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Abstract

Glutamate signaling in the brain is one of the most studied targets in the alcohol
research field. Here, we report the current understanding of how the excitatory
neurotransmitter glutamate, its receptors, and its transporters are involved in
low, episodic, and heavy alcohol use. Specific animal behavior protocols can
be used to assess these different drinking levels, including two-bottle choice,
operant self-administration, drinking in the dark, the alcohol deprivation effect,
intermittent access to alcohol, and chronic intermittent ethanol vapor inhalation.
Importantly, these methods are not limited to a specific category, since they
can be interchanged to assess different states in the development from low to
heavy drinking. We encourage a circuit-based perspective beyond the classic
mesolimbic-centric view, as multiple structures are dynamically engaged during
the transition from positive- to negative-related reinforcement to drive alcohol
drinking. During this shift from lower-level alcohol drinking to heavy alcohol use,
there appears to be a shift from metabotropic glutamate receptor-dependent
behaviors to N-methyl-D-aspartate receptor-related processes. Despite high
efficacy of the glutamate-related pharmaceutical acamprosate in animal models
of drinking, it is ineffective as treatment in the clinic. Therefore, research needs
to focus on other promising glutamatergic compounds to reduce heavy drinking
or mediate withdrawal symptoms or both.
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Introduction

Glutamate, the most prevalent excitatory neurotransmitter in the
central nervous system, has long been associated with the excito-
toxicity of alcohol withdrawal. Repeated episodes of alcohol with-
drawal can generate aberrant behaviors such as hypermotility and
increased seizures, which are classically thought to be related to an
excitable state caused by increased glutamate action in the brain'~".
These hyperglutamatergic periods of alcohol deprivation between
heavy drinking events may be kindled across time, in a process like
electrophysiological kindling’. Since this hypothesis is generally
well accepted in the field, many have explored glutamatergic tar-
gets for new alcohol use disorder medications®. However, since an
acute injection of ethanol also increases glutamate in the nucleus
accumbens (NAc)’, a site heavily associated with both reward and
stress, it suggests that there is a continuum of engagement through
the transition from low to heavy drinking regulated by glutamate
signaling. We focus on circuits that become recruited among subcor-
tical structures beyond the classic mesolimbic-centric perspective.

There are distinct pharmacological classes of glutamate receptors,
including ionotropic (iGluR) and metabotropic (mGluR) glutamate
receptors and glutamate transporters that have been linked to a wide
variety of alcohol-related phenotypes. In brief, iGluRs encompass
o-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
receptors with 1-4 subunits (GluA1-4), N-methyl-D-aspar-
tate (NMDA) receptors with two obligatory GluN1 subunits and
combinations of GluN2(A-D) assemblies, and kainite receptors
(GluK1-5). GluN receptors are more sensitive to alcohol than
GluA and GluK®*'’. Also, allosteric modulation of the GluN2B
binding site can produce changes in alcohol-related behaviors. In
contrast to the ligand-gated cation-selective ion channel iGluRs,
mGluRs are G-protein-coupled and form three distinct classes:
group I (mGluR1 and mGIuRS), group II (mGluR2 and mGluR3),
and group III (mGluR4, mGluR6, mGluR7, and mGluR8). Gluta-
mate clearance in the synapse can be controlled by reuptake through
transporters like excitatory amino acid transporters (EAATS) and
adenosine transporters (equilibrative nucleoside transporter, or
ENT) into glia and vesicular glutamate transporters into neurons.
This review synthesizes the extant behavioral pharmacological
findings for the role of glutamate, its receptors, and its circuitry
throughout the brain in several stages of the transition to alcohol use
disorder. In light of clinical literature, three general phases within
alcohol use disorders are discussed: low-level drinking, binge drink-
ing, and heavy drinking with withdrawal. We highlight specific
animal behavior protocols in these three categories, but importantly
these methods can be applied among all phases in the development
of alcohol dependence.

Low-level drinking

Ethanol consumption that causes less than 0.08 g/dL (or 80 mg/dL)
blood alcohol concentrations (BACs), less than 17 mM in the
brain, is considered a low dose. Typical low-alcohol doses would
be equivalent to a social drinker with BACs in the range of 0.015—
0.025 g/dL (15-25 mg/dL). However, a BAC of 0.04 g/dL is classi-
fied as driving under the influence (DUI) for commercial drivers or
previous DUI offenders (http://www.dmv.org/). With rodents that
can readily metabolize alcohol, higher gram per kilogram (g/kg)
alcohol concentrations may lead to BACs under 80 mg/dL.
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Acute sub-intoxication doses of alcohol ingestion in humans can
cause reduced strength of evoked field potentials in the prefron-
tal cortex (PFC), suggesting reduced excitability and functional
connections''. This is concordant with a 0.375 g/kg ethanol injection
inhibiting PFC firing rate by approximately 20% versus baseline
in anesthetized rats'”. In general, there is a paucity of clinical data
for low-level alcohol consumption and glutamate activity because
low-level drinkers are compared with heavy drinkers instead of
abstinent people in clinical research.

Two-bottle choice

Two-bottle choice (2BC) involves offering the option to drink
either a diluted ethanol-containing solution (concentrations range
from 3 to 30%) or water for a fixed amount of time (Table 1). 2BC
allows for the measurement of both voluntary consumption and eth-
anol preference over water and can be used as a single protocol or
be combined with others to generate the desired level of drinking.
In other words, first-day BACs may indicate low-level drinking,
but weeks of 2BC could produce intoxicating BACs. This section
focuses on 2BC studies that assess baseline ethanol preference, but
daily limited-access studies that generate more binge-like drinking
are discussed in the next section.

The studies are unequivocal that NMDA and AMPA regulate 2BC
drinking, and both competitive and non-competitive GluN antag-
onists reduce 2BC intake'*~"". For example, NMDA and AMPA
infused into the lateral hypothalamus can both increase 2BC
consumption'*. However, GluN antagonists and glycine B site
blockade can importantly reduce motor coordination to achieve
these effects'*~'. Similarly, GluN2A knockout mice show alcohol-
induced impairments in motor coordination from wild-types
(WTs) but do not show differences in consumption'’. Other
glutamate-related knockout lines also do not differ in 2BC drinking
compared with WTs (for example, AMPA GluR1, GIuN1 glycine,
and mGlIuR5)"*~'. Pharmacological manipulations of mGluRs,
specifically mGIuRS antagonists and mGluR7 agonists, are effec-
tive at reducing 2BC intake in rats*~*. In complementary experi-
ments, blockade with mGluR7 antagonist MMPIP or shRNA in
the NAc can increase low-dose alcohol intake and preference’.
Since Homer2 knockout mice drink less than WTs in 2BC?, it
suggests that downstream signaling molecules are also important
beyond glutamate receptor binding and clearance. It is worth men-
tioning that the US Food and Drug Administration (FDA)-approved
medication for alcohol dependence, acamprosate, for which the
glutamatergic mechanism of action is controversial, reduces
2BC drinking in rats”’. There is a glaring gap in the literature for
which glutamatergic circuits in the brain may govern low-dose
ethanol drinking. We need this critical information for insight into
higher-dose plasticity.

Another important variable on the outcome of 2BC drinking and
potential neuroadaptations is strain. Classic comparisons contrast
between drinking behavior of C57BL/6J mice and DBA/2J mice,
yet many inbred strains have been assessed for 2BC*. Although
specific sucrose-fading procedures can be used to induce ethanol
drinking in DBA/2J mice (for example, 29) or bypassing ethanol
taste altogether (for example, 30), this mouse strain drinks much
less than C57BL/6J mice. 2BC preference may be related to strain
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differences in the effect of glutamate and NMDA on the brain
in vitro®'+* and differences in gene expression in response to acute
ethanol®. Also, alcohol-preferring (P) rats, genetically selected for
high alcohol drinking, have a loss of the mGluR2 receptors that may
contribute to escalated alcohol intake*. Comparing high-drinking
and low-drinking strains caused from trait selection or from inbred
lines would increase the understanding of how glutamate-related
genes influence drinking behavior.

Operant self-administration of alcohol

Operant self-administration is a powerful method for mice, rats,
and monkeys to assess ethanol reinforcement. Via these methods,
rodents will typically self-administer amounts ranging from 0.5 to
2 g/kg depending on factors such as session length, reinforcement
schedule, and alcohol concentration by pressing a lever, spinning
a wheel, or poking the nose into a receptacle (Table 1). Uncom-
petitive GluN antagonists ketamine and memantine reduce oper-
ant responding for ethanol with mechanistic target of rapamycin
signaling, likely regulating the anti-alcohol effects of ketamine™.
Both mGluRS and mGluR1 blockade and mGluR7-positive allos-
teric modulation decrease alcohol self-administration in rats and
mice’, particularly in the NAc*'*?. As in 2BC studies, some have
seen ethanol-induced sedation and hypnosis with mGIuRS5 antago-
nist MPEP and mGluR2/3 antagonist LY341495" and non-specific
reductions in sucrose self-administration’**. This may be due in
part to mGluR5 influencing D1 receptors in seeking behavior®.

Self-administration training techniques are also useful to investi-
gate cue-induced reinstatement, or seeking behavior, following
extinction of the alcohol-paired cues (Table 1). In operant self-
administration protocols, cue-induced reinstatement or stress-
induced reinstatement of alcohol seeking after a period of
extinction training is also interpreted to be a form of relapse*
(Table 1). We discuss the literature here instead of the relapse sec-
tion, as no alcohol is consumed during reinstatement tests. There
have been mixed reports for the ability of competitive GIuN antago-
nists to affect reinstatement’**. For mGluRs, it is not surprising
that mGIuRS antagonism and mGIluR2/3 agonism reduce cue-
induced reinstatement, alcohol seeking in Pavlovian spontaneous
recovery, and enhanced sensitivity to the attenuation of conditioned
reinstatement™~7, but there are varying reports for whether these
compounds affect baseline self-administration. Gass et al.”* found
evidence for increased glutamate transmission from the basolateral
amygdala (BLA) to NAc core during cue-induced reinstatement
of alcohol seeking. Glutamate transmission and transport may be
mediated through adenosine ENT1°* since N-acetylcysteine and
ceftriaxone, which alter glial reuptake and release of glutamate,
also alter alcohol self-administration”>. Downstream signaling
molecules such as PKCe, ERK, and CaMKII/AMPA in the
PFC and amygdala have been well established in alcohol self-
administration and cue-induced reinstatement’*". Specifically,
amygdalar CaMKII/AMPA activation promotes self-administration
and drinking®?, whereas inhibition of CaMKII in the PFC
increases the positive reinforcing effects of alcohol®. Oth-
ers have explored the activation of mGluR2 amygdala to hip-
pocampus pathway in cue-induced alcohol seeking, where
mGluR-mediated synaptic depression is impaired in the
hippocampus™. It seems that subregions of the amygdala and also
the PFC are recruited during this low-level drinking.
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Alcohol-discriminative stimulus effects

Alcohol discrimination tasks are useful to assess the neurobiologi-
cal mechanisms underlying the discriminative stimulus effects
(for example, interoceptive effects) of low and high alcohol doses
(Table 1). However, it is important to note that these tasks do not
involve alcohol drinking but rather experimenter-administered
alcohol. We have known for decades that the discriminative stimu-
lus properties of ethanol are mediated by GluNs and GABAA*~.
Specifically, lower alcohol doses (for example, 0.5-1 g/kg) engage
GABA receptor systems whereas higher doses (>2 g/kg) involve
NMDA receptor systems. Rats and cynomolgus monkeys can dis-
criminate alcohol from glutamate release inhibitors and NMDA
ligands, showing that they have partial alcohol-like effects®’**. This
is different from the discrimination of acamprosate, where acamp-
rosate fails to substitute for an alcohol cue, suggesting that it is not a
substitution drug®. Besheer ef al. have shown that alcohol discrimi-
nation is co-regulated by mGIuRS in the NAc and the mGluR2/3
in the amygdala’™" and that inhibition of MEK/ERK(1/2) in the
amygdala, but not NAc, potentiates the effects of a low alcohol
dose’. Recent work with stress hormone corticosterone links both
mGluRS and mGIuR?2/3 in the sensitivity to alcohol™’°, suggesting
a role for neuropeptide modulation of glutamatergic circuits. Fur-
thermore, in addition to the NAc, a functional role for the medial
PFC (mPFC) in modulating sensitivity to low alcohol doses has
been shown®’”’. An interesting contribution from the Holmes lab
shows that GluN2B in corticostriatal circuits governs choice learn-
ing and choice shifting’®. Although this learning is not in the pres-
ence of alcohol, they show a dissociation between OFC GluN2B in
choice shifting and dorsal striatum GluN2B in choice learning. These
findings suggest it is possible that learning about alcohol through
discrimination tasks recruits distinct populations of both iGluR and
mGluR in subcortical sites, although more research is required to
confirm how this contrasts from habitual learning in the striatum.

Overall, there is ample evidence demonstrating PFC plasticity in
alcohol-seeking behavior and low-dose alcohol drinking at a stage
engaging positive reinforcement and the euphoric effects of the
drug. Although 2BC studies have tested several facets of the
glutamate system using knockout mice, there is a gap of knowl-
edge in iGluRs in alcohol self-administration studies. This may be
confounded by the fact that competitive GluRN antagonists mimic
the interoceptive properties of alcohol. More recent studies have
implicated GluRA in the rostromedial tegmental nucleus in alco-
hol seeking””. Another behavioral outcome of low-dose acute,
self-administered alcohol (1 g/kg) is an increase in inter-male
aggression in a subset of mice®. Memantine, neramexane, and
mGIuRS antagonist MTEP interacted with alcohol to further
increase alcohol-heightened aggression in mice, whereas
mGIuR2/3 agonist LY379268 did not®'. CRF type-1 receptors
regulate serotonin function from the dorsal raphe nuclei (DRN)-
mPFC to alter alcohol-heightened aggression®, so glutamate may
influence the mPFC for the expression of low-dose alcohol-related
behavior.

Episodic drinking through binges and relapse

Binge drinking, defined as BACs greater than 0.08 g/dL or
80 mg/dL within 2 hours, is common among most strata of US
adults and leads to an increased susceptibility for developing
chronic alcoholism®-*. This section focuses on hazardous, episodic,
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binge drinking. However, epidemiological reports have found that
there are almost as many binge-drinking episodes among moderate
drinkers as among heavy drinkers in the US®, so binge and relapse
behavior represents the hazardous transition between moderate and
heavy drinking. We focus on changes in glutamate plasticity to
inform us on dramatic neurobiological events across species.

Binge alcohol drinkers have increased glutamate-to-creatine ratios
and lower GABA concentrations in the anterior cingulate cortex
(ACC) than do low alcohol drinkers*™ presumably with gluta-
matergic perturbations. Repeated 2-3.4 g/kg alcohol injections
increase accumbal and hippocampal glutamate compared with
water-injected animals'*"**. This confirms a study in which young
adults with depression had a positive correlation between the level
of alcohol use and glutamate in the hippocampus™.

Drinking in the dark

The prototypical procedure in mice to induce binge-like drink-
ing is giving one bottle of alcohol, offered 3 hours into the active
dark photoperiod for 2—4 hours, termed drinking in the dark (DID)
(Table 1)™'. CS7BL/6J mice typically drink 2-5 g/kg in a ses-
sion. Even two alcohol “binges” in adolescent rats are sufficient to
abolish long-term synaptic depression in hippocampal slices and
to evoke cognitive deficits via a short-lasting, repeated blockade
of GluN, inducing a change in the receptor subunit composition®.
An earlier DID study showed that both acamprosate and MPEP
decreased DID intake without affecting sugar or water drink-
ing™. Others have gone on to show that mGluRS5 signaling affects
PKCe in the NAc or central amgydala (CeA) to regulate DID**.
Specifically, repeated DID for 30 days elevates CeA levels of
glutamate-associated proteins of Homer2a/b, mGluR1a, GluN2B,
and PLCe 24 hours after withdrawal from binge drinking”. Intra-
CeA and intra-NAc mGluR1 negative allosteric modulator JNJ-
16259685 also reduces DID intake™’’. More recent studies have
isolated downstream factors after DID such as mGluRs affecting
AMPA receptor trafficking proteins like eukaryotic elongation fac-
tor 2 or decreased amygdalar CaMKIIoT286 phosphorylation”.
Importantly, this effect was isolated to the amygdala but not NAc
or dorsal striatum. This may be related to the lack of difference in
frequency and amplitude of spontaneous excitatory post-synaptic
current (SEPSC) in dorsolateral striatum and dorsomedial striatum
medium spiny neurons between 6 weeks’ DID and water-drinking
mice'”. Also, moving away from the classic mesolimbic pathway,
others have identified a novel ventral tegmental area (VTA)-bed
nucleus of the stria terminalis (BNST) CRF circuit in DID',
CRF-R1 antagonists can reduce DID through intact CRF-R2 sign-
aling, and inhibiting VTA-projecting BNST CRF neurons reduces
DID'""". Repeated 2 g/kg alcohol injections result in enhanced
GluN-mediated LTP in VTA dopamine neurons'”, so it is likely
that this VTA-BNST glutamate pathway is altered during binge
drinking in DID in a similar fashion.

Beyond DID, there are other daily limited-access procedures that
lead to binge drinking in rodents. Permutations of DID exist,
such as 2-hour daily access for 14 days in C57BL/6J mice, to
study other facets of binge-like drinking, such as tolerance'”. The
scheduled high alcohol consumption (SHAC) protocol involves
water restriction for all but 90 minutes of water access, and every
fourth day alcohol replaces water for 10-30 minutes'™. Systemic
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administration of mGluRS5 antagonist MPEP decreases SHAC
intake but also sucrose self-administration”. Further studies have
found a role for mGluR5-Homer2-PI3K signaling in the NAc in
SHAC intake'”, which can be replicated in the DID protocol”™.
Another limited-access protocol is multiple scheduled access
(MSA), in which P rats are offered four 1-hour 2BC sessions sepa-
rated by 2 hours across the dark cycle 5 days per week'". Changes
in gene expression in the NAc and amygdala after weeks of MSA
drinking in P rats have been extensively studied'”’~'"”, so what is
needed is targeting how glutamate interacts between the sites
through mGluRs and iGluRs''’. MSA can lead to a transient increase
in alcohol drinking after a weekend of deprivation'”’, an alcohol
deprivation effect (ADE), so it incorporates episodic drinking in
both limited-access binge drinking and relapse-like drinking.

Alcohol deprivation effect

Relapse is also episodic in nature, both in the clinic and modeled
with animals. Relapse, a hallmark of alcohol use disorders, is the
resumption of drinking following a prolonged period of absti-
nence. With animals, experimenters can model relapse through the
expression of the ADE. In this method, alcohol-drinking animals
are deprived of alcohol for a period of time (for example, days to
weeks), and then following this deprivation period, an escalation
in alcohol drinking is observed following re-exposure to alcohol
(Table 1). Intra-PFC glutamate and acamprosate separately reduce
the ADE''"'"?. However, many other glutamatergic compounds—
GluN/glycine receptor antagonist 1.-701,324, GluN2B selective
antagonist ifenprodil, GluN channel blocker neramexane, GluA/
GluK antagonist CNQX, and Na* channel blocker lamotrigine—
attenuate the ADE similar to alcohol seeking during cue-induced
reinstatement’’*. To the best of our knowledge, there are no reports
for the involvement of iGluR or mGIuR circuitry in the ADE, but
we hypothesize that it would be similar to plastic changes in DID or
operant self-administration circuitry.

It appears that episodic drinking, the amorphous transition between
low-dose and high-dose intake, engages both reward-related and
stress-related glutamate brain processes. A single DID protocol is
mGIuRS antagonist-responsive, whereas repeated DID for a month
alters changes in downstream glutamate proteins. Multiple gluta-
matergic compounds reduce the ADE and cue-induced reinstate-
ment, so perhaps these protocols in combination with others would
be more apt for screening medications for the clinic.

Heavy drinking and withdrawal

Heavy drinking is defined as consuming five or more drinks on the
same occasion on each of five or more days in the past month'".
People who exhibit heavy drinking may or may not fall into the cat-
egory of mild, moderate, or severe alcohol use disorder on the basis
of the accompanying psychological symptoms''“. As mentioned
earlier, heavy drinking can be different across species. Most clini-
cal literature focuses on alcoholics, whereas rodent studies do not
have the commodity of an overarching term. For example, heavy
drinking in outbred rats can be 6 g/kg per day, whereas in mice it
may be 15 g/kg per day. The subsequent analysis considers heavy
drinking and withdrawal for the particular species.

Tsai et al.'” originally reported that alcohol-dependent patients
have increased glutamate and glycine in the cerebrospinal fluid
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during withdrawal, with accompanying reduced GABA concen-
trations. With proton magnetic resonance spectroscopy, increased
glutamate levels have been associated with more years spent drink-
ing, loss-of-control alcohol use, and craving during detoxifica-
tion in heavy drinkers or non-treatment-seeking alcoholics''*'"%.
This glutamate dysfunction is localized to the NAc and the ACC
with a positive correlation between craving and glutamate and
glutamine in these regions''*'"”. GluN compounds like ketamine,
memantine, and d-cycloserine mimic the subjective effects of alco-
hol in recovering alcoholics'*~'*>. However, it is unfortunate that
clinical trials with memantine or FDA-approved acamprosate did
not prevent relapse compared with placebo in alcohol-dependent
patients in large-scale double-blind experiments'**~'*’. In a massive
genetics study, Schumann er al.'” reported that genetic variations
in GIuN2A have the greatest relevance for human alcohol depend-
ence among 10 glutamatergic probe genes, yet increased GluN2B
expression and GluN2C in the ACC and dorsolateral PFC during
withdrawal can indicate likelihood of alcohol craving and risk for
relapse'””'*. It appears that the ACC is a distinct site for glutamate
plasticity in heavy drinking.

Intermittent access to alcohol

Cycles of binging and withdrawal occur in the transition to devel-
oping an alcohol use disorder. We can model voluntary alcohol
drinking in between periods of abstinence, or alcohol deprivation,
with 24-hour intermittent access to 2BC alcohol'*'~'*. Weeks of
intermittent alcohol access can lead to drinking despite adverse
consequences'* and signs of withdrawal such as handling-induced
convulsions and decreased social interactions'*'*°. Giving access to
alcohol for a 24-hour period may cause variability in when animals
choose to drink, so researchers can also measure fluid consumption
during the initial 2-, 4-, and/or 6-hour access within the 24-hour
period. With this, front-loading behavior may be observed accom-
panied by high BACs after 2-hour access (Table 1)'*°. Additionally,
smaller segments within 24-hour access allow drug manipulations
to be assessed'*"!¥.

Acamprosate reduces intermittent alcohol drinking in rats but not
continuous-access alcohol drinking'*”. Confirming clinical reports,
outbred mice drinking on intermittent access to alcohol for 8 weeks
show increased extracellular glutamate in the mPFC during with-
drawal compared with 1 week of drinking and compared with water
drinkers'*. Early reports with intermittent-access drinking in rats,
drinking 7 g/kg per day, have enhanced post-synaptic GluA function
in VTA neurons in the absence of any change in pre-synaptic gluta-
mate release'”. Similarly, glutamatergic and GABAergic synaptic
transmission are altered in the striatum of non-human primates with
extended access for 3 years'*. Six months of continuous access and
intermittent access to alcohol consumption in P rats produce selec-
tive increases in group 1 mGluR/Homer2/GluN2 expression within
the NAc core and CeA'*"'*. Intermittent alcohol can produce short-
term increases in Homer/glutamate receptor expression within both
the NAc core and the CeA, which may increase the aversion of
early alcohol withdrawal and consequently augment the negative
reinforcing properties of alcohol. Modulators of the glutamate
transporters reduce heavy drinking on a continuous-access sched-
ule (15% and 30% ethanol) in P rats and the increased extracel-
lular glutamate compared with water drinkers'*. These P rats also
have enhanced expression of glutamate transporters EAAT2/GLT1
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and xCT in the NAc and PFC, suggesting a role for targeting gluta-
mate uptake in heavy drinking'*’. Long-term intermittent alcohol
recruits GABA and CRF neurons in the mPFC during withdrawal
and disconnects the PFC-CeA pathway, suggesting that dys-
regulation of mPFC interneurons may be an early index of gluta-
mate/GABA neuroadaptation in alcohol dependence'*. Impaired
executive control over motivated behavior accompanies negative
reinforcement during withdrawal. Seif er al."*® show that cortical
activation of NAc hyperpolarization-active GluN mediates aver-
sion-resistant intermittent alcohol intake. Both the mPFC to NAc
core and insula to NAc core mediate both quinine- and footshock-
resistant alcohol drinking on an intermittent-access schedule. It
appears that corticolimbic sites are integral to glutamate plasticity
caused by chronic intermittent drinking.

Withdrawal from chronic intermittent ethanol vapor and
other forced alcohol methods

There are several other protocols that forcibly induce a post-
dependent state in animals, such as repeated high-dose alcohol
injections, alcohol liquid diet, and chronic intermittent ethanol
(CIE) vapor exposure (Table 1). Studies on brain glutamate dur-
ing alcohol withdrawal have been most extensively explored using
these methods, since they surpass the aversive taste of alcohol
drinking solutions to induce heavy BACs. However, it is impor-
tant to note that CIE is used to render rodents ethanol-dependent to
subsequently increase voluntary ethanol intake, not only to main-
tain high BACs'*~'*°. Microdialysis studies have shown increased
glutamate in the striatum™’, NAc*+'*!-'53_ and hippocampus'-'** dur-
ing withdrawal in alcohol-exposed rats and mice. These results are
similar to 5 g/kg alcohol gavage injections for 2—4 weeks causing
increased glutamate in striatum, hippocampus, and substantia nigra
8-12 hours after the last ingestion'””. To counteract excitotoxic-
ity, acamprosate and GluN antagonists have been used to decrease
alcohol drinking and to alleviate symptoms of alcohol withdrawal,
including increased glutamate tone and convulsive events''>!?1\15¢
13 Tt is important to note that pharmacologically increasing gluta-
mate transmission in the NAc with TBOA, a glutamate reuptake
inhibitor, can increase drinking in both non-dependent and CIE-
dependent mice'*’. Alternatively, decreasing glutamate transmis-
sion in the NAc by activating group II mGluRs reduces drinking,
although the effect was stronger in dependent mice. These results
comparing glutamate in non-dependent and dependent animals
have similar directionality with different magnitudes, so there may
be separate but overlapping actions in the NAc for treating drinking
versus withdrawal symptoms with glutamatergic compounds.

In accordance with clinical studies, the PFC is a large target of
glutamate plasticity in alcohol dependence. CIE results in increased
GluN-mediated activity in the mPFC and increased GIluN1 and
GluN2B subunit expression'™*'®". Mice that show “compulsive-
like” behaviors after CIE exhibit increased NMDA currents in the
orbitofrontal cortex compared with air-exposed controls'®’. Rescue
of infralimbic PFC mGluR?2 deficit restores control over alcohol-
seeking behavior'®'. It appears that mGluR2 and mGIuRS5 can tar-
get symptoms of withdrawal (but see'®’). Acamprosate improved
attention set-shifting of alcohol-exposed animals but did not alter
the concurrent changes in synaptic transmission or membrane excit-
ability of mPFC neurons, indicating that the changes are not the
pharmacological targets of acamprosate in the recovery of mPFC
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functions'®. Abulseoud et al.'* showed that attenuation of alco-
hol withdrawal by ceftriaxone induced upregulation of glutamate
transporter EAAT2. Reduction of EAAT?2 likely contributes to a
hyperglutamatergic state in the ENT1 knockout mice™ 1. Some
have suggested that increasing glutamate uptake through trans-
porters has a potential therapeutic role in the treatment of alcohol
dependence'®’ (but see'®). Aberrations in PFC function entangle
reduced executive control and poor decision making in alcoholics'®.

The extended amygdala—composed of the BNST, BLA, and
CeA—is particularly vulnerable to glutamate plasticity caused by
CIE treatment. Chronic alcohol exposure produces neuroadapta-
tions in glutamatergic transmission in the CeA'"*'""", and GluN2B-
containing GluNs are most sensitive to CIE'"*'"*'*_ CIE, but not
continuous vapor exposure, increases BNST GluN-mediated
EPSCs, not from altered glutamate release but from an increase
in GluN2-containing GIuN'”, suggesting that repeated cycles of
exposure and withdrawal are necessary for these adaptations to
occur. CIE enhances long-term potentiation formation in the BNST
in GluN2B knockout mice through extrasynaptic GluN'”. Stress-
induced alterations in anxiety-like behavior were absent following
bilateral infusion of GluK1 agonist ATPA into the BLA, which aug-
mented BLA GABAergic neurotransmission, and stress increased
the amplitude of sEPSC and miniature inhibitory post-synaptic
current'’®. A regulatory stress neuropeptide could be nociceptin,
since nociceptin application decreases glutamate transmission
and blocks alcohol-induced effects in the CeA of naive and CIE
rats, but nociceptin antagonist revealed tonic inhibitory activity
of nociceptin on evoked CeA glutamatergic transmission only in
alcohol-dependent rats'”’. Changes in the extended amygdala
indicate a transition from positive reinforcement to negative

Withdrawn Alcoholics

Chronic Int Vapor

Self-admin

Chronic Int Vapor
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reinforcement as stress neuropeptides like nociceptin, CRF, and
dynorphin are more engaged'’®.

Together, chronic forced or voluntary access to alcohol affects
glutamate in multiple subcortical sites like the PFC and extended
amygdala, and this agrees with the clinical literature. In addition
to these sites, many others have examined the hippocampus as a
crux of CIE-induced glutamatergic changes. Group I mGluRs and
GluN2B-containing GluNs in CA1 and cortex impair LTD, reduce
spine density, and disrupt learning'”*'* (but see 138). This may be
related to the enhanced stress systems recruited during repeated
exposure to and withdrawal from alcohol. In line with this hypoth-
esis, corticohippocampal GluN2B is engaged during repeated swim
stress'®'. This circuitry is also recruited in other addictive disorders.
Glutamate homeostasis is a mediator of long-term drug-seeking
behavior, especially through disruptions of the cysteine/glutamate
exchanger and EAAT2/GLT1'®. Alterations in glutamate transmis-
sion after chronic alcohol exposure and withdrawal are evident, but
some effects are also likely to be unique to withdrawal alone. Future
research can tease apart these dynamic distinctions or suggest that
they are interconnected.

Discussion

Across all phases of alcohol drinking, glutamate is a critical regu-
lator of subcortical plasticity in the brain. We have mapped some
relevant regions of interest according to their involvement in low,
moderate, or heavy drinking (Figure 1), but more work can be
done to study how these sites work on a circuit level. Downstream
signaling factors like CaMKII are important in the PFC and amy-
gdala in operant self-administration. Binge drinking in the DID
protocol also affects mGluRS in the CeA and CRF in the BNST

Key

Episodic Drinking
Low Drinking

N\

Intermittent EtOH

ID - @
@ DID, MSA

Chronic Int Vapor

Figure 1. A sagittal representation of subcortical structures and their circuitry related to different stages during the transition from
low-level drinking to heavy alcohol use. Regions of interest in red indicate involvement in heavy drinking, yellow in episodic drinking, and
green in lower-level drinking. Known connections start with the black circle and finish with the black arrowhead. Animal drinking protocols are
depicted in blue italics. ACC, anterior cingulate cortex; BLA, basolateral amygdala; BNST, bed nucleus of the stria terminalis; CeA, central
amygdala; HIPP, hippocampus; NAc, nucleus accumbens; PFC, prefrontal cortex; VTA, ventral tegmental area.
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in connection with mesolimbic targets. Glutamate in the ACC
and PFC is heavily disrupted in alcoholics, which is supported
by preclinical research using intermittent access to alcohol or CIE.
Electrophysiological studies also reveal a role for GIuN2 in the
extended amygdala in alcohol withdrawal, related to negative affect.
Furthermore, glutamate transmission in circuits stemming from the
NAc represents an overlap in circuitry from light to episodic to
heavy drinking in a limited-access model. The roles of glutamate
transporters and the interaction with glia are better understood at
both ends of the drinking spectrum (2BC and CIE), but more can
be learned through intermediate protocols that reveal the transi-
tion to heavy drinking. Overall, there appears to be a shift from
mGluR-dependent behaviors to GluN-related processes transition-
ing from lower-level alcohol drinking to heavy alcohol drinking.
The efficacy of acamprosate in animal models of drinking is high,
in sharp contrast to its ineffective treatment in the clinic. Therefore,
research needs to focus on other promising glutamatergic com-
pounds to reduce heavy drinking or mediate withdrawal symptoms
or both.
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