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Abstract

Humans adapt their behavior to their external environment in a process often facilitated by 

learning. Efforts to describe learning empirically can be complemented by quantitative theories 

that map changes in neurophysiology to changes in behavior. In this review we highlight recent 

advances in network science that offer a sets of tools and a general perspective that may be 

particularly useful in understanding types of learning that are supported by distributed neural 

circuits. We describe recent applications of these tools to neuroimaging data that provide unique 

insights into adaptive neural processes, the attainment of knowledge, and the acquisition of new 

skills, forming a network neuroscience of human learning. While promising, the tools have yet to 

be linked to the well-formulated models of behavior that are commonly utilized in cognitive 

psychology. We argue that continued progress will require the explicit marriage of network 

approaches to neuroimaging data and quantitative models of behavior.

Learning as a Network Phenomenon

Human learning is a complex phenomenon requiring the acquisition of knowledge and the 

flexibility to adapt existing neural processes to drive new patterns of desired behavior [1]. 

Learning can occur during explicit instruction – such as in classroom environments – or can 

occur implicitly by experience as we perceive statistical regularities in our external world 

[2]. In cognitive psychology, we often separately study explicit versus implicit learning [3], 

and we also often separate learning that occurs with or without feedback on the correctness 

or effectiveness of one’s actions, which we refer to as reinforcement [4]. Learning can be 

accompanied by a change in neural processes [5], an alteration in neuronal synapses [6], a 

signal of meaningful reward [7], and a reframing of one’s expectations [8], to name a few.
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At a fundamental level, however, learning is about forming, removing, or altering 

associations. These associations can be of many types, such as between a word and a list, a 

particular face and its name, a specific food and reward, an image and a motor response, and 

even between one muscle and another as required for any type of complex motor sequence. 

Obviously, images, words, rewards, and motor responses all have underlying neural 

representations, and it is therefore no surprise that learning can also be cast purely in terms 

of associations in the brain. Nonetheless, while the majority of studies to date have focused 

on associations at the microscale, such as the formation of new synapses or the 

strengthening and weakening of existing ones, a new literature is emerging that focuses on 

the effects of learning at a coarser level – between entire brain regions. The neuroscience of 

learning, therefore, could benefit from theories and methods that can describe and probe 

these associations dynamically as learning unfolds in time.

Empirically, studies do indeed suggest that some types of learning (Box 1) can be 

characterized by relatively local changes in underlying neuroanatomy, such as visual 

perceptual learning supported by orientation tuning in V1 [9] or one-shot episodic memory 

formation supported by synaptic plasticity in hippocampus [10]. Even so, other types of 

learning – such as the acquisition of new visuomotor skills – are accompanied by broad-

scale changes in neurophysiological dynamics across distributed neural circuits or networks 

subserving executive function, visual processing, and motor response [1]. For example, 

while motor cortex, visual cortex, basal ganglia, precuneus, dorsolateral prefrontal cortex, 

and cerebellum all show changes in their activity levels during motor skill learning [5], the 

changes in one area are not always independent of the changes in another area. Instead, 

computations that occur in one brain region impact on the computations in other brain 

regions, and the collective pattern of interactions, communication, or information 

transmission forms a circuit (or network) that directly enables a behavioral output [11,12]. 

When learning produces such distributed network changes – reflected either in anatomy or 

function – it is useful to consider quantitative methods that can not only describe that 

network architecture but also predict its dynamics.

In this review we describe recent advances in the field of network science that offer a unique 

approach to describing neural systems in terms of associations in the brain [13 – 15], and the 

reconfigurations underlying its adaptive processes [16]. We focus on processes at the macro-

spatial scale, highlighting the application of these tools to region- and voxel-level data from 

non-invasive neuroimaging of adult humans. We place particular emphasis on functional 

magnetic resonance imaging (fMRI), a technique able to capture changes in region-to-region 

interactions in the brain. Although the framework we describe is fairly general, we illustrate 

its utility in the context of a specific example in which individuals learn a new visuomotor 

skill. Although not the focus of the review, we also mention a few important considerations 

in expanding the tools for applications in other human cohorts, across other learning tasks, 

or in data acquired from non-human primates and other animals. Finally, we discuss how 

network neuroscience could provide a quantitative framework that complements existing 

models of learning by cohesively accounting for network structure in neurophysiological and 

behavioral data [17].
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Network Neuroscience

Network science is a subfield of complex systems science [18] which mathematically 

codifies systems whose function can be parsimoniously described by the patterns of 

interactions between components [19,20] or by the dynamics of such patterns. This field 

draws on tools from graph theory in mathematics, algorithm development in computer 

science, statistical mechanics in physics, and systems engineering. Traditionally, the field 

has been developed to understand social systems [21,22]. Nevertheless, the tools are simply 

foundational from a mathematical perspective, and can be flexibly shifted to other fields to 

understand complex functions of biological [23-26], technological [27,28], and physical 

[29-31] systems.

The use of network science tools to address neuroscientific hypotheses has now come to be 

called ’network neuroscience’ [32-34]. This burgeoning field encompasses the use of 

network science in understanding connectivity patterns in genes, neurons, organisms, and 

social groups in both human and animals, and moreover to understand the impact of these 

connectivity patterns on animal behavior [35] (Figure 1A,B). The potential utility of network 

neuroscience in informing a quantitative theory of human learning (particularly if combined 

with explicit models of behavior) lies in its mathematical principles [36]. These principles 

can be used to parsimoniously describe the architecture of relational data to be learned [37], 

as well as the patterns of interactions between neural components that enable behavioral 

adaptation [1].

Mathematically, a network is a graph G composed of V nodes and E edges [38,39]; each 

edge connects two nodes forming a dyad (Figure 1C), and these dyads can change in their 

strength over time (Figure 1D). In the simplest form of a network, these edges are 

unweighted (taking on either values of 1 to indicate existence or 0 to indicate nonexistence), 

and undirected (if the edge from node i to node j exists, so does the edge from node j to node 

i).

The architecture of the graph G can be probed and characterized quantitatively using a 

battery of summary statistics ranging from measures of local structure to measures of 

mesoscale and global structure [19]. A quintessential example of a local measure is the 

clustering coefficient of a graph, which measures the fraction of the neighbors of a node that 

are connected with one another [40]. Similarly, a common measure of mesoscale structure is 

the modularity of a graph, which measures the presence and strength of local clusters of 

densely interconnected nodes [41]. Commonly used measures for characterizing network 

structure are summarized in Box 2.

Graphs can display a range of different structures, and each of these structures can have very 

distinct implications for how the system functions. For example, a random graph, in which 

each node has an equal probability of connecting to any other node in the network, may 

transmit information quickly but may not be capable of performing any local information 

integration (Figure 2A). A regular graph, in which each node connects to an equal number of 

neighbors, does allow local information integration but is not optimized for global 

transmission of information across the network (Figure 2B). A modular graph is optimized 
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for evolvability, and contains groups of nodes that can change or adapt their function without 

perturbing other groups (Figure 2C). Finally, a hierarchical modular network (similar to that 

observed in the human brain [42]) facilitates specialization of nested functions as well as 

their adaptability of time (Figure 2D).

While the purview of network neuroscience is broad – ranging from genes to social groups 

[26,35], it is useful to briefly illustrate the use of this framework in the context of the human 

neuroimaging techniques traditionally used to probe facets of human learning [13-15,43–

47]. For example, if one considers fMRI, magnetoencephalography (MEG), or 

electroencephalography (EEG) data collected as a subject is learning a new skill, then the 

network nodes can represent brain regions or voxels, and the network edges can represent 

functional connectivity [48] between nodes. This so-called ’functional brain network’ then 

represents a pattern of putative interactions between brain regions. Such patterns of 

functional connectivity can be used to infer the presence of distributed circuits supporting 

both intrinsic and task-evoked neurophysiological processes.

In contrast to functional neuroimaging, diffusion-weighted imaging data can also be 

represented fruitfully as a network [49,50]. In this case, the network nodes still represent 

brain regions or voxels, but the network edges now represent the estimated strength of white 

matter tracts linking pairs of nodes [51,52]. These so-called ’structural brain networks’ then 

represent the pattern of white matter microstructure supporting both baseline function 

[51,53,54] and its adaptability in response to task demands [55].

Dynamic Networks During Learning

The utility of network neuroscience in understanding human learning has recently become 

particularly clear with the development of an underlying mathematics for temporal or 

dynamic networks [56]. A temporal network is an ensemble of graphs in which each graph 

represents an interaction pattern in a single time-window, and therefore the ensemble of 

graphs represents the evolution of interaction patterns over time. Temporal graphs are 

therefore an ordered set of graphs, sometimes represented as a multilayer network [57], 

where a node (brain region) in one time-window is connected to itself in neighboring time-

windows using an interlayer link. While traditional graph statistics are constructed to 

address adjacency matrices, new statistics are needed to address these adjacency tensors. 

Recent efforts from the applied mathematics community have developed a battery of 

dynamic extensions of traditional graph measures that can be used to evaluate and describe 

the architecture of temporal graphs, and the types of reconfigurations that they display [57].

In the case of brain networks, temporal graphs can be extracted from small time-windows 

during task performance [58] or over longer timescales using longitudinal imaging [1]. 

Examination of within-scan changes is only relevant for functional neuroimaging, while 

examination of across-scan changes is relevant for both functional and structural imaging. 

Indeed, structural changes have been observed in non-invasive imaging of white matter 

microstructure in humans following the learning of content as varied as a second language 

[59] or a new motor skill [60], suggesting that the edges within structural brain networks are 

malleable. It is intuitively plausible that these structural changes that occur both at the macro 
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scale, and presumably also at the microscale, impact on the possible dynamic repertoire of 

the brain [61]. Consistent with this intuition, studies have shown that baseline 

neurophysiological dynamics as measured by resting-state blood oxygen-level dependent 

(BOLD) signal acquired with fMRI displays nontrivial changes following learning [62]. For 

example, local efficiency, a measure strongly correlated with local clustering, shows an 

increase in frontal cortex following motor learning [63], and an increase in superior temporal 

cortex following spoken language learning [64]. Importantly, these changes differ between 

individuals, and their magnitude is correlated with individual differences in learning success 

[64].

Based on the principles of Hebbian learning, these changes in both structural connectivity 

and baseline functional network architecture are presumably – at least in part – driven by 

patterns of activity and connectivity elicited by task performance. Indeed, perhaps the largest 

body of literature describing changes in network architecture related to learning has focused 

on the patterns of functional connectivity that are evident while a human engages in the task. 

For example, evidence suggests that network architecture can be used to (i) detect 

differential effects of memory rehabilitation training interventions following stroke [65], and 

to (ii) predict the future ability of an individual to learn a new motor skill [1] or the words of 

an artificial spoken language [66].

To make these advances more concrete, we focus on motor skill learning – that is addressed 

by the majority of literature examining dynamic functional networks as learning takes place. 

A particularly early study observed that functional connectivity of the sensorimotor network 

EEG could be modulated by focusing attention on the movements involved in ambulation 

[67]. Using functional near-infrared spectroscopy (fNIRS), a separate group demonstrated 

that functional network organization tracked cognitive burden, rising strongly in the middle 

phase of learning [68]. Indeed, even imagining movements – a common mechanism to drive 

brain computer interfaces for motor rehabilitation – produces significant changes in the 

functional connectivity of the default mode network [69] (a constellation of areas known to 

be active while a subject rests [70]). Importantly, some – but not all – of these changes in 

functional connectivity persist for some period of time after training [62,71]. Indeed, 

network reconfiguration accompanying learning can refer to structural network changes that 

may last over timescales of months or longer, or to functional network changes that may 

only characterize patterns of activity that are elicited during task performance.

Reconfiguration of Network Modules During Learning

A particularly crucial question to ask concerns whether learning is accompanied by some 

common property of plasticity that is observable with statistics that quantify network 

reconfiguration. In the context of motor skill learning, many network statistics have been 

observed to change: increased clustering coefficients, higher number of network 

connections, increased connection strength, shorter communication distances, and changes 

in network centrality [72,73]. To distill this apparent complexity into an intuition that could 

frame a quantitative theory, it has been posited that learning requires a change in the 

modular organization of brain network architecture [1] (Figure 3). This proposition builds on 

the now well-validated observation that the pattern of connections observed in structural 
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brain networks, as well as in functional brain networks constructed from both resting and 

task-based data, displays modular organization [74]. A modular network is one that contains 

local clusters of densely interconnected nodes [41]. In empirical data, these clusters show 

beautiful overlap with known cognitive systems [75-79], including motor, visual, auditory, 

default mode, salience, attention, and executive systems, as well as with the group of 

subcortical areas. In the context of learning, evidence suggests that both the recruitment of 

and integration between these systems (or network modules) is altered as humans adapt their 

behavior [80].

To mathematically codify how network modules may explicitly support human learning, 

several studies have capitalized on a recent extension of community detection techniques 

[81,82] to uncover modules in time-evolving networks [83]. While a methodologically 

nontrivial endeavor [84], the application of these tools to neuroimaging data has 

demonstrated that motor-learning, in particular, is accompanied by a consistent recruitment 

and growing autonomy of motor and visual modules, as well as by a disengagement of 

cognitive control regions [80]. These reconfigurations are more broadly characteristic of a 

flexible brain network organization [85,86], and individual differences in this flexibility of 

modular architecture predicts future learning rate [1]. Interestingly, this flexibility is 

produced by sets of edges that change in strength with one another instead of independently 

of one another [87], collectively linking a relatively stable core of regions that are thought to 

be necessary for task performance and a relatively flexible periphery of regions thought to be 

only supportive of task performance [88].

This growing literature supports the notion that brain network modularity plays a 

fundamental role in behavioral adaptability. Indeed, the general conceptual link between 

modularity and adaptability is not a stranger to scientific inquiry [89]; instead, it has been 

suggested as a nearly fundamental law of evolution and development [90,91]. The inherent 

compartmentalization of modular systems confers both robustness and the ability to evolve 

to external demands by changing modules relatively independently from one another 

[92,93]. The fundamental link between modularity and adaptivity offers explanations for 

beak development in Darwin’s finches [94] and the heterochrony of mammalian skull bones 

[95].

In light of this broader context, one might naturally ask whether modularity (and flexible 

modular rearrangement) is a marker of high cognitive function more generally [96], and is 

perhaps not solely related to learning. Initial evidence suggests that that is indeed the case: 

functional brain network modularity correlates with individual differences in working 

memory [97], and flexible rearrangement of modules correlates with individual differences 

in memory accuracy [98] and cognitive flexibility [98]. Moreover, the modules that are most 

flexible differ according to task demands [99], suggesting the potential to map the dynamics 

of modular organization in a task-dependent manner [100]. Moreover, modularity is thought 

to support the development of new skills without the forgetting of old ones [101], and has 

been shown to be positively correlated with improvement in attention and executive function 

after cognitive training [102].
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Challenges and Opportunities

Although these initial studies offer a foundation on which to build a deeper understanding of 

human learning, many crucial challenges and promising opportunities remain. Perhaps the 

simplest set of questions surrounds the set of neurophysiological processes or environmental 

cues that may modulate brain network reconfiguration. Is brain network reconfiguration a 

state or a trait [103]? Do patterns of reconfiguration depend on the type of learning that 

participants engage in? Can one predict flexible network reconfiguration observed during 

task execution from baseline resting state measurements [103]? – or from underlying white 

matter microstructure [104]? Are brains that have more or less structural network control 

more or less flexible [105,106]? Can one modulate brain network flexibility with mood 

induction [85] or pharmacological intervention [107]? Is flexible network reconfiguration 

modulated by NMDA [107], norepinephrine [108], or other neurotransmitters?

Any such links could help to inform the development of generative network models of 

dynamic reconfiguration. A generative model is one that posits a set of parameterized wiring 

rules that can produce network architectures consistent with the observed data [109,110]. In 

recent applications to brain networks, these models have been exercised in the context of 

static network representations in both health [111] and disease [112], and in both humans 

and non-human animals [113]. Extending these tools into the temporal domain is a 

particularly exciting prospect which could offer fundamental insights into the mechanisms 

of network reconfiguration, and alterations in those mechanisms that may accompany 

normative neurodevelopment [114], healthy aging [115], or aberrant dynamics in 

neurological disease [116-118] or psychiatric disorders [107,119,120] that impact on 

learning. Classical network models are summarized in Box 3.

While generative models may be a key first step towards a mechanistic theory of network 

reconfiguration accompanying learning, they will still fall short (in their current formulation) 

of addressing the perhaps more pervasive question – of how network organization relates to 

other neurophysiological measurements frequently studied in the literature. For example, 

learning can be studied by examining patterns of regional activation in MRI or patterns of 

signal power in EEG/MEG [5], both representing node-level properties. Even so, graphs in 

their simplest form contain nodes but do not allow properties to be assigned to nodes, other 

than the property of having an edge. This simplification limits the capabilities of the graph 

approach to integrate with alternative models of learning that include predictions about the 

anatomical locations of activation and the magnitude of that activation.

To overcome this challenge, one particularly promising approach is to utilize so-called 

annotated graphs (also known as tagged graphs) [121], which are extensions of network 

frameworks that could be used to incorporate any additional variables of interest associated 

with brain regions. These graphs allow one to assign properties to a node, and, in the context 

of dynamic networks during learning, one could imagine assigning properties to brain 

regions including activity magnitudes [122], oscillatory information [123], grey matter 

volumes [124], and dopamine levels [12] that together would offer a more comprehensive 

picture of the neurophysiological processes accompanying learning. Tools are currently 

being developed to extend the network metrics described earlier for use in annotated graphs. 
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For example, methods now exist to quantify the degree to which nodes with similar 

annotations are located in the same or different network modules [121]. In the context of 

learning, such tools are being used to better understand the relationship between regional 

activation (e.g., decreases in BOLD magnitude) and dynamic patterns of connectivity (e.g., 

increasingly autonomous modules) that accompany behavioral change [125].

Towards a Network-Based Theory of Learning

Building on our growing ability to describe network-level changes that can accompany 

learning, we are faced with the question of whether we can extend these descriptions to 

predictions, thereby providing a richer quantitative theory of learning [126]. We may wish 

for such a theory to be biophysical in the sense that it goes beyond descriptions of BOLD 

magnitudes, explaining also neurophysiological data [127], and to be mechanistic in the 

sense that we understand how a change in network-level neurophysiological processes will 

lead to a change in behavior [128,129]. We suggest that a network-based theory of human 

learning will require models that explicitly bridge network models of brain function with 

mathematical models of human behavior (Figure 4). These would constitute formal 

mathematical models that can be fit to the data, and from which model parameters can be 

estimated [130]. Moreover, the models would be predictive in the sense that one has the 

potential to carefully perturb, manipulate, and indeed control the system with an explicit 

knowledge of the likely outcomes [35]. Common types of brain networks are summarized in 

Box 4.

When one thinks of quantitative theories of learning, one probably turns to elegant 

mathematical models of human behavior. The drift-diffusion model is an example of a useful 

mathematical model of a behavior (decision making) that is important for many types of 

learning, particularly the illustrative type – motor skill learning – discussed at some length 

here. In this model, evidence is integrated until a decision threshold is reached, a process 

that has proven to be a good fit to both accuracy and reaction times in human data for two-

alternative forced choice tasks [131], as well as to neural data [132,133]. In the specific 

context of learning itself, one might think of the Rescorla–Wagner model of reinforcement 

learning in which the strength of prediction of an unconditioned stimulus can be represented 

as the summed associative strengths of all conditioned stimuli [134]. While both models 

have been extended in various ways, and indeed the development of such models is an 

ongoing area of research [135,136], the beauty of these types of models is that they truly are 

quantitative theories in that a simple mathematical equation can be used to explain and 

predict human behavior. However, these theories tend to be limited to a single spatial scale 

of description, and it is often difficult to comprehend how theories at one scale relate to 

theories at another.

What would a region-scale theory look like that bridged network models of brain function 

with mathematical models of human behavior? One natural place to start would be to use 

probabilistic temporal network models such as stochastic block models [137,138]. 

Hypothetically speaking, these approaches would allow one to write down a model that 

could be used to predict how edges in a network change as a function of time and as a 

function of the modular architecture of the network [139]. Next, one would wish to expand 
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the model to include annotations on individual network nodes, perhaps representing the level 

of BOLD activation [121]. Together, the annotated, dynamic stochastic block model would 

provide a prediction of regional levels of activity and inter-regional strengths of connectivity 

at future time-points based on an initial state. The model parameters could be fit to acquired 

data for validation (for the spatial scale, cohort, and type of learning under study), and one 

could test whether parameter values would predict individual differences in behavior.

Moving beyond correlations with behavior, one would turn to incorporating mathematical 

models of behavior into the annotated network models of neurophysiology. For example, in 

the context of a reinforcement learning paradigm, one could do this explicitly by using the 

learning rate α, which measures the extent to which the value of a choice is updated by 

feedback from a single trial. Higher (lower) α indicates more rapid (or slower) updating 

based on few (or more) trials. One might hypothesize that this α value estimated from 

behavior could be used to parameterize the stochastic block model, with higher α being 

associated with a swifter change in modular architecture, and lower α being associated with 

slower change in modular architecture. It would also be of interest to move beyond single-

variable summaries of behavior by, for example, considering higher-order dependencies 

between actions [140], which can also be represented as networks. Indeed, if both brain and 

behavior were represented by network models, one could imagine linking the two in 

multilayer network representations [57]. Important open questions include which behavioral 

variables would be considered essential [141], and could we incorporate an ensemble of 

behavioral variables to better build and train models that could predict the behavioral 

responses of an individual to training? Answering these questions will serve to expand our 

understanding of the complexity of human learning.

Concluding Remarks and Future Directions

While we have focused this review on the application of network neuroscience tools to non-

invasive neuroimaging data from adult humans, particularly collected while individuals are 

learning a new visuomotor skill, it will also be of interest in future to extend these ideas to 

non-adult cohorts where patterns of network reconfiguration may display distinct trajectories 

[114]. In addition, it will be important to understand the degree to which the reconfiguration 

of modules is an important biomarker of other types of learning, and whether these same 

biomarkers are characteristic of neural networks constructed at much finer spatial scales 

[142], such as where neurons are treated as network nodes, and synapses or similarities in 

spiking or calcium transients are treated as network edges. More generally, the concepts that 

we have discussed throughout this paper motivate and encourage future efforts that explicitly 

marry network approaches to neuroimaging data and quantitative theories of behavior. We 

anticipate that these efforts will also be informed by the complexity of the content to be 

learned [17], with particular regimes of model dynamics being predictive of the learning of 

relational data characterized by specific graph architectures.
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Box 1

Commonly Studied Categories of Learning

In response to external stimuli, the central nervous system selects motor commands that 

optimize the organism’s chances for survival [143]. Nevertheless, owing to the 

complexity of the stimuli, the nervous system may not utilize a simple rule-book, but 

instead implements a host of adaptive processes to modulate behavior [144]. Such 

adaptation, in addition to knowledge acquisition, facilitates learning.

When learning is influenced by an external driver that provides information about the 

course of knowledge or skill acquisition, the process is referred to as instructed learning 

[145]. When that influence includes information about whether the learner is using the 

correct map from the stimulus to the behavioral response, the learning is said to be 

supervised [145,146]. If instead the influence contains only information about whether 

the response was correct (a binary signal) or good (a continuous signal), the process is 

referred to as reinforcement learning [147]. Note that in some – but not all – cases, the 

instruction signal is offered in the form of language [148]. If no instructor is present, the 

learning process is often slower, and is referred to as unsupervised (other common terms 

for this type of learning include non-instructed or discovery learning) [149]. Both 

instructors and learners can be humans or animals (in the most natural use of the terms), 

or they can be brain regions or neural signals.

Learning can be a conscious process (explicit learning) or an unconscious process 

(implicit learning), driven by the constant stream of complex stimuli from the 

environment [150]. When that learning builds on observed statistical relationships 

between stimuli, the process is referred to as statistical learning, and offers rules for 

predicting broader structures or features of the environment [2,151]. While inference is a 

useful tool in learning, so too is chunking, or the ability to combine fine-scale solutions 

into bigger sets of solutions. For example, one can combine a series of motor responses 

into a single response [140,152], thereby reducing the complexity of the required input–

output mapping.
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Box 2

Commonly Used Measures for Characterizing Network Structure

As the field of network science has grown, so too has the number of measures that can be 

calculated to characterize the structure of a network. While a comprehensive account of 

all these measures is beyond the scope of this piece, we briefly describe here a few 

commonly used measures which can be categorized according to the topological scale to 

which they are most sensitive [153].

A commonly applied measure of local network structure is the clustering coefficient, 

which can be defined in a binary graph as the number of connected triangles divided by 

the number of connected triples [40]. By contrast, a commonly applied measure of global 

network structure is the average shortest path length, defined as the shortest path between 

any pair of nodes, averaged over all node pairs. The inverse of the harmonic mean of the 

shortest path is also referred to as the network efficiency, another common measure of 

global network structure [154]. This notion of network efficiency can also be calculated 

on a subgraph of connections surrounding a single node, thereby providing a measure of 

local efficiency [155]. Two common notions of mesoscale structure are community 

structure [82,81] and core–periphery structure [156,157]. Briefly, community structure 

refers to the presence of groups of nodes, where nodes within a group are more densely 

interconnected to other nodes in their group than to nodes in other groups. Core–

periphery structure refers to the presence of a densely connected core and a sparsely 

connected periphery.

For more information, one can turn to several recent textbooks. For example, Networks: 
An Introduction by Mark Newman (MIT Press, 2010) [19] is an excellent introduction to 

the field of network science, Networks of the Brain by Olaf Sporns (MIT Press, 2011) 

[44] is a thoughtful introduction to the utility of these ideas for addressing questions in 

neuroscience, and Fundamentals of Brain Network Analysis (Academic Press, 2015) 

[158] from Fornito, Zalesky, and Bullmore is a useful textbook describing the application 

of network science tools to neuroimaging data. For particularly useful software, we refer 

the reader to the MATLAB-based, open-source Brain Connectivity Toolbox [159].
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Box 3

Classical Network Models

Building network models is an important component of general mathematical inquiry as 

well as of the application of network science tools to real-world systems. Particularly in 

the context of the latter, network models can form important benchmarks against which 

to compare the real networks, and similarities or differences between models and real 

data can offer insights into potential organizational principles in the specific application 

domain. We briefly describe here a few common network models as well as some of their 

interesting properties.

One of the common instantiations of the Erdős–Rényi random graph model is the G(n,p) 

model where each edge exists with a probability p that is independent from every other 

edge [38,39]. This graph has a binomial degree distribution P(k) where ki is the number 

of nodes connected with node i. By contrast, the degree distribution of a regular graph is 

a Dirac delta function [19]: in a regular graph, each vertex has the same degree k. The 

concepts of regular and random graphs can be related to one another through the Watts–

Strogatz small-world graph model [40]. In this model, one begins with a regular ring 

lattice, where each node is connected to its k nearest neighbors on the ring. Edges are 

then randomly rewired with probability p. For intermediate values of p, the graph has a 

relatively high clustering coefficient (similar to that of a ring lattice) and a relatively short 

path length (similar to that of an Erdős–Rényi random graph). Importantly, the Erdős–

Rényi, regular lattice, and Watts–Strogatz graph models all display narrower degree 

distributions than those often observed in real-world networks. A model that displays a 

broader degree distribution (indeed, a power-law degree distribution) is the Barabási–

Albert model [160], which is built on the historical notion of preferential attachment 

[161-163]. In this model, one starts with a network of m0 connected nodes, and then adds 

new nodes one at a time by connecting a new node to m ≤ m0 existing nodes with a 

probability p that is proportional to the degree of the existing nodes.

A generative model that takes into account community (or modular) structure is the 

stochastic block model. In some ways, this model can be thought of as an extension of 

the Erdős–Rényi random graph model, G(n,p), where instead of p being a constant 

throughout the entire network, p now takes on different values within each community, 

and between each pair of communities. Extensions of these and similar notions to 

temporal graphs are a growing area of research [139,164].
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Box 4

Common Types of Brain Networks

In applying concepts and tools from network science to neuroimaging data, the 

investigator is faced with the fact that network representations can be useful to describe 

several different types of inter-area or inter-neuron relationships. For example, the most 

commonly studied types of brain networks are referred to as structural networks and 

functional networks [15,44]. A structural network is one in which neural units (cells, 

columns, areas) are connected to one another by anatomical links (synapses, axonal 

projections, white matter tracts). By contrast, a functional network is one in which the 

same neural units are connected to one another with estimates of statistical similarities in 

their activity. Common measures of functional connectivity include a Pearson correlation 

coefficient, coherence, and synchronization. Although somewhat less common, brain 

morphometry can also be studied using morphometric networks in which the connectivity 

between regions is given by the correlation in a morphometric variable (grey matter 

density, cortical thickness, surface area, curvature) over subjects [165].
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Outstanding Questions

What would a quantitative theory of learning built on network neuroscience have 

to offer?

Is brain network reconfiguration a state or a trait?

Do patterns of reconfiguration depend on the type of learning that participants 

engage in?

Can one predict flexible network reconfiguration observed during task execution 

from baseline resting state measurements? Or from underlying white matter 

microstructure?

Are brains that have more or less structural network control more or less flexible?

Can one modulate brain network flexibility with mood induction or 

pharmacological intervention?

Is flexible network reconfiguration modulated by glutamate, dopamine, 

norepinephrine, or other neurotransmitters?

Would a more extensive and comprehensive network neuroscience of human 

learning constitute a quantitative theory?

Which behavioral variables should be incorporated into network neuroscience 

models? and can we incorporate an ensemble of behavioral variables that together 

offer predictive power?
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Trends Box

• Recent advances in network science offer a sets of tools and a general 

perspective that may be particularly useful in understanding types of learning 

that are supported by distributed neural circuits.

• Recent applications of these tools to neuroimaging data provide unique 

insights into adaptive neural processes, the attainment of knowledge, and the 

acquisition of new skills, forming a network neuroscience of human learning.

• Continued progress will require an explicit marriage between network 

approaches to neuroimaging data and well-formulated quantitative models of 

behavior commonly utilized in cognitive psychology.
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Figure 1. 
Network Models of Neural Systems. Network models represent complex systems by their 

fundamental units or elements, and by the pattern of connections, interactions, or 

relationships between those elements. In neural systems, networks can be defined across 

many spatial scales. (A) At the large scale, brain areas can be represented as network nodes, 

and white matter tracts or functional interactions between areas can be represented as 

network edges. (B) At the small scale, neurons, glia, or other cells can be represented as 

network nodes, and gap junctions or chemical synapses can be represented as network 

edges. (C) We represent the network as a graph, and encode the connectivity information in 

an adjacency matrix that stores the weight of each edge connecting each pair of nodes. The 

representation here is a weighted graph representation where the notion of neighbors 

becomes graded: the nearest neighbor of a node is the node to which it most strongly 

connects. Importantly, the order of nodes presented in a visualization is independent of the 

topology of the network. (D) To study learning, we string together connectivity patterns (or 

adjacency matrices) as they evolve through time.
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Figure 2. 
Neural Systems Can Display Different Connectivity Patterns. (A) In a random graph, each 

node has an equal probability of connecting to any other node. (B) In a regular graph, every 

node has an equal degree, k; in a regular ring lattice, every node has the same number of 

edges, and those edges link each node to its k nearest neighbors on the ring. (C) In a 

modular graph, groups of nodes are densely interconnected in clusters. (D) In a 

hierarchically modular graph, large modules are composed of smaller modules.
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Figure 3. 
Reconfiguration of Network Modules. A schematic illustrating how patterns of connectivity 

can change over time as someone learns. For example, network modules can separate (as the 

pink and yellow modules do) or coalesce (as the blue and yellow modules do). 

Reconfiguration can also occur at the level of single nodes, which might initially be part of 

one module, and then change to be part of another module (as does the node at the top of 

this temporal graph, which starts by being affiliated with the pink module and ends being 

affiliated with the yellow module).
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Figure 4. 
A Network-Based Theory of Learning. We suggest that a network-based theory of human 

learning will require models that explicitly bridge network models of brain function with 

mathematical models of human behavior. In this conceptual schematic, we illustrate the idea 

that changes in regional activation, network architecture, and behavioral measures can be 

linked mathematically in a formal modeling framework. We are careful to note that, 

although we suggest example variables of interest [blood oxygen level-dependent (BOLD) 

signal magnitude, module integration, and reaction time] and example temporal trends of 

these variables with learning, the particular functions may depend explicitly on the 

neuroscientific question of interest.
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