Errata ASN

Erratum for El-Hajj Fuleihan et al. Effect of vitamin D replacement on indexes of insulin resistance in overweight elderly individuals: a randomized controlled trial. Am J Clin Nutr 2016;104:315–23.

The published version of the above article omitted the following text in the Acknowledgments section: "The authors thank Euro-Pharm Canada for providing the vitamin D and identical placebo tables and calcium citrate supplements." In addition, the following sentence: "We thank Heike Bischoff-Ferrari, Christopher Gallagher, and Reinhold Vieth for their time and dedication," should be rewritten to acknowledge the roles of these individuals as board members. The corrected version will read as follows: "We thank Heike Bischoff-Ferrari, Christopher Gallagher, and Reinhold Vieth for their time and input as members of the data safety monitoring board."

doi: 10.3945/ajcn.116.151522.

Erratum for Chang et al. High dietary phosphorus intake is associated with all-cause mortality: results from NHANES III. Am J Clin Nutr 2014;99:320–7.

In the published article, Tables 3 and 4 contain errors. The coefficients and *P* values above the knots actually represent the marginal change (i.e., the change in the slope from the preceding interval). For instance, it was incorrectly stated that phosphorus density ≥ 0.35 mg/kcal was associated with cardiovascular mortality (Table 4). Rather, the coefficients and *P* values show that the relation between phosphorus density and cardiovascular mortality significantly changes with phosphorus density ≥ 0.35 mg/kcal compared with phosphorus density < 0.35 mg/kcal. However, there was no significant association between phosphorus density and cardiovascular mortality 4).

The corrected Tables 3 and 4 are presented below. The figures and the remainder of the analyses remain correct.

	Model 1		Model 2	
	Adjusted HR (95% CI)	Р	Adjusted HR (95% CI)	Р
All-cause mortality ²				
Below ln (1400 mg/d)	0.78 (0.51, 1.20)	0.2	0.96 (0.64, 1.43)	0.8
At or above ln (1400 mg/d)	1.75 (1.05, 2.94)	0.03	1.89 (1.03, 3.46)	0.04
CVD mortality ²				
Below ln (1400 mg/d)	0.89 (0.42, 1.88)	0.8	0.99 (0.46, 2.14)	1.0
At or above ln (1400 mg/d)	0.94 (0.26, 3.37)	0.9	1.02 (0.29, 3.58)	1.0

CORRECTED TABLE 3

Adjusted HRs (95% CIs) of all-cause and CVD mortality according to absolute phosphorus intake¹

¹ Cox proportional hazards regression was used to estimate HRs of mortality by absolute phosphorus intake. Absolute phosphorus intake was log-transformed to achieve a more normal distribution and modeled continuously by using linear splines with a knot at ln (1400 mg/d) on the basis of evidence of a nonlinear relation. Model 1 was adjusted for age, sex, race, ethnicity, poverty:income ratio, and total energy intake. Model 2 was adjusted as for model 1 covariates and for BMI, systolic blood pressure, current and former smoking, physical activity, non-HDL cholesterol, log albumin:creatinine ratio, estimated glomerular filtration rate, and low vitamin D concentration. CVD, cardiovascular disease.

² Continuous [per 1-unit increase in ln (phosphorus intake, mg/d)].

CORRECTED TABLE 4

Adjusted HRs (95% CIs) of all-cause and CVD mortality according to phosphorus density¹

	Model 1		Model 2	
	Adjusted HR (95% CI)	Р	Adjusted HR (95% CI)	Р
All-cause mortality ²				
<0.35 mg/kcal	0.36 (0.20, 0.66)	0.001	0.46 (0.24, 0.89)	0.02
$\geq 0.35 \text{ mg/kcal}$	1.03 (0.99,1.08)	0.2	1.05 (1.01, 1.10)	0.01
CVD mortality ²				
<0.35 mg/kcal	0.22 (0.10, 0.48)	< 0.001	0.30 (0.13, 0.73)	0.01
≥0.35 mg/kcal	1.02 (0.94, 1.11)	0.6	1.02 (0.93, 1.12)	0.6

¹ Cox proportional hazards regression was used to estimate HRs of mortality by phosphorus density. Phosphorus density was modeled as a continuous variable by using linear splines (knot at 0.35 mg/kcal, which corresponds to 700 mg for a 2000-kcal diet) on the basis of a visual inspection of locally weighted smoothing plots. Model 1 was adjusted for age, sex, race, ethnicity, poverty:income ratio, and total energy intake. Model 2 was adjusted as for model 1 covariates and for BMI, systolic blood pressure, current and former smoking, physical activity, non-HDL cholesterol, log albumin:creatinine ratio, estimated glomerular filtration rate, and low vitamin D concentration. CVD, cardiovascular disease.

² Continuous [per 0.1-unit increase in phosphorus density (mg/kcal)].

doi: 10.3945/ajcn.117.154013.