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Abstract

Protein Kinase C-epsilon (PKCε) is an isoform of a large PKC family of enzymes that has a 

variety of functions in different cell types. Here we discuss two major roles of PKCε in cardiac 

muscle cells; specifically, its role in regulating cardiac muscle contraction via targeting the 

sarcomeric proteins, as well as modulating cardiac cell energy production and metabolism by 

targeting cardiac mitochondria. The importance of PKCε action is described within the context of 

intracellular localization, as substrate selectivity and specificity is achieved through spatiotemporal 

targeting of PKCε. Accordingly, the role of PKCε in regulating myocardial function in 

physiological and pathological states has been documented in both cardioprotection and cardiac 

hypertrophy.
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1. PRKCE Structure and Activation in Cardiomyocytes

The PRKCE gene (Ensembl ID: ENSG00000171132 (WTSI/EMBL-EBI, 2015)) encodes 

protein kinase C epsilon (PKCε, Uniprot ID: Q02156 (EMBL-EBI, 2002)). PKC is 

comprised of a family of serine-threonine kinases that contains thirteen PKC isoforms which 

differ in primary structure, protein expression, subcellular localization, and modes of 

activation (Dekker and Parker, 1994). PKCε is a PKC isoform highly expressed in adult 

cardiomyocytes (Rybin and Steinberg, 1994) (Disatnik et al., 1994) (Bogoyevitch et al., 

1993) (Puceat et al., 1994), and it is the most abundantly expressed novel PKC isoform in 

cardiac muscle, relative to other novel PKCs (δ, θ, and η) (Ping et al., 1997). PKCε shares 

similar kinase and C-terminal domains with other novel, conventional (α, βI, βII, and γ) and 
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atypical (ζ and ι/λ) PKC isoforms, thus it is no surprise that the requisite phosphorylation at 

sites Threonine-566, Threonine-710, and Serine-729 for kinase maturation found within this 

domain are consistent among all PKC isoform classes (Akita, 2002) (Figure 1). PKCε shows 

distinction in the position of its novel C2, pseudosubstrate and C1 domains. The C2 domain 

of PKCε and other novel PKCs binds minimally to calcium as in other PKC families; rather, 

the C2 domain in novel isoforms serves to catalyze important protein-protein interactions 

(Igumenova, 2015). Moreover, unlike conventional PKCs, in novel PKCs the C1 domain 

follows the C2 domain, and it has been shown that different second messengers in different 

combinations acting on the C1 domain can in part direct the translocation of PKCε (Shirai 

et al., 1998) (Disatnik et al., 1994).

Seminal work by Mochley-Rosen et al. identified receptors for activated C-kinase (RACK), 

which advanced our understanding of how PKCε translocation to discrete subcellular 

locations is accomplished. Specifically, RACKs are thought to facilitate and to anchor active 

PKC in close proximity to its phosphorylatable substrate (Mochly-Rosen, 1995). The 

specific region of PKCε responsible for its translocation and binding to its preferred RACK 

isoform, RACK2, has been identified within the C2 domain as the first unique region of the 

protein (amino acids 14–21, also known as εV1–2); peptide inhibitors targeting εV1–2 

antagonize the translocation and function of PKCε in cardiomyocytes (Johnson et al., 1996) 

and peptide agonists enhance translocation (Dorn et al., 1999). The dynamics of the 

interaction between PKCε and RACK isotypes likely influence cardiac phenotypes, as 

enhanced localization of PKCε-RACK2 occurs in cardioprotection, whereas enhanced 

localization of both RACK1 and RACK2 with PKCε occurs during maladaptive cardiac 

hypertrophy (Pass et al., 2001). Indeed, it was found that muscle ring finger protein-1 

(MURF1) is an endogenous inhibitor and direct binding partner of RACK1 that inhibits 

PKCε translocation to sarcomeric structures at focal adhesions and inhibits hypertrophic cell 

growth in cardiomyocytes (Arya et al., 2004).

It has classically been understood that PKCs are activated by alpha-adrenergic/Gq- -linked 

pathways, which activate phospholipase-C and the hydrolysis of phosphatidylinositol-4,5-

bisphosphate to create inositol-1,4,5-triphosphate and diacylglycerol (Duquesnes et al., 

2011). However, it has also been discovered that phospholipase-D and phospholipase A2-

linked signaling resulting in the generation of choline phospholipids may also play a role 

(Nishizuka, 1995). Moreover, it was recently shown that PKCε can be activated via beta-

adrenergic stimulation with isoproterenol (Oestreich et al., 2009). Upon activation, PKCε 
translocates to multiple intracellular targets, which has been nicely reviewed (Akita, 2002; 

Newton, 2010). During development and cardiomyocyte differentiation, the time-sensitive 

expression of PKCε is critical for regulating nkx2.5 and gata4, acting through a phospho-

extracellular-regulated kinase (ERK)1/2-mediated pathway (Galli et al., 2013). In adult 

cardiomyocytes, target organelles include mitochondria (Baines et al., 2003); cross-striated 

structures or sarcomeres (Disatnik et al., 1994; Huang et al., 1997b; Robia et al., 2001; 

Huang and Walker, 2004); and perinuclear membranes (Disatnik et al., 1995; Vincent et al., 

2006). Localization of PKCε to mitochondria and sarcomere targets in cardiomyocytes is the 

specific focus of this paper. The translocation of PKCε to mitochondria from the cytosol is a 

critical component of most cardioprotective regimens, which are discussed in detail below. 

In addition, PKCε translocates to cardiac sarcomeres; specifically, to Z-line structures upon 

Scruggs et al. Page 2

Gene. Author manuscript; available in PMC 2017 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



α-adrenergic and endothelin (ET)A-receptor stimulation by a variety of agonists (Robia et 

al., 2001) (Disatnik et al., 1994). PKCε was first found to translocate from the cytosolic to 

particulate fraction following PMA or norepinephrine activation of PKCε (Disatnik et al., 

1994). It has since been shown that a myriad of agonists can activate and translocate the 

PKCε isoform specifically (see Table 1). The activation of PKCε by ET-1 and phenylephrine 

(PE) signals to phosphorylate and activate p42- and p44-mitogen activated protein kinase 

(MAPK) (Clerk et al., 1994), which contributes to the PKCε-mediated protection against 

ischemic injury (Ping et al., 1999). In summary, the importance of PKCε action in 

cardiomyocytes must be understood within the context of both the stimulus and intracellular 

localization, as substrate targeting and specificity is achieved through spatiotemporal 

targeting of PKCε.

2. Sarcomeric Targeting for Modulation of Cardiac Contractile Function and 

Hypertrophy

Upon activation by various cellular stimuli, one target of PKCε translocation is to cardiac 

sarcomeres where PKCε plays a role in contractility of the myocardium (see Figure 2). 

PKCε docks at cardiac Z-lines with an EC50 of 86 nM, likely via RACK2 (Huang and 

Walker, 2004), and PKCε binds to syndecan-4 (syn-4) and focal adhesion complexes at 

cardiac costameres (VanWinkle et al., 2002; Heidkamp et al., 2003); in both cases 

positioning PKCε to phosphorylate sarcomeric targets. Though not yet conclusively 

demonstrated in cardiomyocytes, it is plausible that PKCε may also localize to sarcomeric 

actin, as actin was detected in endogenous cardiac PKCε complexes (Ping et al., 2001) and 

the PKCε isoform specifically has been shown to bind F-actin in neurons to regulate 

synaptic function and differentiation (Prekeris et al., 1996) (Zeidman et al., 2002). It was 

first demonstrated by J.F. Kuo’s laboratory that PKCε has a specific affinity for and 

phosphorylates cardiac troponin I (cTnI) and cardiac troponin T (cTnT) in complex with 

troponin C (cTnC) (Jideama et al., 1996). Specific phosphorylatable residues on cTnI, 

including Serine-43, Serine-45, and Threonine-144, showed modulation of contractile 

function (Noland et al., 1996) (Noland et al., 1995), thus these sites arose as likely sites for 

endogenous PKCε modulation. Indeed, in vitro phosphorylation of cTnI by PKCε or 

mutation of Serine-43 and Serine-45 to Glutamate to mimic phosphorylation induced a 

desensitization of the contractile apparatus to calcium and an overall depression of 

contractile function (Burkart et al., 2003). Additional studies demonstrated that alteration of 

the endogenous level of phosphorylation via Serine/Alanine mutation of a putative PKCε 
site on the N-terminus of cTnI (Serine-5/6) depresses myofilament function (Henze et al., 

2013). In vivo studies further supported these findings in showing that mice expressing a 

mutant cTnI harboring Serine-43/Serine-45 to Alanine mutations showed enhanced 

contractility (Roman et al., 2004). Studies of PKCε phosphorylation in mouse have been 

verified in human cardiac fibers, where PKCε has been shown to phosphorylate cTnI, cTnT 

and myosin binding protein-C (MyBPC), which desensitizes the contractile apparatus to 

calcium (Kooij et al., 2010).

The PKCε isoform has been shown to be specifically induced in response to hypertrophic 

stimuli in cardiac myocytes; it is the only PKC isoform that translocates following an acute 
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pressure overload stimulus (Li et al., 2015). Hypertrophic stimuli linked to PKCε induction 

include myotrophin (Sil et al., 1998), mechanical stretch and hypertension (i.e., left 

ventricular pressure overload) (Inagaki et al., 2002). PKCε inhibition during the transition 

from compensatory hypertrophy to heart failure has shown to prolong life (Inagaki et al., 

2008). However, the story is further complicated by the finding that inhibition of PKCε 
translocation to the particulate fraction also stimulates a hypertrophic phenotype; 

specifically, increased cardiomyocyte size and hypertrophic gene expression (Mochly-Rosen 

et al., 2000). It is known that PKCε elicits effects on hypertrophy in part through regulation 

of Ras-Raf-mitogen/extracellular signal-regulated kinase (MEK)-extracellular signal-

regulated kinase (ERK) signaling, which has been shown to mediate several effects 

including alterations in cardiomyocyte gene expression (Clerk et al., 1994; Jiang et al., 1996; 

Heidkamp et al., 2001; Sabri and Steinberg, 2003). In parallel, there is strong evidence 

suggesting that a site of PKCε action in hypertrophic induction is at cardiac sarcomeric 

structures involved in strain-sensing and mechanotransduction for controlling optimal 

sarcomere length. PKCε activates focal adhesion kinase (FAK) at costameres following a 

hypertrophic stimulus, which is important for sarcomere assembly during cardiac 

hypertrophy (Heidkamp et al., 2003). Mansour et al. demonstrated that in cardiomyocytes 

subjected to mechanical strain, PKCε is critical for the recovery of sarcomere length back to 

normal (Mansour et al., 2004). Additionally, functional PKCε is required for the enhanced 

actin-capping protein (CapZ) dynamics observed at Z-lines following cyclic strain (Lin et 

al., 2015). These data indicate that PKCε is a critical modulator of mechanosensory 

pathways that integrate myocardial strain with sarcomere dynamics, including filament 

assembly.

Studies investigating the in vivo function using transgenesis have shed additional light on the 

effects of sustained PKCε activation in cardiac hypertrophy and failure. The first study to 

generate a mouse harboring cardiac-specific overexpression of constitutively-active PKCε, 

in which total cellular PKCε protein expression showed a 9-fold increase and PKCε activity 

in the particulate fraction was elevated 4-fold, demonstrated that these mice develop a 

concentric hypertrophic phenotype with increased anterior and posterior left ventricular wall 

thickness albeit normal fractional shortening and end diastolic/end systolic dimensions 

(Takeishi et al., 2000). A later study serially investigated these mice over a 12-month period 

and demonstrated that, in agreement with the previous study, the functional parameters and 

hypertrophic gene expression of PKCε overexpressing mice are normal at 3 months of age 

(Goldspink et al., 2004). However, alterations in both the sensitivity of sarcomeric 

contractile apparatus to calcium and the phosphorylation of thin filament proteins cTnI and 

cTnT were detected at this time point albeit normal hemodynamic function, suggesting that 

sarcomere proteins represent an early site of cardiac transformation in response to 

constitutively-active PKCε. At 6 months of age, these mice exhibited progressive decline in 

both functional and molecular parameters, and an eccentric hypertrophic/dilated 

cardiomyopathy and failing phenotype was evident by 12 months. To investigate the 

energetic characteristics of the dilated cardiomyopathy in these mice, Montgomery et al. 

conducted a detailed functional analysis that showed a preserved Frank-Starling mechanism 

with an exhausted contractile reserve in that β1-adrenergic stimulation with dobutamine did 

not increase cardiac output (Montgomery et al., 2005). Moreover, constitutively-active 

Scruggs et al. Page 4

Gene. Author manuscript; available in PMC 2017 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PKCε overexpressing animals crossed with mice expressing cTnI lacking putative PKCε 
phosphorylation sites (Serine-43/Serine-45 mutated to Alanine) offered critical mechanistic 

insights (Scruggs et al., 2006). Mutation of these sites to non-phosphorylatable forms 

attenuated the contractile dysfunction and hypertrophic marker expression observed in the 

PKCε transgenic mice, thus indicating that Serine-43/Serine-45 on cTnI are relevant 

endogenous sites of PKCε phosphorylation that are targeted and detrimental during 

hypertrophic disease progression.

It is noteworthy to mention that PKCε acting at cardiac sarcomeres has also been shown to 

have cardioprotective effects during ischemia-reperfusion injury. Studies by Ping et al. 

identified sarcomeric proteins in PKCε signaling complexes, including actin, cTnT, 

tropomyosin, desmin, and myosin light chain-2 (Ping et al., 2001). All sarcomeric proteins 

showed greater association with PKCε in mice expressing a constitutively-active PKCε, and 

the cTnT, tropomyosin, desmin and myosin light chain-2 exhibited changes in post-

translational modifications. Evidence has shown that PKCε translocation to sarcomeres and 

phosphorylation of cTnI and cMyBPC is involved in the κ-opioid- and α-adrenergic-

dependent PC that decreases contractile cycling rate, thus protecting myofibrils during injury 

and better restoring contractile function post-ischemia (Pyle et al., 2000) (Pyle et al., 2003). 

Phosphorylation of ventricular myosin light chain-2 was also demonstrated following direct 

activation of PKCε by ΨεRACK prior to ischemia (Budas et al., 2012), however the 

functional significance of this remains unknown. Additionally, the Z-line resident, actin-

capping protein, CapZ, appears to affect the localization of PKCε to sarcomeric Z-lines 

(Pyle et al., 2002) and plays a role in ischemia-reperfusion injury. Cardioprotection in mice 

harboring transgenic reduction of CapZ was correlated with a significant increase in the 

amount of PKCε translocated to myofilaments (Yang and Pyle, 2012). This may indicate 

that CapZ competes with the binding of RACK2, but further studies are required to sort this 

out.

3. Mitochondrial Targeting for Modulation of Metabolic Pathways and 

Mitochondrial Function

The PKC hypothesis of cardioprotection was first introduced by JM Downey in 1994 

(Ytrehus et al., 1994), which spawned a series of exciting studies investigating isoform-

specific effects of PKC in protection against ischemic injury. PKCε has been strongly 

implicated in preconditioning (PC), and PKCε acting at mitochondria is the most well-

described cardioprotective paradigm. Ping et al. conducted a comprehensive study 

examining PKC isoform-specific profiles following five different PC regimens in conscious 

rabbits, and unequivocally determined the translocation of the PKCε isoform from the 

cytosolic to particulate fraction in all modes of PC tested (Ping et al., 1997) (Bolli et al., 

1998). An independent study published shortly after by Gray et al. mutually corroborated 

and supported this finding in rat cardiomyocytes by determining that an inhibitory peptide 

specific for the PKCε isoform was sufficient to abolish hypoxic-induced PC (Gray et al., 

1997). Liu et al. then confirmed this in adult rabbit ventricular cardiomyocytes using a 

standard ischemic PC challenge (Liu et al., 1999). PKCε translocation was also observed 

following ischemic PC in several animal models (Wilson et al., 1996) (Kawamura et al., 
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1998) (Tong et al., 2000), as well as in human atria (Hassouna et al., 2004), and studies 

employing transgenesis and selective PKCε activators/inhibitors have further demonstrated 

the protective role of PKCε translocation against ischemic injury (Gregory et al., 2004).

Despite multiple independent demonstrations of the effectiveness of PKCε to protect injured 

myocardium, little was known at the time regarding molecular targets of PKCε. Significant 

advances in our understanding of PKCε targeting of mitochondria came from studies by 

Baines et al. (Baines et al., 2003) and Ping et. al (Ping et al., 2001), which provided the first 

documentation of mitochondrial targeting of PKCε. Studies investigating molecular 

interactions between PKCε and mitochondrial targets commenced to identify signaling 

molecules involved in the cardioprotective paradigm. Detailed proteomic analysis of PKCε 
signaling complexes by Ping et al. (Ping et al., 2001) identified 36 proteins that form an 

endogenous complex with PKCε. This study identified changes in PKCε complex assembly 

with respect to protein content and post-translational modifications triggered by a 

constitutively-active PKCε. Mitochondrial proteins were integral components of these 

complexes, and PKCε was found for the first time at the inner mitochondrial membrane in 

the form of signaling complexes in healthy hearts (Ping et al., 2001). This group further 

delineated that PKCε resides in complexes with several key mitochondrial proteins in 

glycolysis, TCA cycle, beta oxidation, and ion transport signaling pathways, including but 

not limited to, adenine nucleotide transporter (ANT), ATP synthase, creatine kinase, enolase, 

GAPDH, succinate dehydrogenase and voltage dependent anion channel (VDAC) 

(Edmondson et al., 2002).

D Mochley-Rosen’s group was the first to unequivocally identify a target of PKCε involved 

in cardioprotection (Chen et al., 2008). This study detailed the specific targeting and 

phosphorylation of alcohol dehydrogenase 2 (ALDH2) by PKCε following protective 

stimuli, which enhanced the activity of ALDH2 and reduced infarct size (Ping, 2009). 

Another study by Ogbi and Johnson identified a direct interaction between PKCε and 

cytochrome c oxidase subunit IV (COIV), and PC stimuli were associated with PKCε 
phosphorylation of COIV and preservation of COIV protein and activity levels (Ogbi and 

Johnson, 2006). In addition, Jaburek et al. elucidated an interaction between PKCε and 

mitoK(ATP) (Jaburek et al., 2006); opening of of mitoK(ATP) locally enhances levels of 

reactive oxygen species (ROS), specifically attributed to the hydroxyl radical (HO(•)), which 

appears to both activate mitoK(ATP)-bound PKCε (Garlid et al., 2013) and induce the 

translocation of PKCε from cytosolic to particulate cell components (Li et al., 2014). PKCε 
phosphorylation of mitoK(ATP) potentiates channel opening and this interaction has also 

since been shown to be pivotal in the PC response (Costa and Garlid, 2008). Subunit Kir6.1 

of mitoK(ATP) binds connexin-43 and confers cardioprotection through a PKCε-regulated 

interaction (Waza et al., 2014). It is likely that this is modulated through PKCε 
phosphorylation of connexin-43 at presumed PKCε sites, Serine-262 and Serine-368, as 

these have been shown to have a protective effect on mitochondrial function (Srisakuldee et 

al., 2014; Shan et al., 2015). A phosphoproteomics study by Budas et al. further illuminated 

putative mitochondrial targets of PKCε phosphorylation upon PKCε-specific activation with 

ΨεRACK prior to ischemic injury. Enhanced phosphorylation of inner mitochondrial 

respiratory complexes I, II and III, as well as proteins involved in glycolysis, lipid oxidation, 

ketone body metabolism and heat shock proteins was reported (Budas et al., 2012). Though 
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these and other targets residing on the inner mitochondrial membrane had been identified, it 

remained unclear how PKCε translocates from the outer to inner mitochondrial membrane. 

Another study by Budas et al. unveiled a role for heat shock protein 90 (Hsp90) in this 

process (Budas et al., 2010) (Yang et al., 2012). They were the first to show that Hsp90 

acting in concert with the translocase of the outer mitochondrial membrane-20 (Tom20) is 

required for PKCε translocation to the inner mitochondrial membrane following a PC 

stimulus. A seven amino acid peptide homologous to the HSP90 sequence within the novel 

C2 domain of PKCε (termed TAT-ΨεHSP90) was derived and showed activation of the 

mitochondrial-targeted translocation of PKCε in conjunction with cardioprotection (Budas 

et al., 2010). However, it remains to be determined precisely how PKCε docks to the inner 

mitochondrial membrane. Taken together, these findings support a role for PKCε in the 

regulation of fatty acid, carbohydrate and protein metabolism, as well as cellular energy 

balance.

In addition to roles in cellular metabolism, a role for PKCε in the mitochondrial 

permeability transition (MPT) has been evolving for several decades. Historically, this role 

has been linked to the association of PKCε with mitochondrial VDAC1, ANT, and 

hexokinase II (Baines et al., 2003); however, this is currently back on the table of 

investigation due to genetic studies showing negative findings on roles for VDAC and ANT 

(Kokoszka et al., 2004; Baines et al., 2007), combined with recent studies showing 

developments in pore components (Bernardi and Di Lisa, 2015). The finding that 

proapoptotic Bax and Bak may function as outer membrane components of MPT (Karch et 

al., 2013), along with studies unveiling a central role for the F1/F0 ATP synthase as the inner 

membrane component (Bonora et al., 2013; Giorgio et al., 2013; Alavian et al., 2014) has 

significantly transformed our understanding. The new knowledge brings uncertainty 

regarding whether the inner and outer mitochondrial membranes physically couple during 

MPT; new models indicate that these function independently, with the primary site of 

regulation being on the inner membrane. These developments open up exciting new avenues 

for understanding molecular targets of PKCε cardioprotective action at mitochondria. It has 

been previously shown that PKCε, ERK, JNKs and p38 form signaling modules at cardiac 

mitochondria, and that PKCε activity is required for the phosphorylation of ERK and 

downstream effector Bad (Baines et al., 2002). This finding was more recently supported in 

studies showing that inactivation or activation of PKCε in diseased cardiac tissue are 

associated with enhanced association of Bad or inactivation/phosphorylation of Bad at 

mitochondria, respectively, with opposite effects on mitochondrial function and apoptosis 

(Malhotra et al., 2005; Tsai et al., 2014). Though not in cardiomyocytes, a direct interaction 

between PKCε and Bax has been elucidated in cancer cells (McJilton et al., 2003); and the 

overexpression of PKCε inhibits Bax dimerization and translocation, while the siRNA 

knockdown of PKCε has the reverse effect (Lu et al., 2007). Moreover, phosphorylation of 

mitochondrial F1/F0 ATP synthase subunits has been shown to increase in hearts treated with 

the PKCε activator ΨεRACK prior to ischemic injury, suggesting that PKCε could 

potentially be involved in regulation of MPT at this site (Budas et al., 2012). It should also 

be noted here that ANT, though not an indispensable component of the pore, appears to 

regulate the pore, as mitochondria from ANT1/2 null mice exhibited dysregulated calcium 

homeostasis (Kokoszka et al., 2004). This finding combined with earlier studies showing the 
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endogenous binding of PKCε to ANT1 (Baines et al., 2003), suggest that ANT may serve as 

a site where PKCε can execute cardioprotective effects in mitochondria. Furthermore, 

Baines et al. conclusively demonstrated that addition of active, recombinant PKCε to 

cardiomyocytes can inhibit MPT, indexed by calcium-induced mitochondrial swelling 

(Baines et al., 2003). Taken together, these data suggest that PKCε plays a cardioprotective 

role acting either directly or indirectly at molecular site(s) involved in MPT; future studies 

will undoubtedly unfold new PKCε-directed molecular mechanisms in cardiomyocyte MPT, 

necrosis, and apoptosis.

4. Conclusion

Findings presented here clearly demonstrate a prominent role for the ε isoform of PKC 

acting on sarcomeres and mitochondria in cardiac health and disease. Translation of these 

findings into treatment for ischemic injury and heart failure will require the integration of 

dynamic actions of PKCε at each subcellular location into one comprehensive picture. 

Innovative research aimed at elucidating the endogenous positioning and presentation of 

PKCε have come from Daria Mochley-Rosen and colleagues in their successful 

identification of targeting sequences for docking and translocation of PKC, as well as from 

multiple laboratories, including our own, which have profiled endogenous PKCε signaling 

modules and interacting partners. Furthermore, strong supporting evidence for the 

importance of PKCε in cardioprotection came from the finding that micro-RNAs modulate 

the cardioprotective effects of PKCε. Both miR-1 and miR-31 are upregulated following 

ischemia/reperfusion injury, they both specifically target the PRKCE gene, and their 

inhibition is cardioprotective (Pan et al., 2012) (Wang et al., 2015). Twenty years of 

investigation on PKCε have presented a beautiful example where our view of single gene-

single kinase-single substrate paradigms has been transformed and elevated to a multi-

layered understanding of the PRKCE gene and the PKCε protein. Our investigations have 

illuminated their involvement in temporal regulation as well as specific targeting in distinct 

subcellular organelles and locations. A systems biology approach has enabled us to decipher 

the PKCε signaling networks and identify its molecular targets. Future efforts in 

characterization of PKCε-dependent therapeutic actions will shed additional light on its 

clinical significance.
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Highlights

• PKCε action in cardiomyocytes is spatiotemporally regulated.

• PKCε acts on sarcomeric targets and regulates cardiac contraction and 

hypertrophy.

• PKCε targets mitochondria to modulate metabolism and elicit 

cardioprotection.
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Figure 1. Structural and Functional Regions of PKCε
PKCε is a novel PKC that houses a C2 domain that is modified to be void of calcium 

binding, as in conventional PKC isoforms (α, β, and γ), and binds phospholipid activators as 

well as the RACK scaffolding protein (Z-line targeting) and Hsp90 (mitochondrial inner 

membrane targeting). Downstream of C2 is the C1 region that is responsible for binding 

activators diacylglycerol (DAG), fatty acids (FA) and phorbol esters, as well as binding to 

filamentous (F)-actin. The C-terminal catalytic domain in PKCε is similar to all other PKC 

isoforms, having an ATP binding domain in C3, and the activating phosphorylation sites in 

C4. (Recommended Figure Size—1 column width).
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Figure 2. PKCε Interactome and Phospho-proteome in Cardiac Sarcomeres and Mitochondria
Shown is a schematic of cardiac sarcomeres and mitochondria with actions of PKCε within 

these organelles. All abbreviations are defined in the inset. Binding partners of PKCε are 

denoted by arrows, and verified substrates of PKCε phosphorylation are denoted by yellow 

bursts. PKCε is shown in light blue and illustrated as two domains, regulatory (R) and 

catalytic (C), connected by a linker region. At sarcomeres, data have shown that PKCε is 

tethered to Z-lines via receptor for activated C kinase 2 (RACK2). At costameres, PKCε has 

also been demonstrated to activate focal adhesion kinase (FAK) and bind to the proteoglycan 

syndecan-4 (Syn-4). On cardiac thin and thick filaments, PKCε binds to tropomyosin (Tm), 

myosin regulatory light chain (RLC), troponin I (cTnI) and troponin T (cTnT), and evidence 

shows that PKCε phosphorylates cTnI, cTnT and myosin binding protein-C (MyBPC); in 

this case, PKCε may dock via its actin-binding region directly on cardiac Actin. At the inner 

mitochondrial membrane, PKCε has been shown to bind to and phosphorylate certain 

members of metabolic pathways (left mitochondrion) as well as pathways involving 

apoptosis and mitochondrial permeability transition (MPT, right mitochondrion). Metabolic 

pathways targeted by PKCε include the electron transport chain (I–V), tricarboxylic acid 

(TCA) cycle, and alcohol dehydrogenase 2 (ALDH2). PKCε direct substrates linked to MPT 

include the mitochondrial ATP-sensitive potassium channel (mitoK(ATP)); adenine 

nucleotide transporter (ANT); F0/F1 ATP synthase; Bcl-2-associated X protein (Bax); and 

the c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (MAPK)/
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extracellular signal-regulated kinase (ERK) cascade and the downstream effector Bcl-2-

associated death promoter (Bad). (Recommended Figure Size—2 column width).
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Table 1

Agonists that activate the PKCε isoform and induce its translocation.

Agonist References

Arachidonic acid (Huang et al., 1997a)

Endothelin-1 (Clerk et al., 1994)

Phenylephrine (Grimm et al., 2006)

Angiotensin-II (Paul et al., 1997)

Myocardial stretch (Paul et al., 1997; Vincent et al., 2006)

Adenosine (Yang et al., 2012)

Hypoxia and Akt-induced stem cell factor (Huang et al., 2014)

ROS from activation of mitoK(ATP) (Garlid et al., 2013; Li et al., 2014)

Apelin (Perjes et al., 2014)

Isoproterenol (Oestreich et al., 2009)
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