox-Snell residuals; conclusions are similar.

5.3. Current Status Data

Current status data can be thought of as an extreme form of censoring (Jewell and van der 

Laan, 2004), and the PSR remains well defined in this setting. Let T be the time-to-event of 

interest. Rather than observing T, we observe C, the observation time, and Δ, whether the 

event has occurred by the observation time (i.e., Δ = I{T≤C}). The PSR for current status data 

with observed c and δ, r(c, F*, δ), can be defined as the expectation of r(T*, F*) given the 

constraints imposed by the observed values. Specifically, if δ = 0 then r(c, F*, 0) = E{r(T*, 

F*)|T* > c} = F* (c), as shown for time-to-event outcomes. If δ = 1 then r(c, F*, 1) = E{r(T*, 

F*)|T* ≤ c} = F* (c) − 1 (proof in Appendix). Therefore,

As in the other settings considered, the PSR with current status data has expectation 0 when 

F* is properly specified and T ⊥ C (proof in the Appendix).

6. DISCUSSION

We have described a probability-scale residual that can be applied across a wide range of 

outcomes and models. Originally developed to fill a gap in the analysis of ordinal data, the 

residual has several nice properties with continuous, other types of discrete, and censored 

data. The residual is easy to understand and interpret, it has expectation zero with properly 

fitted models, and it does not require a fully specified distribution. Some of these properties 

make it better for diagnostics than traditional residuals in certain situations. The utility of the 

PSR across a wide variety of models can be leveraged to compare fit between diverse 

models, some of which may not have a good alternative residual.
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Because it is well defined with the same scale for a wide variety of outcomes, the PSR is 

also useful for tests of residual correlation between variables of possibly different types (Li 

and Shepherd, 2010). Tests of residual correlation using the PSR were not highlighted in this 

manuscript, but are being investigated. The PSR is closely related to ranks, as ranks are 

effectively on a probability scale (e.g., the empirical CDF is ranks divided by the sample 

size). In Section 3.2.2, we mentioned that an empirical PSR (ePSR) could be constructed 

from a linear model that assumes homoscedasticity but not necessarily normality. 

Specifically, one could obtain estimates of ε̂i = yi − ŷi and their empirical distribution 

, and estimate the fitted distribution for observation i as a location 

shift by ŷi of , denoted as . The corresponding empirical PSR would be 

, which is simply a linear transformation 

of the rank of the OMER; specifically, ePSRi = {2rank(ε̂i) − 1 − n}/n. Thus the residual’s 

efficiency and robustness are analogous to that of rank-based statistics (Lehmann and 

D’Abrera, 2006) and classical rank-based statistics and tests (e.g., Spearman’s rank 

correlation) can be constructed using the PSR.

We have focused our comparisons of the PSR with some of the most popular residuals, but 

there are certainly many others we could have investigated including generalized residuals 

(Gourieroux et al., 1987a), rank residuals (McKean et al., 1990), and others (Espinheira et 

al., 2008; Cysneiros and Vanegas, 2008). The banded nature of residuals from discrete data 

(e.g., Figure 4) may be undesirable to some, and jittering has been used to make them look 

more like residuals for continuous data (Dunn and Smyth, 1996; Gourieroux et al., 1987b); 

similar approaches could be applied to the PSR. As with most residuals, PSRs across 

observations are correlated, albeit weakly, because they are computed using parameter 

estimates derived from all observations; recursive residual techniques (Kianifard and 

Swallow, 1996) could be applied to produce uncorrelated PSRs.

The PSR has some limitations. Since it is bounded between −1 and 1, it is not good for 

outlier detection; for this purpose we recommend the transformation Φ−1{(PSR + 1)/2}. The 

PSR may provide little or no information on the adequacy of some model assumptions such 

as the proportional odds assumption in ordered logistic regression (Li and Shepherd, 2012). 

Adjusting the PSR for the effects of leverage (Cook and Weisberg, 1982; Davison and Tsai, 

1992) is not straightforward because its finite sample variance is not easily written or 

approximated as a function of the hat matrix; the Supplementary Material contains a brief 

discussion and approximation of a leverage-adjusted PSR in a special case. Although the 

PSR is well defined and easily computed with least squares regression, the traditional 

observed-minus-expected residual would typically be preferable for these models as they 

minimize the sum of the squared OMERs. With continuous data, the PSR is often a 1-to-1 

transformation of the OMER, thereby capturing the same information but delivering it on a 

different, probability scale. There are other settings where the PSR may not offer much more 

than existing residuals, for example, with binary data where the PSR is the unscaled Pearson 

residual. Similarly, although the PSR has some advantages over traditional residuals for 

time-to-event data, we admit that these advantages may not be strong enough to get an 

analyst to switch to the PSR for their model diagnostics. It would be great to have a single 
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residual definition that is uniformly superior in all cases, but this is unrealistic. That the PSR 

is useful across such a wide range of models is actually quite remarkable.

We have uploaded to CRAN an R package, PResiduals, that computes the PSR for a wide 

variety of fitted models. Code for all analyses are posted at http://biostat.mc.vanderbilt.edu/

ArchivedAnalyses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

Proof of Property 1: E{r(Y,F*)} = 0 when F* = F

Since F(y−) = ∫ I{x<y}dF(x), we have

Similarly, since 1 − F(y) = ∫ I{x>y}dF(x), we have

These two are equal due to the symmetry between x and y. Therefore, E{r(Y,F)} = ∫ 
r(y,F)dF = ∫ F(y−)dF − ∫ {1 − F(y)}dF = 0.

Proof of Property 5

It is easy to show that if g(t) is a strictly increasing odd function, then g{r(y,F*)} is 

monotone in y and satisfies Properties 2 and 3. We now show the reverse. Let r0 = r0(y,F*) 

be a residual that is monotone in y and satisfies Properties 2 and 3, and r = r(y,F*) = 2F*(y) 

− 1 be the PSR. Let h(t) = 2t − 1 be a function over t ∈ (0, 1). Then r(y,F*) = h {F*(y)}.

Shepherd et al. Page 12

Can J Stat. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Since F* is continuous, for every t ∈ (0, 1), there is a yt such that t = F*(yt). We define h0(t) 
= r0(yt, F*); Property 3 ensures that h0(t) is well defined, i.e., that for every t there is a 

unique h0(t). Monotonicity ensures that h0(t) is strictly increasing as t increases. Then there 

is a one-to-one mapping between the residuals r and r0: r0 = G(r), where G(r) = h0 {h−1(r)}. 

It is obvious that G is strictly increasing. We now show that it is an odd function.

Property 2 ensures that for any t1, t2 ∈ (0, 1) satisfying t1 + t2 = 1, h0(t1) = −h0(t2). Let r1 

and r2 be their PSR. Then r1 = h(t1) = −h(t2) = −r2, and

That is, G(−r) = −G(r) for any r.

For discrete random variables, if max(f*) → 0 and F* = F, then R = r(Y,F*) = r(Y,F) → 
Unif(−1, 1) in distribution

Let ε = max(f) > 0, then 0 ≤ f(y) ≤ ε for all y. Since

We will show below that c − ε < pr {F(Y ) ≤ c} ≤ c + ε. Therefore,

Then when ε → 0, pr(R ≤ t) → (t + 1)/2 for −1 ≤ t ≤ 1, and R → Unif(−1, 1) in 

distribution.

We now show that

(1)

for any 0 ≤ c ≤ 1. This is obvious when c = 1 because pr {F(Y ) ≤ 1} = 1. We note that F is a 

right-continuous step function and F(y) → 1 as y → +∞. When c < 1, there exists a y such 

that c < F(y). If y is the lowest outcome category and 0 ≤ c < F(y), then pr {F(Y) ≤ c} = 0 < 

c + ε and c − ε ≤ c − F(y) < 0; thus (1) holds. If F(y1) ≤ c < F(y2), where y1 and y2 are two 

outcome categories, we can always find y1 and y2 such that F(y1) ≤ c < F(y2) and F(y2) − 

F(y1) ≤ ε. Then pr {F(Y) ≤ c} ≤ pr(Y <y2 ) ≤ F(y2) ≤ F(y1) + ε ≤ c + ε, and c − ε < F(y2) − ε 
≤ F(y1) = pr(Y ≤ y1) ≤ pr {F(Y ) ≤ c}.
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The discrete outcome PSR can be viewed as an integrated version of the continuous 
outcome PSR

Specifically, let R be the real set, and S ⊂ R be the set of categories of a discrete outcome 

with CDF F. Suppose there is a latent continuous variable with CDF F0 such that F(k) = 

F0(k) for all k ∈ S. We show that r(k,F) = E {r(T,F0) | j < T ≤ k} for all k ∈ S, where j is the 

category immediately before k (or j = −∞ if k is the lowest category):

Proof that r(y,F*, 0) = F*(y) for time-to-event outcomes

Since r(y,F*, 0) = ET*{r(T*, F*) | T* > y} = ∫t>y r(t, F*)dF*(t)/{1 − F*(y)}, it suffices to 

show that F*(y){1 − F*(y)} = ∫t>y r(t, F*)dF*(t) = ∫t>y F*(t−)dF*(t) − ∫t>y{1 − F*(t)}dF*(t). 
The last two items are

and

Due to the symmetry between s and t, ∫∫y<s<t 1dF*(s)dF*(t) = ∫∫y<t<s 1dF*(s)dF*(t), and 

thus ∫t>y F*(t−)dF*(t) − ∫t>y{1 − F*(t)}dF*(t) = ∫∫s≤y<t 1dF*(s)dF*(t) = ∫s≤y 1dF*(s) ∫y<t 

1dF*(t) = F*(y){1 − F*(y)}.

Proof that E{r(Y,F*, Δ)} = 0 when F* = F and T ⊥ C

For brevity, let

(A1)

(A2)
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Since E(R) = EC{ET|C(R | C)} = EC{ET (R | C)}, where the inner expectation is over T 
because T ⊥ C, it suffices to show that ET (R | C) = 0, or that both ET (A1 | C) = 0 and ET 

(A2 | C) = 0.

Given a fixed c, since

and similarly,

we have ET (A1 | C) = 0 due to the symmetry between s and t. In addition, since ET [I{T≤C} 

{1 − F(C)} | C] = F(C) {1 − F(C)}, and ET {I{T>C}F(C) | C} = {1 − F(C)} F(C), we have ET 

(A2 | C) = 0.

Derivation of the Variance with Censored Outcomes

Again, let R = r(Y,F, Δ). When T ⊥ C, since E(R) = 0, var(R) = E(R2) = EC {ET|C(R2 | C)} = 

EC {ET (R2 | C)}, where the inner expectation is over T because T ⊥ C. We decompose R2 

as follows:

(B1)

(B2)

(B3)

We will calculate ET (· | C) for B1, B2, and B3, separately.

First, consider the conditional distribution of T given T ≤ c, denoted G(t) = F(t)/F(c), where 

c is a fixed value. The mean of a properly specified PSR for this distribution is 0 = ∫[G(t−) 

− {1 − G(t)}]dG(t) = F(c)−2 ∫t≤c[F(t−) − {F(c) − F(t)}]dF(t), and its variance, v(c) = ∫ [G(t
−) − {1 − G(t)}]2dG(t) = F(c)−3 ∫t≤c[F(t−) − {F(c) − F(t)}]2dF(t).
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Then ET (B1 | C) = ∫t≤C[F(t−) − {F(C) − F(t)}]2dF(t) = F(C)3v(C), ET (B2 | C) = −2{1 − 

F(C)} ∫t≤C[F(t−) − {F(C) − F(t)}]dF(t) = 0, and ET (B3 | C) = F(C){1 − F(C)}2 + {1 − 

F(C)}F(C)2 = F(C){1 − F(C)}. Therefore, ET (R2 | C) = F(C)3v(C) + F(C){1 − F(C)}.

For continuous outcomes, v(c) = 1/3. Thus,

and E(R2) = 1/3 − EC[{1 − F(C)}3]/3.

For discrete outcomes, v(c) = 1/3 −Σt≤c{f(t)/F(c)}3/3 (Li and Shepherd 2012). Thus,

and E(R2) = 1/3 − EC[{1 − F(C)}3 +Σt≤C f(t)3]/3.

Proof that r(c, F*, 1) = F*(c) − 1 with current status data

Since r(c, F*, 1) = E{r(T*, F*)|T* ≤ c} = ∫t≤c r(t, F*)dF*(t)/F*(c), it suffices to show that ∫t≤c 

r(t, F*)dF*(t) = F*(c){F*(c) − 1}.

Proof that E(r(C, F*, Δ)=0 with current status data if F = F* and T ⊥ C
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Figure 1. 
Left column: Residual-by-predictor plots from a properly fitted model of exponentially 

distributed data including a quadratic term (top row) and not including the quadratic term 

(bottom row). The first column is the probability-scale residual (PSR), the second column is 

the deviance residual, the third column is the observed-minus-expected residual (OMER), 

and the fourth column is the log(observed) minus log(expected). 250 observations were 

generated with rate exp(−z + z2) and Z generated from a standard normal distribution. 

Smoothed curves using lowess are added.
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Figure 2. 
QQ plots of PSRs from linear (left), linear after log-transformation (center), and 

semiparametric transformation models (right) of alpha-ketoglutarate compared to a 

Uniform(−1,1) distribution.
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Figure 3. 
Residual-by-predictor plots from a properly specified median regression model including a 

quadratic term (top row) and from a model ignoring the quadratic term (bottom row). From 

left to right, the residuals are OMER, PSR using only information obtained from median 

regression, PSR with fitted distribution estimated using quantile regression (QR), and PSR 

with fitted distribution properly specified as a mixture of normals. Smoothed curves using 

lowess are added.
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Figure 4. 
Plots of the PSR (first column), deviance (middle column), and Pearson (last column) 

residuals versus Z for 2000 data points generated under A) a Poisson model and analyzed 

with a Poisson model, B) a negative binomial model and analyzed with a negative binomial 

model, and C) a negative binomial model and analyzed with a Poisson model. Smoothed 

curves using Friedman’s ‘super smoother’ are added.
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Figure 5. 
Residual plots for models of the time to death. Rows 1–2 are for a model that does not 

include CD4, rows 3–4 are for a model that includes CD4. Rows 2 and 4 correspond to 

traditional residual plots using martingale, deviance, and Cox-Snell residuals, respectively. 

Rows 1 and 3 correspond to analogous plots using the PSR. The plots in columns 1 and 2 are 

limited to CD4<500 as this includes >98% of all measurements. Smoothed curves using 

Friedman’s ‘super smoother’ are added. Observed events are denoted with crosses, censored 

are denoted with circles.
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