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Abstract

We propose that the extracellular matrix signals CD44, a hyaluronan receptor, to increase the 

responsiveness to mechanical stimulation. We report that intradermal injection of hyaluronidase 

induces mechanical hyperalgesia, that is inhibited by co-administration of a CD44 receptor 

antagonist, A5G27. The intradermal injection of low (LMWH) but not high (HMWH) molecular 

weight hyaluronan also induces mechanical hyperalgesia, an effect that was attenuated by the 

pretreatment with HMWH or A5G27. Pretreatment with HMWH also attenuated the hyperalgesia 

induced by hyaluronidase. Similarly, intradermal injection of A6, a CD44 receptor agonist, 

produced hyperalgesia that was inhibited by HMWH and A5G27. Inhibitors of protein kinase A 

and Src, but not protein kinase C, significantly attenuated the hyperalgesia induced by both A6 and 

LMWH. Finally, to determine if CD44 receptor signaling is involved in a preclinical model of 

inflammatory pain, we evaluated the effect of A5G27 and HMWH on the mechanical hyperalgesia 

associated with the inflammation induced by carrageenan. Both A5G27 and HMWH attenuated 

carrageenan-induced mechanical hyperalgesia. Thus, while LMWH acts at its cognate receptor, 

CD44, to induce mechanical hyperalgesia, HMWH acts at the same receptor as an antagonist. That 

the local administration of HMWH or A5G27 inhibits carrageenan-induced hyperalgesia supports 
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the suggestion that carrageenan produces changes in the extracellular matrix that contributes to 

inflammatory pain. These studies define a clinically relevant role for signaling by the hyaluronan 

receptor, CD44, in increased responsiveness to mechanical stimulation.
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There has been a rapid increase in our understanding of the role that the extracellular matrix 

(ECM) plays in diverse pathological states (Martignetti et al., 2001; Busch and Silver, 2007; 

Hynes, 2009; Lu et al., 2011; Bhattacharyya et al., 2014). While several of these clinical 

conditions are characterized by acute or chronic pain [e.g., inflamed tissues (Lee et al., 2013; 

Alkhatib et al., 2014) or nerve injury (Sugimoto et al., 2008; Tsuda et al., 2008; Yong and 

Guoping, 2009; Tsuda et al., 2013)], the role of the ECM in the associated pain syndromes 

remains poorly understood. We have previously shown that versican, a large chondroitin 

sulfate proteoglycan ECM molecule that labels the non-peptidergic, isolectin B4 staining 

(IB4+) population of nociceptors helps to determine the function of these nociceptors 

(Bogen et al., 2005; Bogen et al., 2015). However, how ECM molecules signal to 

nociceptors, to influence their function, remains to be elucidated.

The largest member of the hyalectan (hyaluronan- and lectin-binding proteoglycan) gene 

family of extracellular molecules, versican contains hyaluronan-binding tandem repeats and 

has diverse binding partners, important to its function, including other extracellular and cell 

surface molecules, such as hyaluronan (Yamagata et al., 1993; Bandtlow and Zimmermann, 

2000; Karvinen et al., 2003; Matsumoto et al., 2003; Wu et al., 2005; Wight, 2008; Ween et 

al., 2011; Wight et al., 2014). In addition to being able to bind hyaluronan, versican also 

binds cell surface proteins such as CD44, a cognate hyaluronan receptor (Bajorath et al., 

1998; Teriete et al., 2004). Hyaluronan and versican can function together to signal to CD44 

(Yamagata et al., 1993; Karvinen et al., 2003; Wu et al., 2005). Importantly, the intra-

articular injection of high molecular weight hyaluronan (HMWH) is used clinically in the 

treatment of osteoarthritis (Dougados et al., 1993; Altman and Moskowitz, 1998; Cohen et 

al., 2008; Triantaffilidou et al., 2013). While intra-articular hyaluronan does attenuate 

nociceptor sensitization in an animal model of osteoarthritis (Hashizume et al., 2010), it is 

generally considered that its therapeutic effect is mediated by its viscoelastic properties 

(Radin et al., 1970; Unsworth et al., 1975; Mabuchi et al., 1994; Elmorsy et al., 2014; 

Cowman et al., 2015). Recent evidence suggests that hyaluronan modulates nociceptor 

function by action on CD44 (Ghosh et al., 2011). To begin to unravel how ECM molecules 

signal to primary afferent nociceptors, we have evaluated the role of high and low molecular 

weight hyaluronan, and its cognate receptor, CD44, in nociceptor function and in an animal 

model of inflammatory pain in which changes in the ECM are well described (Dina et al., 

2004; Li et al., 2012; Vieira et al., 2012; Vieira et al., 2013).
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2. Experimental procedures

2.1. Animals

All experiments were performed on adult male Sprague Dawley rats (220–400 g; Charles 

River Laboratories). Animals were housed, 3 per cage, under a 12-hour light/dark cycle in a 

temperature- and humidity-controlled room in the animal care facility of the University of 

California, San Francisco. Food and water were available ad libitum. Nociceptive testing 

was performed between 10:00 am and 5:00 pm, for all experiments. Experimental protocols 

were approved by the Institutional Animal Care and Use Committee (IACUC) at The 

University of California, San Francisco, and adhered to the National Institutes of Health 

Guidelines for the Care and Use of Laboratory Animals. Every effort was made to minimize 

the number of animals used and their suffering.

2.2. Testing mechanical nociceptive threshold

Mechanical nociceptive threshold was quantified using an Ugo Basile Analgesymeter® 

(Randall-Selitto paw-withdrawal test; Stoelting, Chicago, IL), which applies a linearly 

increasing mechanical force to the dorsum of the rat's hind paw, as previously described 

(Randall and Selitto, 1957; Taiwo and Levine, 1989; Taiwo et al., 1989). Nociceptive 

threshold was defined as the force in grams at which the rat withdrew its paw. Baseline paw-

pressure threshold was defined as the mean of the 3 readings taken before a test agent was 

injected. Each paw was treated as an independent measure and each experiment performed 

on a different group of rats. Data are presented as the mean change from baseline 

nociceptive threshold.

3.3. Drugs

The following reagents were used in this study: hyaluronidase from Streptomyces 
hyalurolyticus, λ-carrageenan (inflammatory agent), and SU6656 (a selective Src family 

kinase inhibitor), from Sigma-Aldrich (St. Louis, MO); hyaluronic acid sodium salt from 

Streptococcus pyrogenes [high molecular weight hyaluronan (HMWH)], from Calbiochem 

(San Diego, CA); hyaluronic acid oligosaccharide dp6 [low molecular weight hyaluronan 

(LMWH)], from AMSBIO (Cambridge, MA), H-89 dihydrochloride [protein kinase A 

(PKA) inhibitor)], from Santa Cruz Biotechnology (Dallas, TX, USA); bisindolylmalemide 

1 HCl [BIMM, protein kinase C (PKC) inhibitor)], from Calbiochem-Novabiochem (La 

Jolla, CA); and, the CD44 receptor-related peptides, A6, a CD44 agonist (Piotrowicz et al., 

2011; Finlayson, 2015), and A5G27, a CD44 antagonist (Hibino et al., 2004; Pesarrodona et 

al., 2014), obtained from GenScript USA Inc (Piscataway, NJ).

Hyaluronidase was dissolved in 0.9% NaCl to the concentration of 1U/μl; aliquots 

containing 1 μg/μl of HMWH, LMWH, A6 or A5G27, dissolved in distilled water, were 

diluted in 0.9% NaCl to the concentration of 0.2 μg/μl; aliquots containing 1 μg/μl of H-89, 

BIMM or SU6656, dissolved in absolute dimethyl sulfoxide (DMSO), were diluted in 0.9% 

NaCl containing 10% DMSO to the concentration of 0.2 μg/μl. The injection volume of all 

drugs was 5 μl.
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All drugs except carrageenan were administered intradermally on the dorsum of the hind 

paw using a 30-gauge beveled hypodermic needle attached to a microsyringe (Hamilton 

Company, Reno, NV) by a short length of polyethylene (PE-10) tubing. Because of its high 

viscosity, carrageenan was injected using a 27-gauge needle. The concentration of 

carrageenan (1%, in 0.9% NaCl) used to produce robust mechanical inflammatory 

hyperalgesia, observed already 30 minutes after injection, peaking at the 4th h, has been 

determined in previous studies (Aley et al., 2000; Dina et al., 2008). The administration of 

H-89, BIMM or SU6656 was preceded by a hypotonic shock to transiently facilitate 

enhanced cell permeability to these agents (2 μL of distilled water, separated by a bubble of 

air to avoid mixing in the same syringe) to get reagents inside the nerve terminal (Borle and 

Snowdowne, 1982; Burch and Axelrod, 1987).

2.4. Statistics

In all experiments, the dependent variable was paw-withdrawal threshold, expressed as 

percentage change from baseline. The average paw withdrawal threshold before the 

experiments was 125.5 ± 0.8 g (n = 150 paws). To compare the changes in the nociceptive 

threshold induced by the injection of hyaluronidase, LMWH, A6 or carrageenan in the 

control groups with the groups pretreated with inhibitors, repeated measures analysis of 

variance, followed by Bonferroni post-test, or Student's t-test, was used. The injection of the 

A5G27, H-89, SU6656 or B I MM alone did not cause change in the mechanical threshold 

(data not shown). GraphPad Prism 5.0 (GraphPad Software, Inc, San Diego, CA) was used 

for the graphics and to perform statistical analyses; P < 0.05 was considered statistically 

significant. Data are presented as mean ± standard error of the mean.

3. Results

3.1. Hyaluronidase and low molecular weight hyaluronan induce mechanical hyperalgesia

We have previously shown that components of the ECM, such as versican, play a role in 

nociceptor function (Bogen et al., 2009), suggesting an important functional interaction 

between ECM and the nociceptor. To begin to investigate the role of ECM in nociceptor 

function, we first evaluated if hyaluronidase, an enzyme that d egrades hyaluronan, a main 

component of ECM (Jiang et al., 2011), whose action has been associated to inflammatory 

diseases such as rheumatoid arthritis (Jones, 1950; Regan and Meyer, 1950) and 

periodontitis (Hershon, 1971), induces mechanical hyperalgesia. Intradermal injection of 

hyaluronidase (5U) on the dorsum of the hind paw induced intense mechanical hyperalgesia 

(Fig. 1A). Since hyaluronidase degrades hyaluronan, releasing fragments with different 

molecular weight from the ECM (Sherman and Back, 2008; Jiang et al., 2011; Preston and 

Sherman, 2011), we next investigated if the injection of low (LMWH) or high (HMWH) 

molecular weight hyaluronan would induce changes in the mechanical nociceptive threshold. 

We observed that HMWH did not significantly change the mechanical threshold, whereas 

the injection of LMWH produced robust mechanical hyperalgesia (Fig. 1B).

Since HMWH has been shown to have analgesic properties in a rat model of osteoarthritis 

(Castro et al., 2007), we evaluated its effect against the hyperalgesia induced by 
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hyaluronidase and LMWH. Pretreatment with HMWH (1 μg) significantly attenuated the 

hyperalgesia produced by both hyaluronidase and LMWH (Fig. 2).

3.2. CD44 receptor-mediated hyperalgesia

Hyaluronan has been described to act as an agonist on the CD44 receptor (Bajorath et al., 

1998; Teriete et al., 2004). Therefore the next series of experiments evaluated the 

involvement of the CD44 receptor in hyperalgesia induced by hyaluronidase or LMWH. 

Pretreatment with the CD44 antagonist A5G27 (1 μg) significantly attenuated the 

hyperalgesia induced by hyaluronidase or LMWH, indicating a role of this receptor in the 

increased nociceptor response to mechanical stimulation (Fig. 3).

Next, we tested if activation of the CD44 receptor would induce changes in the mechanical 

threshold. Intradermal injection of the peptide A6 (1 μg), a CD44 agonist (Piotrowicz et al., 

2011; Finlayson, 2015), induced hyperalgesia that was inhibited by both A5G27 and 

HMWH (Fig. 4).

3.3. Second messengers activated by the CD44 receptor

To investigate the second messengers downstream of the CD44 receptor that play a role in 

the hyperalgesia induced by its activation, we pretreated rats with H-89 or BIMM, inhibitors 

for second messengers involved in inflammatory hyperalgesia, PKA and PKC respectively 

(Gold et al., 1996; Gold et al., 1998; Khasar et al., 1998; Lynn and O'Shea, 1998; Aley and 

Levine, 1999; Khasar et al., 1999a; Khasar et al., 1999a; Aley et al., 2000; Sachs et al., 

2009), 10 minutes before the injection of LMWH, shown to induce hyperalgesia by acting 

on the CD44 receptor (Fig. 3, left panel), or the CD44 receptor agonist A6. In addition, since 

Src kinases have been implicated in several models of nociceptor sensitization (Alessandri-

Haber et al., 2005), we tested if the Src inhibitor SU6656 would also have an effect on 

hyperalgesia induced by both agents. Inhibitors of PKA and Src, but not of PKC, 

significantly attenuated the hyperalgesia induced by LMWH (Fig. 5A) and A6 (Fig. 5B), 

indicating the signaling pathway downstream of the CD44 that produces mechanical 

hyperalgesia.

3.4 Role of ECM in a preclinical model of inflammatory pain

To investigate the involvement of the ECM in the hyperalgesia produced by inflammation, 

we used the preclinical model of inflammatory pain produced by intradermal injection of 

carrageenan (1%) on the dorsum of the rat hind paw (Aley et al., 2000). The CD44 

antagonist A5G27 or HMWH, both of which attenuate the hyperalgesia induced by LMWH 

(Figs. 2 and 3), were injected 10 minutes before carrageenan. 4 h after carrageenan injection, 

the mechanical threshold was evaluated at the same site. While intense hyperalgesia was 

observed in the control group, its magnitude was significantly attenuated in the groups 

pretreated with A5G27 or HMWH, compatible with the suggestion that the hyperalgesia 

induced by carrageenan is, at least in part, produced by changes in the ECM (Fig. 6).
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4. Discussion

There is increasing evidence stressing the important role of the ECM in the regulation/

modulation of the inflammatory process (Toole, 2004; De Bock et al., 2015; Murai, 2015; 

Schwertfeger et al., 2015; Sawyer and Kyriakides, 2016). For example, versican, hyaluronan 

and other components of the ECM such as fibronectin or laminin, have been shown to 

interact with resident cells during inflammation, contributing to their proliferation and 

migration (Gee et al., 2004; Petrey and de la Motte, 2014; Andersson-Sjöland et al., 2015; 

Schwertfeger et al., 2015). Moreover, versican was demonstrated to participate in the 

mechanical hyperalgesia induced by monocyte chemoattractant protein 1 (MCP-1), an 

inflammatory mediator whose receptor is present on the nociceptor (Bogen et al., 2009), 

suggesting that ECM contributes to the development of inflammatory pain. In the present 

study we investigated the mechanism by which hyaluronan, a major component of the ECM, 

regulates mechanical nociceptive threshold.

Hyaluronan is used in the treatment of pain in patients with osteoarthritis. While its 

therapeutic action has been considered to be by the viscoelastic action of the high molecular 

weight hyaluronan (HMWH) in the joint, recent studies of nociceptor function in animal 

models of osteoarthritis suggest that some of the available compounds, chemically modified 

hyaluronan, attenuate nociceptor sensitization (Castro et al., 2007; Hashizume et al., 2010). 

Of note, low molecular weight hyaluronan (LMWH) was less effective at attenuating 

nociceptor sensitization in the osteoarthritic rat. These findings are in line with our results 

showing induction of hyperalgesia by hyaluronidase and LMWH, which was attenuated by 

the pretreatment with HMWH. Also, our experiments confirm distinct functions of different 

molecular weight forms of hyaluronan in the nervous system, as suggested by previous 

reports (Sherman and Back, 2008; Preston and Sherman, 2011; Preston et al., 2013). Since 

inflammation stimulates the secretion of hyauronidase, expressed in the nervous system 

(Al'Qteishat et al., 2006; Sloane et al., 2010) and by resident cells (Jiang et al., 2011), which 

degrades hyaluronan, generating products that can act at cell surface receptors to produce a 

wide range of effects (Sherman and Back, 2008; Jiang et al., 2011; Preston and Sherman, 

2011), the hyperalgesia resulting from the hyaluronidase injection is likely the consequence 

of the production of LMWH, ultimately reflected as an effect in the nociceptor. Thus, we 

investigated the mechanism involved in this interaction between hyaluronan and the 

nociceptor terminal.

The CD44 receptor has been described as the main receptor that modulates cell-extracellular 

matrix interactions (Pesarrodona et al., 2014), and is considered as the cognate receptor for 

hyaluronan (Bajorath et al., 1998; Teriete et al., 2004; Dzwonek and Wilczynski, 2015). It is 

found in several cell types, throughout the nervous system, such as glial cells (Bignami and 

Dahl, 1986; Gorlewicz et al., 2009; McKenzie et al., 1982) and neurons (Ailane et al., 2013; 

Raber et al., 2014), and in the ECM (Dzwonek and Wilczynski, 2015; Finlayson, 2015; 

Multhaupt et al., 2016; Murai, 2015; Orian-Rousseau and Sleeman, 2014). Moreover, it has 

been shown to play a role in cell migration and activation during inflammation (Gee et al., 

2004), and in neuronal development and plasticity (Kochlamazashvili et al., 2010; 

Wlodarczyk et al., 2011; Dzwonek and Wilczynski, 2015). Considering that it is also present 
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on peripheral sensory neurons (Ghosh et al., 2011), the next step in our study was to test the 

hypothesis that hyaluronan affects nociceptor function by acting at the CD44 receptor.

To evaluate the role of the CD44 receptor in the mechanical hyperalgesia induced by 

hyaluronidase or LMWH we used the peptide A5G27, demonstrated to bind to the CD44 

receptor and to block CD44 signaling (Hibino et al., 2004; Pesarrodona et al., 2014). Since 

A5G27 significantly attenuated the hyperalgesia induced by hyaluronidase and LMWH, we 

concluded that the interaction between the nociceptor and LMWH is CD44-mediated. 

Pretreatment with HMWH significantly attenuated the hyperalgesia induced by 

hyaluronidase and LMWH, supporting the suggestion that the HMWH effect was also due to 

an action at the CD44 receptor. Thus, both LMWH and HMWH act at the same receptor, the 

former as an agonist, and the latter as an antagonist. Since the compounds are administered 

intradermally in the skin of the rat hind paw, where other cells in addition to the terminals of 

the nociceptors are present, there is the possibility that the observed effects involve other 

cells at the site of the injections. Hence, although the CD44 receptor is expressed in dorsal 

root ganglion neurons (Ghosh et al., 2011), whether this is a direct or indirect signaling 

mechanism between the ECM and the nociceptor remains to be demonstrated.

To determine the signaling mechanisms by which CD44 regulates nociceptor function, we 

investigated if second messengers previously shown to play a role in different models of 

mechanical hyperalgesia (Gold et al., 1996; Gold et al., 1998; Khasar et al., 1998; Lynn and 

O'Shea, 1998; Aley and Levine, 1999; Khasar et al., 1999a; Khasar et al., 1999a; Aley et al., 

2000; Alessandri-Haber et al., 2005; Sachs et al., 2009) were involved in the hyperalgesia 

produced by activation of CD44. All three intracellular messengers that we evaluated, PKA, 

PKC and Src, have also been associated to CD44 receptor signaling (Lee et al., 2008; 

Bourguignon et al., 2009; Bourguignon et al., 2010; Campo et al., 2010; Zhang et al., 2014). 

Although it has not been established how CD44 interacts with PKA, it has been shown that 

CD44 can directly activate PKC (Bourguignon et al., 2009; Campo et al., 2010), and 

members of the Src family kinases are considered crucial for CD44 signaling (Ponta et al., 

2003; Skupien et al., 2014; Dzwonek and Wilczynski, 2015). To directly activate the CD44 

receptor we used the peptide A6 (Piotrowicz et al., 2011; Finlayson, 2015); its 

administration produced robust hyperalgesia that was inhibited by both the CD44 antagonist 

A5G27 and HMWH, confirming the action of A6 on the CD44 receptor. We also evaluated 

the role of those second messengers in the hyperalgesia induced by LMWH, which is 

dependent on the CD44 receptor. Both the LMWH- and the A6-induced hyperalgesia were 

attenuated by inhibitors of PKA and Src, but not PKC, providing evidence for a pathway 

downstream of the CD44 receptor that produces hyperalgesia. In fact, the attenuation of the 

CD44-mediated hyperalgesia by either the PKA or the Src inhibitor is compatible with 

previous reports that indicate crosstalk between PKA and Src mediated signaling (Kawasaki 

et al., 2004; Obara et al., 2004; Belcher et al., 2005; Gui et al., 2006).

The relationship between changes in the ECM and the increase in the sensitivity of sensory 

neurons to stimulation has been investigated (Hucho and Levine, 2007; Jeske et al., 2009; 

Hu et al., 2010; Traverso, 2011; Kubo et al., 2012; Caires et al., 2015). Since the ECM can 

function as a storage depot for biologically active molecules, such as MCP-1 and tumor 

necrosis alpha (Edovitsky et al., 2006; Nasser, 2008; Goodall et al., 2014), and pathological 
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conditions can release mediators that can contribute to changes in mechanical, or even 

thermal, sensitivity (Yamanaka et al., 2004; Li et al., 2012), the ECM can be considered to 

contribute to inflammatory pain, the integrity of the ECM playing a role in sensory neuron 

homeostasis (Li et al., 2012). Inflammatory pain is caused, at least in part, by the local 

release of a wide range of pro-inflammatory cytokines (Liou et al., 2011). Our results 

support the suggestion that the degradation of the ECM by the inflammatory process (Parish, 

2006; Goodall et al., 2014) can activate specific receptors, such as the CD44 and affect 

nociceptor function. The attenuation of the carrageenan-induced mechanical hyperalgesia by 

the inhibitors A5G27 and HMWH brings additional information about the mechanisms 

involved in models of inflammatory pain.

5. Conclusions

In summary, our experiments demonstrate a role of hyaluronan in the modulation of 

nociceptor function. In addition to confirm a direct effect of the clinically used high 

molecular weight hyaluronan at the CD44 receptor, the results presented here contribute to 

our understanding of how the ECM may interact with the nociceptors, which might help in 

the design of strategies for the treatment of pain of inflammatory origin.
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Highlights

- Hyaluronan modulates nociceptor function by acting on CD44 receptors;

- Different forms of hyaluronan produce distinct effects on the nociceptor;

- Carrageenan-induced hyperalgesia is partially dependent on the extracellular 

matrix;

- Hyperalgesia produced by CD44 receptor activation is dependent on PKA and 

Src.
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Figure 1. Time course for mechanical hyperalgesia induced by hyaluronidase (A) and 
hyaluronan (B)
Panel A: Rats received an intradermal injection of hyaluronidase (5U) on the dorsum of the 

hind paw. Mechanical nociceptive thresholds were evaluated before and 30 min, 24 h and 1 

week after injection, by the Randall-Selitto paw withdrawal test. The average baseline 

mechanical nociceptive threshold was 121.3 ± 1.3 grams. Marked mechanical hyperalgesia 

was observed when testing was performed 30 min after injection of hyaluronidase (**** p < 

0.0001, when mechanical threshold is compared to pre-hyaluronidase level), and was still 

significant (** p = 0.0031) 24 h later. When evaluated after 1 week, the mechanical 

nociceptive threshold was no longer different (NS, p = 0.1145) from pre-hyaluronidase 

levels (one-way repeated measures ANOVA followed by Bonferroni's post hoc test); Panel 
B: Different groups of rats received intradermal injection of high (HMWH, 1 μg, open 

symbols) or low (LMWH, 1 μg, dark symbols) molecular weight hyaluronan on the dorsum 

of the hind paw. The mechanical thresholds were evaluated 30 min, 24 h and 1 week later. 

Average baseline mechanical nociceptive threshold was 116.3 ± 1.8 grams for HMWH 

group and 114.6 ± 3.2 for LMWH group. Two-way repeated measures ANOVA followed by 

Bonferroni's post hoc test showed no significant change (NS) in the mechanical nociceptive 

threshold after the injection of HMWH, when compared to pre-injection levels. However, 

significant hyperalgesia was observed at 30 min in the LMWH group (* p = 0.0092, when 
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the mechanical thresholds before and 30 min after injection are compared). When both 

groups were evaluated again 24 h and one week later, the mechanical thresholds were not 

statistically different from the baseline levels. n = 6 paws (all groups)
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Figure 2. Effect of high molecular weight hyaluronan (HMWH) on the mechanical hyperalgesia 
induced by hyaluronidase or low molecular weight hyaluronan (LMWH)
Different groups of rats received an intradermal injection of vehicle (control) or HMWH (1 

μg) on the dorsum of the hind paw. 10 min later, hyaluronidase (5U, left panel) or LMWH (1 

μg, right panel) was injected at the same site. Comparison of the mechanical thresholds 

before and 30 min after the injection of hyaluronidase or LMWH showed intense 

mechanical hyperalgesia in both groups. However, in the groups pretreated with HMWH it 

was significantly attenuated (left panel: t5 = 7.214, *** p = 0.0008; right panel: t5 = 4.130, 

** p = 0.0091, when HMWH-treated and the control groups are compared), indicating an 

anti-hyperalgesic effect of the HMWH. (Student's t test ; n = 6 paws per group)
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Figure 3. Role of CD44 in the hyperalgesia induced by hyaluronidase or low molecular weight 
hyaluronan (LMWH)
Rats received intradermal injection of vehicle (control) or the CD44 receptor antagonist 

A5G27 (1 μg) on the dorsum of the hind paw. 10 min later, hyaluronidase (5U, left panel) or 

LMWH (1 μg, right panel) was injected at the same site. Although mechanical hyperalgesia 

was observed 30 min after the injection of hyaluronidase or LMWH, in the groups that were 

pretreated with A5G27 it was significantly attenuated (left panel: t5 = 6.077, *** p = 0.0017; 

right panel: t5 = 6.644, ** p = 0.0012, when A5G27-treated and the control groups are 

compared), indicating a role of the CD44 receptor in the hyperalgesia induced by 

hyaluronidase and LMWH. (Student's t test ; n = 6 paws per group)
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Figure 4. CD44 agonist induces mechanical hyperalgesia that is attenuated by the CD44 
antagonist A5G27, and high molecular weight hyaluronan (HMWH)
Rats received an intradermal injection of vehicle (control, blank bar), the CD44 receptor 

antagonist A5G27 (1 μg, gray bar) or HMWH (1 μg, black bar) on the dorsum of the hind 

paw. 10 minutes later, the CD44 agonist A6 (1 μg) was injected at the same site. Mechanical 

nociceptive thresholds were evaluated before and 30 min after A6. While in the control 

group we observed intense mechanical hyperalgesia, in the groups pretreated with A5G27 or 

HMWH it was significantly attenuated (**** p < 0.0001, when the A5G27- and the 

HMWH-treated groups are compared to the control group). (One-way ANOVA followed by 

Bonferroni's post hoc test; n = 6 paws per group)
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Figure 5. PKA and Src are involved in the mechanical hyperalgesia induced by low molecular 
weight hyaluronan (LMWH) or a CD44 receptor agonist
Different groups of rats received an intradermal injection of vehicle (control, blank bars), the 

PKA inhibitor H-89 (1 μg, light gray bars), the non-selective PKC inhibitor BIMM (1 μg, 

darker gray bars) or the Src inhibitor SU6656 (1 μg, black bars) on the dorsum of the hind 

paw. 10 minutes later, LMWH (1 μg, panel A) or the CD44 agonist A6 (1 μg, panel B) was 

injected at the same site. Mechanical nociceptive thresholds were evaluated before and 30 

min after LMWH/A6. We observed significant hyperalgesia in the control and the BIMM-

treated groups (both panels). However, in the groups pretreated with H-89 or SU6656 there 

was significant attenuation of mechanical hyperalgesia (**** p < 0.0001; *** p = 0.005, 

when the groups treated with H-89 or SU6656 are compared to the control groups), 

indicating a role of PKA and Src in the hyperalgesia induced by LMWH and A6. (One-way 

ANOVA followed by Bonferroni's post hoc test; n = 6 paws per group)
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Figure 6. Role of CD44 receptor in carrageenan-induced mechanical hyperalgesia
Rats received an intradermal injection of vehicle (control, blank bar) and, the CD44 receptor 

antagonist A5G27 (1 μg, gray bar) or HMWH (1 μg, black bar) on the dorsum of the hind 

paw. 10 minutes later, carrageenan (1%) was injected at the same site. Mechanical 

nociceptive thresholds were evaluated before and 4 h after the injection of carregeenan. 

Significant attenuation of the hyperalgesia induced by carrageenan was observed in the 

groups pretreated with A5G27 or HMWH (* p = 0.021, when compared to the control 

groups), indicating a role for the ECM in nociceptor sensitization produced by carrageenan. 

(One-way ANOVA followed by Bonferroni's post hoc test; n = 6 paws per group)
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