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ABSTRACT The impact of quorum sensing on polymyxin and azithromycin pharma-
codynamics was assessed in Pseudomonas aeruginosa PAO1 and an isogenic rhlR/
lasR double knockout. For polymyxin B, greater killing against the rhlR/lasR knockout
than against PAO1 was observed at 108 CFU/ml (polymyxin B half-maximal effective
concentration [EC50], 5.61 versus 12.5 mg/liter, respectively; P � 0.005). Polymyxin B
combined with azithromycin (256 mg/liter) was synergistic against each strain, signif-
icantly reducing the respective polymyxin B EC50 compared to those with mono-
therapy (P � 0.005), and is a promising strategy by which to combat P. aeruginosa.
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Pseudomonas aeruginosa is a leading nosocomial pathogen with infections that are
associated with unacceptably high rates of treatment failure, up to 40% (1, 2). The

polymyxin antibiotics (colistin [polymyxin E] and polymyxin B) have become important
last-line agents against multidrug-resistant P. aeruginosa infections and are being
increasingly utilized as salvage therapy (3). However, current dosage regimens for
colistin and polymyxin B result in plasma concentrations that are suboptimal in a number
of critically ill patients (4–7). Despite the initial susceptibility of many strains, mortality rates
for polymyxin monotherapy remain high; however, increasing the dose may promote
further resistance amplification against a high bacterial density (8–12).

Azithromycin, a macrolide antibiotic, is often used to treat community-associated
respiratory tract infections but has no intrinsic activity against P. aeruginosa. Earlier in
vitro time-kill and checkerboard studies suggested that azithromycin may enhance
killing in combination with the polymyxins (13, 14). However, the precise time course
of bacterial response and the mechanistic basis for this combination remain unknown.
Furthermore, the pharmacokinetic-pharmacodynamic relationship of the polymyxin-
azithromycin combination has yet to be studied at a range of clinically relevant
concentrations, including those in serum (�0.5 mg/liter) and in neutrophils (�500
mg/liter), where azithromycin is concentrated (15, 16).

Recent studies have also concluded that there is a clinical benefit to using azithro-
mycin in patients with cystic fibrosis or diffuse panbronchiolitis who are chronically
infected with P. aeruginosa (17, 18). It has been hypothesized that one mechanism for
the salutary effect of azithromycin against P. aeruginosa is through inhibition of quorum
sensing, which is a mechanism of bacterial communication that coordinates a multi-
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tude of cellular behaviors, such as formation of virulence factors and biofilms (19, 20).
Azithromycin interferes with quorum sensing by inhibiting the synthesis of signaling
molecules employed through the las and rhl systems (20), preventing intercellular
coordination among P. aeruginosa cells. Since quorum sensing functions at a high
bacterial density of P. aeruginosa, which has been shown to reduce the activity of
polymyxins (21), understanding the interrelationships among quorum sensing,
polymyxin-azithromycin pharmacodynamics, and inoculum size is of scientific relevance.
Our objectives were to (i) profile the pharmacodynamic activity of colistin and polymyxin
B against P. aeruginosa PAO1 and an rhlR/lasR double-knockout strain to determine the
impact of quorum sensing on the rate and extent of bacterial killing by polymyxins, and (ii)
compare the pharmacodynamics of polymyxin B and azithromycin combinations against
quorum sensing-proficient (PAO1) and -deficient (rhlR/lasR knockout) strains.

The bacterial strains utilized in this study were wild-type P. aeruginosa PAO1 and an
isogenic rhlR/lasR knockout (ΔrhlR::GmR and ΔlasR::TcR cassettes) (22). Colistin, poly-
myxin B, and azithromycin MICs were determined using broth microdilution in dupli-
cate according to CLSI (23). The colistin, polymyxin B, and azithromycin MICs for PAO1
were 1, 1, and 512 mg/liter, respectively, and the MICs for the rhlR/lasR knockout were 2, 2,
and 512 mg/liter, respectively. Colistin (sulfate) and polymyxin B (sulfate) were purchased
from Sigma-Aldrich (St. Louis, MO, USA), and azithromycin was purchased from AK Scien-
tific, Inc. (Union City, CA, USA). Time-kill experiments were carried out as previously
described (24). LB broth supplemented with magnesium chloride (12.5 Mg2�/liter final
concentration) and calcium chloride (25 Ca2�/liter final concentration) acted as growing
media in all experiments. Serial samples throughout the 48-h experiment were withdrawn
to quantify viable cell density after vortexing and visual inspection, which verified that the
system was homogenous and planktonic. Colistin or polymyxin B killing was evaluated at
different bacterial densities (CFU0 h) of �106, 108, or 109 CFU/ml. Polymyxin B and azithro-
mycin combination experiments were performed at a CFU0 h of �108 CFU/ml. Polymyxin
concentrations ranging from 0 to 128 mg/liter (4, 25) and azithromycin concentrations of
0, 0.5, 2, 128, and 256 mg/liter (15, 16) were used.

Synergy was defined as a �2 log10-CFU/ml reduction compared to the more active
agent as monotherapy at 24 h. To characterize pharmacodynamic activity over time (0
to 48 h), the area under the CFU (AUCFU) curve was calculated using the linear-up,
log-down trapezoidal rule. The log ratio change was calculated to compare killing at
individual time points, whereas the log ratio area was used to assess activity throughout the
time-kill experiments, as described previously (26). To characterize the interplay between
inoculum effect and quorum sensing, previously developed mechanism-based models for
colistin were used (21). Three preexisting subpopulations with different susceptibilities to
colistin or polymyxin B were considered with the modification of the growth model. Data
were modeled using a population approach in S-ADAPT software (version 1.57) with
the SADAPT-TRAN pre- and postprocessing tool to fit all data simultaneously (see
mathematical model development in the supplemental material).

Colistin and polymyxin B alone displayed concentration-dependent killing for all
three initial inocula with regrowth toward the growth control (Fig. 1 and 2). Both
polymyxins caused rapid initial killing of up to 6.00 (PAO1) and 6.16 (rhlR/lasR knockout)
log10 CFU/ml at the 106 CFU0 h inoculum. However, at higher starting inocula (108 and
109 CFU0 h), there was attenuation of bacterial killing, which resulted in a stepwise
half-maximal effective concentration (EC50) increase for each strain (Fig. 2). Colistin and
polymyxin B achieved better killing against the rhlR/lasR knockout than against PAO1,
especially at higher concentrations. The discordance in killing was most prominent at
the 108 CFU0 h starting inoculum, where the Emax (maximal effect) increased from 2.18
to 4.03 (P � 0.001) for colistin and from 2.67 to 3.36 (P � 0.09) for polymyxin B against
the PAO1 and rhlR/lasR knockout strains, respectively (Fig. 2A2 and B2). Colistin and
polymyxin B also displayed a higher EC50 for PAO1 than for the rhlR/lasR knockout
strain (8.72 mg/liter [24.6% standard error (SE)] versus 7.04 mg/liter [2.64% SE] for
colistin, P � 0.47; 12.45 mg/liter [16.0% SE] versus 5.61 mg/liter [5.71% SE] for poly-
myxin B, P � 0.005) at this inoculum. At the 106 and 109 CFU0 h inocula, the strains
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displayed similar concentration-response curves (Fig. 2A3 and B3); however, the bac-
terial killing profiles against the rhlR/lasR knockout appeared greater (Fig. 1A to D3).
Among the polymyxins, colistin performed marginally better than polymyxin B against
the rhlR/lasR knockout, most markedly at concentrations of �4 mg/liter for 106 and 108

CFU0 h and �32 mg/liter for 109 CFU0 h. Against PAO1, the polymyxins achieved
comparable killing at each inoculum, with the only perceptible difference occurring in
favor of polymyxin B at 106 CFU0 h (�8 mg/liter). The final mechanism-based pharma-
codynamic model, which consists of three preexisting subpopulations and uses the

FIG 1 Time course of P. aeruginosa strains PAO1 (rows A and C) and the rhlR/lasR knockout strain (rows B and D) against polymyxin B (A1 to B3) or colistin (C1
to D3) at three different initial inocula: 106 CFU0 h (column 1), 108 CFU0 h (column 2), and 109 CFU0 h (column 3). Polymyxin B and colistin concentrations range
from 0 to 128 mg/liter. Individual points represent observed viable colony counts (CFU/ml) from time-kill experiments, whereas lines represent expected
bacterial killing as predicted by the previously validated mechanism-based model.
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target site binding of polymyxin to LPS (see Fig. S1 in the supplemental material),
excellently characterized (see Table S1 in the supplemental material, correlation coef-
ficient individual fit �0.994 and population fit �0.905) the time course of bacterial
killing, inoculum effect, and regrowth (Fig. 1, dashed lines).

Our time-kill data and pharmacodynamic modeling of colistin and polymyxin B
monotherapies show that the rapid bactericidal activity achieved was not sustained,
suggesting potential utility for combinations. Polymyxin B was investigated in addition
to azithromycin at 108 CFU0 h due to the favorable pharmacokinetics of polymyxin B
(not administered as a prodrug) (27) and the similar performance of both polymyxins
at clinically achievable concentrations at this inoculum (Fig. 2A2 and B2). In contrast to
the regrowth seen against polymyxins alone, azithromycin (256 mg/liter) and poly-
myxin B achieved synergy at 24 h against PAO1 regardless of the polymyxin B
concentration (Fig. 3A1 to 4). Remarkably, after the rapid initial bacterial killing within
8 h by polymyxin B and azithromycin (128 or 256 mg/liter) combinations, apparent
bacteriostasis was achieved and persisted through 48 h. Against the rhlR/lasR knockout,
the combination with azithromycin 256 mg/liter was synergistic at polymyxin B con-
centrations of 4 and 6 mg/liter. Comparison of bacterial killing seen in PAO1 and the
rhlR/lasR knockout using the log ratio area, showed minimal differentiation (�0.82) at
azithromycin 0.5, 2, and 128 mg/liter (Fig. 3C1 to 3). The progressive decreases in log
ratio area between these azithromycin concentrations were well fit to linear functions
(standard error of estimate, �0.2). The highest azithromycin concentration (256 mg/
liter) displayed less total killing against the rhlR/lasR knockout than against PAO1, and
both were excellently fit to a Hill-type model (R2, �0.99). At an azithromycin concen-
tration of 256 mg/liter, the largest difference in killing was seen at 2 mg/liter of
polymyxin B, in which combination treatment achieved 2.86 and 2.51 log10 CFU/ml less
killing against the rhlR/lasR knockout strain at 24 and 48 h, respectively. For the
polymyxin combinations with 256 mg/liter azithromycin, the polymyxin B EC50s against
the rhlR/lasR knockout and PAO1 increased from 0.66 to 2.80 mg/liter (P � 0.001).

In the current work, we explored the interrelationship between quorum sensing and
polymyxin pharmacodynamics at various bacterial densities. Interestingly, we deter-

FIG 2 Comparative pharmacodynamic responses between PAO1 wild-type (black) and rhlR/lasR knockout (blue) strains at each inoculum
to either polymyxin B (row A) or colistin (row B). Activity is defined as the log10 ratio of the AUCFU of treatment to the AUCFU of growth
control (log ratio area) based on the observed response throughout the 48-h time-kill experiments. Parameter estimates for the Hill-type
models are found in Table S2 in the supplemental material.
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mined that rhlR/lasR deficiency enhanced the pharmacodynamic activity of colistin and
polymyxin B monotherapies, especially with the 108 CFU0 h inoculum. The hypothesized
quorum sensing-driven alterations to killing were well characterized by our mathemat-
ical model, which was based on the known mechanisms of action of the polymyxin
antibiotics. Furthermore, the model used signaling compartments that altered killing
and growth to account for the observed inoculum effect. Consistent with these results,
quorum sensing has been shown to influence susceptibility to other antimicrobials.
Kayama et al. (28) demonstrated that quorum sensing-deficient P. aeruginosa strains
(lasR/lasI but not rhlR/rhlI) exposed to ofloxacin had �40 times lower survival rates than
the quorum sensing-proficient strain. Modulation of gene expression is thought to be
important in adaptation to polymyxin exposure and has been proposed to be regulated
by the two-component regulatory systems phoP-phoQ (29), pmrA-pmrB (30), and
ParR-ParS (31). The role of such systems may be inoculum dependent, as we previously
found that colistin exposed to pmrA and phoP mutant strains achieved greater killing
than the wild-type strain at low initial inocula (32). Unlike our discovery in the current
study, Ly et al found that there was no disparity of bacterial killing between the mutant
and wild-type strains at the 108 CFU0 h inoculum. Collectively, these observations
suggest that the adaptive response to polymyxin exposure may be regulated by rhl-
and las-mediated quorum sensing directly or by downstream oversight of other
two-component regulatory systems associated with polymyxin resistance.

As an adjuvant to polymyxin B, high concentrations (128 or 256 mg/liter) of the
known quorum sensing inhibitor azithromycin caused bacterial killing of P. aeruginosa
that persisted below the growth control level. Thus, early bactericidal activity by

FIG 3 Time-kill experiments evaluating bacterial killing activity of polymyxin B and azithromycin combinations versus the P. aeruginosa wild-type PAO1 (row
A) and the rhlR/lasR knockout (row B) strains. Comparative pharmacodynamic responses between PAO1 (black) and the rhlR/lasR knockout (blue) at increasing
azithromycin concentrations in combination with polymyxin B and data fit with linear (C1 to 3) or Hill-type (C4) functions. Data for polymyxin B monotherapy
are not shown for C1 to C4. Activity is defined as the log10 ratio of the AUCFU of treatment to the AUCFU of growth control (log ratio area) based on observed
response throughout the 48-h time-kill experiments.
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polymyxin B monotherapy against a high-density infection may be sustained longer
with polymyxin-azithromycin combinations. Perhaps the static concentrations of P. aerugi-
nosa below growth control levels indicate a persister phenotype. Persister cells become
tolerant to antibiotic therapy but are unable to replicate (33). By lowering the bacterial
burden and forcing P. aeruginosa into a static phenotype, the polymyxin B-azithromycin
combination may improve the immune system’s likelihood of eradicating the infection.

In contrast to our results with polymyxin B monotherapy, we determined that
combinations with high azithromycin concentrations were more active against the
wild-type strain versus the rhlR/lasR knockout. This finding supports previous data that
showed that increasing azithromycin concentrations inhibited growth of a P. aerugi-
nosa wild-type strain more than quorum sensing-deficient mutants (lasR) (19). Similar
bacterial killing may have been anticipated between the wild-type and rhlR/lasR
knockout strains in the presence of complete quorum sensing inhibition by azithro-
mycin. Therefore, an enhanced susceptibility of the wild-ype strain to the polymyxin-
azithromycin combination may be explained in part by the production of rhamnolipids,
an exoproduct that is controlled by quorum sensing (rhl and las systems) and thus only
expressed in the wild-type strain before inhibition by azithromycin. Rhamnolipids may
increase the uptake of azithromycin into P. aeruginosa, making the wild-type strain
more susceptible to the polymyxin-azithromycin combination, especially at higher
concentrations (34). Furthermore, evidence supports the benefit of azithromycin in
prevention of P. aeruginosa ventilator-associated pneumonia in patients colonized with
P. aeruginosa producing high levels of rhamnolipids (35). A potential limitation of this
study is that we did not directly quantify quorum sensing activity or rhamnolipid
expression in our in vitro system. Additional studies are warranted to fully elucidate the
mechanism(s) of azithromycin attack on P. aeruginosa in the presence of polymyxin B.

In conclusion, our study demonstrated that bacterial modulation by quorum sensing
may decrease P. aeruginosa susceptibility to polymyxin antibiotics. Considering the
utility of azithromycin in cystic fibrosis exacerbations and its ability to inhibit quorum
sensing, expanding its niche to other P. aeruginosa infections is worth consideration.
Azithromycin may therefore provide a multifactorial attack on P. aeruginosa and prove
useful as an adjuvant to polymyxins in a range of clinical scenarios. Further in vivo
investigations with polymyxin-azithromycin combinations are needed to better understand
the dual benefit of quorum sensing inhibition and potentiation of polymyxin activity.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/
AAC.00096-16.

TEXT S1, PDF file, 0.5 MB.
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