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Abstract

Helicobacter pylori is a Gram-negative bacterium that specifically colonizes the gastric ecological 

niche. During the infectious process, which results in diseases ranging from chronic gastritis to 

gastric cancer, the host response is characterized by the activation of the innate immunity of 

gastric epithelial cells and macrophages. These cells thus produce effector molecules such as 

reactive oxygen species (ROS) to counteract the infection. The generation of ROS in response to 

H. pylori involves two canonical pathways: 1) the NADPH-dependent reduction of molecular 

oxygen to generate O2
•−, which can dismute to generate ROS; and 2) the back-conversion of the 

polyamine spermine into spermidine through the enzyme spermine oxidase, leading to H2O2 

production. Although these products have the potential to affect the survival of bacteria, H. pylori 
has acquired numerous strategies to counteract their deleterious effects. Nonetheless, ROS-

mediated oxidative DNA damage and mutations may participate in the adaptation of H. pylori to 

its ecological niche. Lastly, ROS have been shown to play a major role in the development of the 

inflammation and carcinogenesis. It is the purpose of this review to summarize the literature about 

the production of ROS during H. pylori infection and their role in this infectious gastric disease.
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1. Infections with Helicobacter pylori

1.1. Epidemiologic aspects

Helicobacter pylori is a Gram-negative microaerophilic bacterium that colonizes the human 

stomach and it is estimated that half of world’s human population is infected. Although H. 
pylori potentially confers protection against diseases, notably in childhood [1], long-term 

infection has been associated with the development of chronic active gastritis. Moreover, 

approximately 10% of H. pylori-infected patients develop peptic ulcer disease, less than 

0.1% develop mucosa-associated lymphoid tissue lymphoma, and 1 to 3% develop gastric 

adenocarcinoma [2, 3], the third leading cause of death by cancer worldwide corresponding 

to 10% of total cancer-related mortality. Therefore, H. pylori is considered as the most 

common etiologic agent of infection-related cancers and has been classified as a class I 

carcinogen.

Eradication of H. pylori by antibiotic-based therapy has been proposed to decrease the 

incidence of gastric malignant transformation [4]. However, the extraordinary genomic 

plasticity of H. pylori has led to considerable antibiotic resistance and the efficacy of the 

treatments has declined in recent years [5]. Thus, treatment failure is common and high rates 

of infection recurrence have been reported, principally in developing countries [6]. Lastly, 

the impact of H. pylori eradication on development of gastric cancer appears to be of little 

value once the development of precancerous lesions is observed [7].

This information highlights that H. pylori infection is a serious concern for human health in 

a world with increasing movement of populations and that non-antibiotic treatment therapy 

should be considered to limit the risk of development of gastric cancer. This could be 

achieved by a better understanding of the crosstalk of H. pylori and the host.

1.2. Determinism of pathogenicity

H. pylori strains express three major virulence factors. First, the persistence of the bacterium 

is principally due to the activity of the bacterial urease that neutralizes gastric acidity by 

generating ammonium from urea. Second, the cytotoxin-associated gene A (CagA) is a 

bacterial factor that belongs to the cag pathogenicity island (cagPAI) and is directly injected 
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into human epithelial cells through a type 4 secretion system (T4SS). CagA is then 

sequentially phosphorylated on tyrosine residues of Glu-Pro-Ile-Tyr-Ala (EPIYA) motifs by 

the host kinases SRC proto-oncogene (SRC) and ABL proto-oncogene 1 (ABL1) [8]. Four 

distinct EPIYA motifs (A-D) have been identified and most H. pylori strains exhibit EPIYA 

motif repeats on the C-terminal regions of CagA. The Western isolates exhibit the EPIYA-

A/B/(1–3)C motifs, whereas the EPIYA-D motif replaces the C motif in East Asian strains 

[9]; in Amerindian strains, the last motif is a chimera of the D and C motifs [10]. It has been 

demonstrated that SRC phosphorylates EPIYA-C and EPIYA-D, whereas ABL 

phosphorylates all four motifs [8]. Epidemiological studies have emphasized that gastric 

cancer in East Asian countries is most often associated with the EPIYA-ABD motif [11] and 

more severe disease in Western countries is associated with multiple EPIYA-C motifs [12]. 

When CagA is phosphorylated in gastric epithelial cells, it activates the tyrosine-protein 

phosphatase non-receptor type 11 (also known as SHP2) [13], which then activates 

extracellular signal-regulated kinase 1/2 (ERK1/2)-dependent cytoskeletal rearrangements, 

increased motility, loss of cell polarity, resistance to apoptosis, and chromosomal instability, 

which have been linked to malignancy [14–16]. The phosphorylation of CagA has been also 

shown to stimulate the activation of the transcription factor nuclear factor-kappa B (NF-κB) 

[17–19]. It should be also underlined that CagA also possesses a CRPIA (conserved repeat 

responsible for phosphorylation-independent activity) motif, which is responsible for the 

phosphorylation-independent signaling of CagA that induces the phosphoinositide 3-kinase 

(PI3K) signaling pathway [18]. Consistent with these data, large epidemiologic studies have 

associated the strains harboring the gene cagA with higher rates of gastric cancer [20]. 

Third, the vacuolating cytotoxin A (VacA) contributes to H. pylori pathogenesis by 

regulating inflammatory process [21] and by reducing cell death by autophagy, thus favoring 

gastric colonization and oxidative damage [22]. Although the contribution of VacA to 

precancerous gastric intestinal metaplasia has not been directly demonstrated using animal 

models, epidemiological studies have emphasized that the signal region s1 and the middle 

region m1 of the vacA gene belong to strains that are associated with increased risk for the 

development of peptic ulcers and/or gastric cancer, compared to s2 or m2 strains [23].

However, the sole expression of virulence factors is not sufficient to explain H. pylori 
pathogenesis, mainly because only 1–3% of H. pylori-infected patients develop gastric 

cancer. Several studies have shown that an environmental component, including iron 

deficiency [24] or high-salt diets [25], may modulate H. pylori-induced inflammation and 

related carcinogenesis. In addition, the clinical outcome of H. pylori infection-induced 

gastric carcinogenesis is determined by the progression along the histologic cascade from 

non-atrophic gastritis to adenocarcinoma [26]. In this context, the level of gastritis and the 

regulation of proteins with potential effects on cell transformation are fundamental features 

that determine H. pylori-related diseases. Among the effectors that can affect cellular 

function or disrupt signaling, reactive oxygen species (ROS) have been unequivocally 

recognized as the yin and yang of the innate immune response towards pathogens. 

Identification of the source of ROS in H. pylori-infected mucosa, determination of the 

mechanism by which H. pylori survives the oxidative challenge imposed by the host, and 

comprehension of the deleterious effect of endogenous ROS are critical topics for a better 

understanding of H. pylori pathogenesis.
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2. Polyamine-dependent ROS synthesis during H. pylori infection

Polyamines are critical homeostatic regulators also involved in the modulation of 

pathogenesis of numerous diseases, including in the gastrointestinal tract. The inducible 

synthesis of the biogenic polyamines during H. pylori infection necessitates three steps (Fig. 

1): First, the amino acid L-arginine is transported into the cells through the activity of the L-

arginine transporter solute carrier family 7 (cationic amino acid transporter, y+ system), 

member 2 (SLC7A2). Second, L-arginine is catabolized by the enzyme arginase into L-

ornithine. Third, L-ornithine is converted by ornithine decarboxylase (ODC) into the first 

polyamine putrescine, which is then catabolized to spermidine and spermine by the action of 

spermidine synthase and spermine synthase, respectively. Importantly, the back-conversion 

of spermine to spermidine by spermine oxidase (SMOX) generates H2O2 (Fig. 1), which 

plays a critical role in H. pylori pathogenesis.

2.1. L-arginine bioavailability

The expression of the gene Slc7a2 and the transporter SLC7A2 is induced in the murine 

macrophage cell line RAW 264.7 and in murine peritoneal macrophages infected with H. 
pylori in vitro and in lamina propria mononuclear cells of mice and humans with H. pylori 
gastritis [27]; this increase in SLC7A2 protein expression enhances L-arginine uptake in the 

cells [27]. It has been shown that Slc7a2-deficient macrophages produce less polyamines 

than wild-type (WT) cells when stimulated with M-CSF [28]. Although this has never been 

reported in the context of H. pylori infection, it provides a strong rationale for the contention 

that polyamine synthesis depends on SLC7A2 activity.

Interestingly, it has been reported that spermine generated endogenously during H. pylori 
infection or added exogenously inhibits L-arginine uptake by macrophages [27]. Blocking 

Odc mRNA expression or ODC activity favors L-arginine entry in macrophages, but does 

not regulates Slc7a2 mRNA or SLC7A2 protein levels [27], suggesting that spermine is an 

inhibitor of SLC7A2 activity and may be considered as a negative feedback regulator of 

polyamine synthesis in immune cells.

Our lab has reported that H. pylori-infected Slc7a2−/− mice exhibit more colonization and 

less gastritis than WT animals. These events were accompanied by a defect in recruitment of 

macrophages in the infected gastric tissues and by an altered activation of dendritic cells and 

Th1 cells [29]. These data demonstrate that SLC7A2 plays a major function in the activation 

of the innate immune response during H. pylori infection; but the involvement of polyamines 

and/or SMOX-derived H2O2 in this mechanism remains unknown. Work is ongoing in our 

laboratory to address the contributions of myeloid versus epithelial SLC7A2 in mouse 

models of H. pylori infection. In that context, the potential role of modulation of L-arginine 

availability in the generation of ROS derived from polyamines that are downstream products 

of L-arginine metabolism is a theme that will be investigated.

2.2. Arginase activity

Two isoforms of arginase exist in mammals: the cytosolic arginase 1 (ARG1), and arginase 2 

(ARG2) that is sublocalized to the mitochondria. ARG1, but not ARG2, is a marker of 
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alternative (M2) macrophages and ARG2 is not induced by IFN-γ, the classical inducer of 

M1 phenotype, but can be express in M1 macrophages. Thus, it has been shown that 

cultured murine macrophages infected with H. pylori and gastric macrophages of infected 

mice display an M1/Mreg phenotype [30], associated with the expression of Arg2 mRNA 

expression and ARG2 protein synthesis through an NF-κB-dependent pathway [31–33]. 

However, the ARG1 isoform is not directly induced by H. pylori [31]. Arginase activity in 

infected RAW 264.7 macrophages has been principally detected in the mitochondrial 

fraction and not in the cytoplasm [32], further demonstrating that the ARG2 isoform is 

induced in response to H. pylori. In addition, it has been described using flow cytometry and 

immunostaining that ARG2, but not ARG1, localized to gastric macrophages isolated from 

C57BL/6 mice infected with H. pylori [33].

In mice infected with H. pylori, the genetic deletion of the gene Arg2 results in a decrease of 

putrescine synthesis, demonstrating that ARG2 regulates polyamine production during the 

infection [34]. Two studies have reported that H. pylori-infected Arg2−/− mice show more 

gastritis, characterized by enhanced M1 macrophage and Th1/Th17 responses, and less 

colonization [33, 34] than WT animals, suggesting that macrophage ARG2 decreases the 

inflammatory process during the infection. Therefore, the induction of ARG2 by H. pylori 
could represent a strategy by which this pathogen dampens and escapes the host immune 

response. Importantly, ARG2 is also a natural competitor for inducible nitric oxide synthase 

(NOS2), the enzyme that generates nitric oxide (NO) from L-arginine. NO is a free radical 

produced by H. pylori-infected macrophages that exhibits anti-microbial properties and can 

regulate inflammation and carcinogenesis [35]. In H. pylori-infected macrophages, blocking 

ARG2 activity results in increased NO production [32], highlighting that the induction of the 

arginase metabolic pathway by the bacterium is one way of controlling NO production. 

However, we have recently reported that Arg2−/− mice and Arg2−/−; Nos2−/− mice have 

similar levels of colonization and gastritis when infected with H. pylori [34], indicating that 

the role of ARG2 in controlling immune response is NOS2-independent. However, more 

evidence is needed to ascertain that the effect of ARG2 on H. pylori pathogenesis occurs 

through a polyamine-dependent pathway, in particular in human populations.

2.3. Induction of ODC

Studies have reported an increase of ODC mRNA expression in the gastric tissues of H. 
pylori-infected patients [27, 36], independently of the cagA status of the bacteria [36]. In 

one study, increased ODC activity was mainly observed in the areas of gastric atrophy in H. 
pylori-infected patients [37]. The concentration of total polyamines, but mainly spermidine, 

is enhanced by more than two times in the stomach of H. pylori-infected patients compared 

to H. pylori-negative subjects [38]. In contrast, Elitsur et al. reported no significant change in 

ODC activity in the mucosa of children infected with H. pylori compared to uninfected [39]; 

the low level of colonization and the absence of gastric atrophy, in which ODC was observed 

in adults [37], could be responsible for the lack of ODC induction. Interestingly, Chaturvedi 

et al. further demonstrated that ODC mRNA expression is increased patients with H. pylori 
gastritis, but not in those with H. pylori-negative gastritis [27]; in the same way, Patchett et 
al. reported that the presence of H. pylori, and not the severity of gastric inflammation is 

associated with increased ODC activity in humans [40]. These observations indicate that the 
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presence of the bacteria is required for ODC induction, and that this is not a global response 

to inflammation. Supporting this, ODC mRNA expression [36], ODC activity in the corpus 

and antrum of the stomach [41, 42], and polyamine concentrations [38, 43] are decreased 

after successful eradication of H. pylori. In the same way, a concomitant decrease of H. 
pylori colonization, gastric ODC activity, and gastric polyamine concentration has been 

observed in patients treated with the probiotic Lactobacillus brevis strain CD2 [38].

Although it has been described that ODC can be induced in vitro in the gastric epithelial cell 

lines AGS and BGC-823 and in the immortalized epithelial cell line GES-1 through a 

phospho-CagA-dependent mechanism and a signal involving ERK1/2 and V-Myc avian 

myelocytomatosis viral oncogene homolog (MYC) [44], in vivo and in vitro evidence 

suggest that ODC induction is predominant in myeloid cells in response to H. pylori. Hence, 

ODC has been immunolocalized in gastric macrophages in both humans and mice infected 

with H. pylori [27]. Moreover, Odc mRNA expression and ODC activity are induced in the 

murine macrophage cell line RAW 264.7 stimulated with H. pylori SS1 [31]. This induction 

first requires the activation of the transcription factor activator protein 1 (AP-1), which 

corresponds to a phospho-FBJ murine osteosarcoma viral oncogene homolog (FOS)/Jun 

proto-oncogene (JUN) complex, through an ERK1/2-dependent pathway; then AP-1 initiates 

the transcription of the gene encoding the proto-oncogene MYC [45, 46]. Finally, this 

transcription factor binds the Odc promoter region and stimulates the expression of the gene 

[45]. Notably, chemical inhibition of ERK1/2 phosphorylation led to a decrease of ODC 

protein expression in gastric macrophages from H. pylori-infected mice [45], supporting the 

likelihood that this mechanism is not specific to macrophage cell lines. However, the 

bacterial factors involved in the AP-1/MYC signaling pathway in macrophages remain 

unknown.

2.4. Generation of ROS by SMOX

The homeostasis of polyamine content within a non-toxic range is a considerable challenge 

for cells, notably during a pathophysiological process in which the genes encoding enzymes 

involved in polyamine metabolism and catabolism are induced. In this regard, the back 

conversion of spermine to spermidine and putrescine is a critical step in the regulation of 

polyamine levels that can prevent the cytotoxic effects of spermine accumulation. Polyamine 

metabolism can involve several biochemical pathways that may have direct significance in 

H. pylori pathogenesis, ROS generation, and risk for carcinogenesis. First; the spermidine/

spermine N(1)-acetyltransferase 1 (SAT1, also known as SSAT) catalyzes the acetylation of 

spermine into N(1)-acetylspermine and spermidine into N(1)-acetylspermidine; then, the 

oxidation of N(1)-acetylspermine and N(1)-acetylspermidine through the enzyme polyamine 

oxidase (PAOX) leads to the formation of spermidine and putrescine, respectively. However, 

this pathway is poorly induced in macrophages stimulated in vitro with H. pylori and in mice 

infected for 4 months with the strain SS1 [47]. In contrast, the flavoenzyme SMOX, which 

directly catalyzes the oxidation of spermine to spermidine and yields the generation of 3-

aminopropanal and H2O2 [48], is overexpressed in macrophages [47] and in gastric 

epithelial cells [49] infected in vitro with H. pylori as well as in the gastric epithelium and 

monocytes of infected humans, mice, and gerbils [50].
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Two cagA-deficient strains of H. pylori and a cagE mutant each induced less Smox mRNA 

expression in conditionally immortalized murine gastric epithelial cells and less SMOX 
mRNA in human epithelial cells than the WT strains [50], suggesting that CagA and the 

T4SS are involved in SMOX expression. These in vitro observations were confirmed by the 

analysis of gastric tissues from patients with H. pylori infection: individuals infected with 

cagA-positive H. pylori showed a significant increase of SMOX mRNA expression, and 

SMOX protein level in the gastric epithelium compared to patients harboring cagA-negative 

strains [50]. Similar data were obtained in mice infected with cagA-positive H. pylori versus 

a cagE mutant that cannot translocate CagA, and in gerbils infected with cagA-positive 

versus cagA-negative strains [50, 51].

3. NADPH oxidases

The mammalian NADPH oxidases (NOX) are enzymes that transport electrons across the 

plasma membrane. The electron acceptor is oxygen and therefore the product of the reaction 

is O2
•−. Seven homologs have been identified, referred as five NOX enzymes (NOX1 to 

NOX5) and two dual oxidase (DUOX) enzymes. Expression of NOX1, NOX2, and DUOX2 

have been reported during H. pylori infection (Fig. 2).

3.1. NOX1

The human and mouse NOX1 gene is located on the X chromosome and is mainly expressed 

in the human colon [52]. Although NOX1 expression and function have been evidenced in 

the gastric mucosa of the guinea pig [53], it has been first suggested that this isoform is not 

expressed in the human stomach [54]. However, Tominaga et al. have reported that the gene 

encoding NOX1 is induced in tissues from H. pylori-infected patients with gastric 

adenocarcinoma [55]. These authors also showed by immunofluorescence and confocal 

microscopy that the proteins NOX1 and the partners NOX organizer 1, NOX activator 1, and 

p22phox are sublocalized in the Golgi apparatus in gastric cancer cells; and that their 

expression levels are increased in gastric cancers compared to the surrounding tissue, and 

compared to areas of chronic atrophic gastritis or adenomas in patients without carcinoma 

[55]. This suggests that NOX1 could represent a marker of neoplastic transformation. In 

addition, non-transformed antral-derived primary epithelial cells and the gastric epithelial 

cell line AGS infected with H. pylori 26695 express NOX1 through a signal transduction 

process involving Ras-related C3 botulinum toxin substrate 1 (RAC1), which is also a 

protein partner for NOX1, and produce ROS rapidly and transiently [56]. Similarly, NOX1 

induction and ROS production has been observed in primary guinea pig gastric mucosal 

cells infected with H. pylori lipopolysaccharide (LPS) [57] through a PI3K/RAC1-dependent 

pathway [58]. Therefore, RAC1 seems to play an important role in regulating NOX1 

expression and activity in H. pylori-infected cells. It is exciting to note that the H. pylori 
protein CagL, which is a part of the T4SS, activates the host enzyme SRC [59], and that 

SRC is also a strong activator of RAC1.

Interestingly, the endonuclease apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1, 

also known as APE1), a multifunctional enzyme that plays a central role in the cellular 

response to oxidative stress, including DNA repair and redox regulation of transcriptional 
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factors, is induced by endogenous ROS in H. pylori-infected AGS cells [56]. APEX1 

inhibits RAC1 activation and consequently NOX1-dependent ROS production, and blocking 

APEX1 leads to sustained NOX1 activation and increased O2
− generation [56]. This could 

represent a mechanism by which cells limit NOX1-dependent DNA damage and/or a 

strategy developed by the bacterium to promote its own survival by inhibiting ROS 

production. In addition, as an another striking example of host-pathogen interactions, it has 

been established that H. pylori superoxide dismutase and catalase decompose NOX1-

mediated O2
•− and H2O2, respectively, thus protecting gastric epithelial cells from ROS-

induced cytotoxicity [60]. The authors proposed that the bacterium may use this mechanism 

to limit the elimination of the transformed cells, thus favoring tumor progression [60].

3.2. NOX2

The enzyme NOX2, also known as gp91phox or phagocyte NOX, is principally expressed in 

neutrophils and macrophages. H. pylori, H. pylori lysate, or H. pylori LPS can each induce a 

rapid oxidative burst in human primary blood-derived polymorphonuclear neutrophils 

(PMN) [61–63]. However, it has been reported that H. pylori does not efficiently induce the 

recruitment of the domains p47phox and p67phox to the phagosome, which normally leads to 

the release of large amounts of O2
•− extracellularly [63]. This unique ability to prevent 

NOX2 assembly at the phagosome allows H. pylori to evade the oxidative killing and may 

result in neutrophil-derived oxidative damage to surrounding cells, mainly from the 

epithelium.

The gene napA of H. pylori [64] encodes the 17 kDa virulence factor called neutrophil-

activating protein A (NapA) that forms hexagonal rings [65]. It has been shown that NapA is 

a chemoattractant for leukocytes and induces NOX2 in human neutrophils through a SRC/

PI3K signaling pathway [66]. However, no alteration in gastric colonization has been 

observed in animals infected for 3 weeks with the napA mutant compared to the parental 

strain [67]. Chronic infection of mice or the use of animal models of H. pylori-mediated 

gastric dysplasia, e.g., transgenic FVB/N insulin-gastrin (INS-GAS) mice, or gerbils, would 

be useful to determine the role of NapA and the associated induction of NOX2 in 

carcinogenesis.

Similarly, the stimulation of blood-derived monocytes or differentiated THP-1 cells with H. 
pylori or its LPS yields a rapid and sustained production of O2

•− [68]. More particularly, it 

has been reported that H. pylori cecropin-like peptide Hp(2–20) is a chemoattractant for 

monocytes through the N-formyl peptide receptors 1 and 2, and that monocytes stimulated 

with Hp(2–20) release ROS, which inhibit the function of antineoplastic lymphocytes [69].

3.3. DUOX2

DUOX1 and DUOX2 are NOX isoforms that generate H2O2 in a Ca2+- and NADPH-

dependent manner [70]. DUOX(1–2) must interact with the activator proteins DUOXA(1–2) 

that organize DUOX for surface expression and activity. The mechanism by which DUOX 

isoforms produce H2O2 and not O2
•− remains unknown, but it has been reported that the non 

mature DUOX2 releases O2
•− whereas the glycosylated form of DUOX2 generates H2O2 

[71].
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A microarray analysis performed on the stomach of rhesus macaques (2–3 years-old) has 

shown that DUOX2 is one of the 119 genes induced in H. pylori-infected animals [72]. 

Moreover, the expression of DUOX2 is significantly decreased in animals infected with a 

cagPAI mutant strain although the level of colonization by the WT and the mutant is similar 

[72]. The authors also found that other factors with antimicrobial properties, e.g., defensins 

and the protein DMBT1 (for ‘deleted in malignant brain tumors 1’), have been induced in 

the infected monkeys and therefore proposed that the antimicrobial response activated by the 

cagPAI may affect the resident gastric microbiota to favor H. pylori colonization [72]. In this 

context, the study of DUOX2 deserves further investigation, even if it has been reported that 

H. pylori-infected patients, mainly those carrying a cagA/vacA-positive strains, show less 

DUOX2 levels than uninfected individuals [73].

4. Resistance of H. pylori to oxidative stress

The goal of the production of ROS by the host cells is to limit the development of pathogens. 

However, bacteria, including H. pylori, have elaborated strategies to counteract the 

deleterious effect of ROS by different mechanisms (Fig. 3). Superoxide dismutase (SOD) 

catalyzes the dismutation of O2
•− to H2O2, which is subsequently dismutated into H2O 

through two electron reactions by catalase. H. pylori also express enzymes with reducing 

activity on peroxides.

4.1. SOD

H. pylori expresses a single SOD encoded by the gene sodB [74, 75], which contrast to 

Escherichia coli that possesses three SODs [76]. H. pylori SOD consist of two identical 

subunits of 24 kDa and is an iron SOD [75]. H. pylori sodB mutants do not exhibit SOD 

activity and are highly susceptible to O2 and O2
•− [77, 78] and, more surprisingly, to H2O2 

[77]. Consequently, accumulation of ROS in an sodB-deficient strain led to an increase of 

mutagenesis frequency compared to WT strain [77]. Moreover, it has been reported that the 

enzyme SodB is essential for H. pylori to colonize mice [77], demonstrating that O2
•− and/or 

H2O2 are effectively released in vivo and target the bacteria in the gastric mucosa. It has 

been also shown that the H. pylori strains that are associated with gastric cancer exhibit 

more SOD activity than those carried by patients with gastritis or gastric and duodenal 

ulcers, further evidencing that SodB has a major function in the virulence of H. pylori [79].

4.2. Catalase

The gene katA of H. pylori encodes a catalase that does not require NADPH binding for its 

activity [80]. Catalase possesses a high isoelectric point and resists a very high concentration 

of H2O2 [80, 81], but is inhibited by organic hydroperoxides [82]. The KatA-associated 

protein (KapA), which is encoded by the kapA gene located downstream of katA, is 

involved in the resistance of H. pylori to H2O2 [81]. Through a mechanism commonly 

described as “hitchhiking”, KatA binds to KapA and the heterologous protein complex is 

translocated to the periplasm by the twin-arginine translocation system [83, 84].

H. pylori katA− strains are viable in vitro [85], demonstrating that H2O2 endogenously 

generated by the bacterium itself is not a significant problem for H. pylori. However, 
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catalase is essential for resistance to ROS because high concentrations of H2O2 kill katA- 

and kapA-deficient strains [81, 83]. In addition, strains lacking catalase activity and exposed 

to sublethal doses of ROS show more DNA oxidative damage than the parental H. pylori 
[78]. Accordingly, katA− strains cannot survive in neutrophils or macrophages after 

phagocytosis [86] and, as with the sodB mutant, the katA and kapA mutants fail to 

successfully colonize the stomach of mice when compared to the matched WT H. pylori 
[83]. This demonstrates that H. pylori catalase activity is implicated in the persistence of H. 
pylori within its ecological niche.

4.3. Peroxiredoxins

Bacterial peroxiredoxin (Prx) enzymes reduce H2O2, organic hydroperoxides, and 

peroxinitrite that is formed by the reaction of O2
•− and NO. H. pylori contains three Prx 

forms: the thiol-specific peroxidase (Tpx), the alkyl hydroperoxide reductase (AhpC), and 

the bacterioferritin comigratory protein (BCP).

A two-dimensional gel analysis has evidenced that Tpx is an abundant protein in H. pylori 
[87]. The increased sensitivity of the tpx mutant to O2

•−, H2O2, and organic hydroperoxide 

[88] confirms an in vivo role for Tpx as an important antioxidant protein in H. pylori. Hence, 

the H. pylori SS1 Δtpx strain was recovered from the stomach of only 5% of the inoculated 

mice at 3-weeks post-infection, whereas the WT strain colonized 78% of animals in the 

same experiment [89].

AhpC is the most abundant antioxidant protein in H. pylori. Oligomers of AhpC exhibit a 

peroxide-reductase activity, whereas high-molecular-weight complexes are molecular 

chaperones for prevention of protein misfolding under oxidative stress [90]. A mutant of H. 
pylori lacking the gene ahpC was more sensitive to oxidative stress conditions induced by 

H2O2 and also contained significantly higher amounts of 8-OHdG associated with its DNA, 

compared to WT bacteria [78, 82]. It has also been shown that AhpC is involved in the 

resistance to O2
•− [91], but the molecular mechanism has not been demonstrated and it may 

correspond to the resistance to H2O2 generated by the activity of SOD. Interestingly, the 

ahpC mutant contains three times more hydroperoxides than WT [82]; since hydroperoxides 

inhibit KatA, the ΔahpC strain exhibits a significant decrease of catalase activity [82], 

demonstrating a cooperation between the different systems of resistance to ROS to further 

improve the survival of the bacterium against hostile oxidative conditions. Finally, it has 

been described that the ahpC mutant does not colonize mice [89].

Comtois et al. reported that the role of BCP in resistance to oxidative stress is minimal [88]. 

This could be attributed to the fact that BCP is less abundant than AhpC in H. pylori [91]. 

Wang et al. further demonstrated that BCP preferentially reduces linoleic acid 

hydroperoxide, and not H2O2 [91]. The deletion of bcp in H. pylori is associated with a 

modest reduction of gastric colonization compared to WT [91]. The specificity of BCP for 

organic hydroperoxide substrates probably justifies why the bcp deletion has a less dramatic 

effect on gastric colonization than the mutation of tpx or ahpC genes.

H. pylori lacks the glutathione system, which is essential for cellular thiol:disulfide balance 

and survival under oxidative stress in many Gram-negative bacteria [92]. Consequently, this 
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bacterium uses the thioredoxin (Trx):Trx reductase (TrxR) system as an electron donor [91]. 

Two Trx exist in H. pylori: TrxA (also called Trx1) and TrxC (Trx2). While TrxA is more 

involved in preventing nitrogen-dependent damage than TrxC [88], both reductases have 

been shown to play a major function in the resistance against oxygen stress from O2
•− and 

H2O2 [88, 93]. However, if TrxA forms a reductase system for AhpC [94] and BCP [91] and 

is a chaperone for H. pylori arginase RocF [95], the mechanism by which TrxC protects 

bacteria remains unknown. Nonetheless, the deletion of trxA yields a diminution of stomach 

colonization by H. pylori [88, 93], while the trxC mutant does not colonize the animals [93], 

demonstrating that both Trx enzymes, but mainly TrxC, are essential for H. pylori 
colonization and persistence. In regard to this data, the study of TrxC deserves further 

investigation.

4.4. NapA

As described above, NapA is an essential bacterial factor that induces ROS production by 

PMNs. In addition to this inducing effect, NapA also displays a role in the bacterium itself. 

Thus, the napA mutant is more sensitive to oxygen [96] and oxidative stress [67, 96] and 

therefore exhibits more bacterial DNA damage than the WT strain [67]. It has been proposed 

that NapA could bind and protect bacterial DNA from oxidative damages [97]. Remarkably, 

NapA is mainly induced when the main proteins involved in ROS detoxification, e.g., SodB, 

AhpC, Tpx, are absent in H. pylori [98], demonstrating an elaborated transcriptional 

plasticity of the genes encoding antioxidant effectors.

In a co-infection model, the napA− strain exhibited reduced ability to survive in the mouse 

stomach when competing with the WT parental strain [67]. This suggests that NapA is also 

involved in the combat of H. pylori against oxidative stress by an unidentified mechanism.

4.5. NADPH quinone reductase

The NADPH quinone reductase MdaB is a flavoprotein that catalyzes two-electron transfer 

from NADPH to ubiquinones and menaquinones. MdaB is involved in the resistance of H. 
pylori against O2, H2O2, and the O2

•− donor paraquat [98, 99], but the molecular mechanism 

remains unidentified. It could be proposed that MdaB may act as an O2
•− scavenger as its 

human homolog NAD(P)H:quinone oxidoreductase 1 [100]. Moreover, the mdaB mutant 

colonized mice less efficiently than the WT [99].

5. Genomic plasticity in response to ROS

The oxidative environment that surrounds H. pylori can result in DNA alterations in the 

pathogen. Exposure of H. pylori to methyl viologen, an O2
•− donor, significantly increases 

point mutations, intergenomic recombination, and rearrangements between direct DNA 

repeats [101]. These mutations are transient and limited to the duration of stress, and do not 

lead to a global hypermutator phenotype. Intriguingly, in silico analyses have demonstrated 

that DNA repeats are especially concentrated in the H. pylori cag pathogenicity island [101]. 

Intriguingly, a study performed in rhesus macaques has shown that a mutation burst is 

observed in the H. pylori genome during the acute infection phase that is over 10 times faster 
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than the mutation rate during chronic infection [102], demonstrating that the innate immune 

response may play a critical role in H. pylori genomic changes.

Nevertheless, compared to other pathogenic bacteria, the arsenal of H. pylori to counteract 

DNA oxidative damages is limited: it lacks translesion DNA synthesis polymerases, the 

DNA methyl-directed mismatch repair system (MutSHL), the SOS response, and the stress-

induced sigma factors RpoS and RpoH [103, 104]. O’Rourke et al. have demonstrated that 

an H. pylori mutant lacking the endonuclease III Nph, is more sensitive to H2O2, exhibits 

more mutation frequencies when exposed to H2O2 or to activated macrophages [105]. NpH 

is a DNA glycosylase that removes oxidized nucleobases and repairs oxidized pyrimidines 

[106], which are recognized to block DNA replication and transcription and are thus more 

cytotoxic. This highlights that the ROS produced by the host are effectively able to provoke 

lethal DNA adducts in the H. pylori genome and that the presence of NpH can favor H. 
pylori survival. A mutS homolog has also been identified in the H. pylori genome. H. pylori 
mutS− is more sensitive to H2O2 and paraquat and shows increased mutation (mainly G:C to 

T:A) rates under oxidative stress conditions [107], demonstrating that MutS is involved in 

DNA repair in response to ROS. The authors have also demonstrated that MutS has high 

specific affinity to dsDNA containing oxidized purines (such as 8-oxoguanosine), which are 

mutated bases that are mostly mutagenic [107].

Of importance, a 1–2-log order decreased colonization of the mutS mutant compared to the 

parental strain has been demonstrated at day 90 post-infection in mice [107]. In contrast, the 

nph-deficient strain completely fails to colonize mice after 60 days [105]. These data 

emphasize that DNA repair in H. pylori seems to have higher specificity for cytotoxic base 

lesions than mutagenic base lesions, thus contributing to the high genetic variability that is 

observed among H. pylori strains [102].

To conclude, ROS-induced high mutation rate, associated with a reduced proofreading 

capacity of its DNA polymerase I [108], increases the chance of H. pylori acquiring 

mutations. This can then confer an adaptive advantage in the gastric environment and in 

response to the selective pressure imposed by host immunity.

6. Endogenous effect of ROS on the host

6.1. Cell signaling and inflammation

Inflammation is an important hallmark of H. pylori infection that represents a universal 

response to the infection, and production of ROS has been strongly implicated in the risk for 

neoplastic progression of H. pylori-induced disease. There are numerous potential targets of 

ROS within the cell, and their reaction with thiol residue-containing proteins, such as 

phosphatase or thioredoxin, can therefore regulate cell signaling [109].

Hence, the stimulation of AGS cells by H. pylori results in a rapid phosphorylation of V-Akt 

murine thymoma viral oncogene homolog 1 (AKT1) independently of CagA, leading to the 

induction of autophagy through p53 downregulation [110]. In this study, the authors also 

demonstrate that the treatment of the cells with the antioxidant N-acetylcysteine inhibits 

AKT1 activation [110], demonstrating the role of ROS in this molecular process. In the same 
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way, Ngo et al. demonstrated that the oxidative burst induced by H. pylori in human gastric 

epithelial cells is responsible for the PI3K/AKT1-dependent expression of the transcription 

factor Snail family zinc finger 1 (SNAI1, also known as SNAIL) [111], which is essential for 

epithelial-mesenchymal transition and therefore in gastric cancer progression and metastasis. 

Additionally, it has been shown that the transcription factor signal transducer and activator 

of transcription 3 (STAT3), which plays a major function in inflammation and angiogenesis, 

is also induced in gastric epithelial cells via upregulated autocrine IL-6 signaling, partially 

mediated by endogenous ROS [112]. Moreover, α-lipoic acid, a naturally occurring thiol 

compound that exhibits antioxidant properties, inhibits NOX-derived ROS production in 

AGS cells and concomitantly dampens NF-κB and AP-1 activation and expression of the 

oncogenes β-catenin (CTNNB1) and MYC [113]. Lastly, it has been described that the 

production of vascular endothelial growth factor by H. pylori-infected gastric epithelial cells 

is dependent on the stabilization of the transcription factor hypoxia-inducible factor 1-alpha 

(HIF-1α) through ROS synthesis [114]. These data indicate that ROS signaling in gastric 

epithelial cells may contribute to cell transformation and gastric cancer development.

ROS production may also regulate the signaling events in myeloid cells. Thus, H. pylori 
induces IL-1β secretion through the inflammasome in murine bone marrow-derived 

macrophages and human peripheral blood mononuclear cells; this is inhibited by the use of 

the anti-oxidant molecule ebselen, suggesting that H. pylori-induced ROS are involved in the 

activation of the immune response of myeloid cells [115]. This effect was observed in the 

early events post-infection [115], suggesting that the oxidative burst, rather than the effect of 

SMOX is involved. These results are also consistent with in vitro data showing that the 

partial scavenging of ROS by N-acetylcysteine led to a decrease of H. pylori-induced 

inflammasome formation and production of IL-1β and IL-18 by the human monocytic cell 

line THP-1 [116].

Tsugawa et al have shown that VacA signals in human gastric epithelial cells through the 

receptor LDL receptor related protein 1 (LRP1) to decrease glutathione (GSH) levels and 

therefore increase ROS accumulation, leading to CagA degradation by autophagy [110]. Of 

note, CagA accumulates in CD44-positive gastric cancer stem-like cells because they retain 

a high level of GSH and resist ROS [110]. This study further highlights the important role of 

ROS in H. pylori carcinogenesis, not only by inducing ROS producing enzyme, but by 

altering GSH content.

Chronic granulomatous disease (CGD) mice are animals with a targeted disruption of the 

NOX2/gp91phox subunit. At 12 and 30-weeks post-infection with H. pylori, CGD mice 

showed no differences in colonization, but more glandular atrophy, proliferation of gastric 

epithelial cells, and neutrophil infiltration [117]. But overall, there were no significant 

changes in gastritis score between WT and CGD mice [117]. In contrast, a second study 

reported that gp91phox−/− mice exhibit more inflammation and increased mononuculear cell 

infiltration in the mucosa during infection with H. pylori [118].
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6.2. Apoptosis and DNA damage

Apoptosis and formation of DNA damage are critical for H. pylori-induced carcinogenesis. 

Thus, the implication of ROS in the regulation of these both events has been extensively 

studied.

An increase of 8-hydroxy-2-deoxyguanosine (8-OHdG), a reliable biomarker of DNA 

oxidative damage, has been observed in cagA-positive H. pylori-infected patients compared 

to those uninfected or infected with cagA-negative strains [50, 119–121]; further, a 

correlation between the production of ROS and the level of 8-OHdG [121] and between 8-

OHdG and the severity of the gastritis [120] has been evidenced. In addition, increased 8-

OHdG staining has been associated with more advanced histopathologic lesions of atrophic 

gastritis and intestinal metaplasia in subjects from a high cancer risk region of Colombia 

[51, 122].

The gastric epithelial cell lines AGS or Kato III infected with H. pylori undergo apoptosis 

through a mechanism involving mitochondrial depolarization caused by H2O2 [49, 123–

125], and this can be blocked by catalase or by antioxidants like vitamin E or N-

acetylcyteine [49, 124, 125]. Further, Hayakawa et al. have also described that the rapid 

oxidative burst of H. pylori-infected gastric epithelial cells in vitro activates the apoptosis 

signal-regulating kinase 1 (ASK1) that ultimately triggers c-Jun N-terminal kinase (JNK) 

phosphorylation and cell apoptosis [125]. Remarkably. Ding et al. have reported that 

generation of ROS by both the bacteria themselves and the infected gastric epithelial cells 

mediate apoptosis [123].

It has been shown that SMOX is associated with apoptosis in macrophages [47] and in 

gastric epithelial cells [49], because the use of the SMOX inhibitor MDL 72527 or gene 

silencing by Smox siRNA in the mouse cells and SMOX siRNA in human cells reduces 

H2O2 synthesis, mitochondrial membrane depolarization, cytochrome c release, and 

caspase-3 activation. Moreover, SMOX expression in isolated epithelial cells from the 

gastric tissues of H. pylori-infected gerbils correlates with 8-oxoguanosine formation, as 

detected by flow cytometry [50]. Of note, there is a subpopulation of SMOX-expressing 

cells with oxidative DNA damage that were resistant to apoptosis [50], which may 

contribute to the development of gastric cancer. Further, the treatment with either the ODC 

inhibitor α-difluoromethylornithine or MDL 72527, reduces the abundance of the 

subpopulation of 8-oxoguanosine+ cells that were resistant to apoptosis, and were associated 

with gastric dysplasia and carcinoma in H. pylori-infected gerbils [51]. Furthermore, 

reduced levels of SMOX, DNA damage, and DNA damagehigh, apoptosislow cells have been 

observed in H. pylori-stimulated gastric epithelial cells derived from mice lacking the gene 

encoding the epidermal growth factor receptor (EGFR) [126]. Similar results were obtained 

in cells isolated from infected mice with disruption of EGFR signaling (Egfrwa5 mice) when 

compared to WT mice [126]. Together, these data suggest that EGFR is involved in H. 
pylori-mediated SMOX expression. Additionally, the kinase Erb-B2 receptor tyrosine kinase 

2 (ERBB2) was shown to be critical for the cellular events associated with EGFR signaling 

in gastric epithelial cells; specifically, heterodimerization of pEGFR and ERBB2 was shown 

to lead to phosphorylation of ERBB2 and apoptosis resistance [126]. These data strongly 

support the contention that SMOX-derived ROS are key metabolites that link H. pylori 
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infection to gastric cancer. Further evidence should arise from studies in Smox-deficient 

mice, which are ongoing in our laboratory.

6.3. Regulation of CagA signaling

CagA is phosphorylated in gastric epithelial cells by SRC [8]. pCagA then activates SHP2 

by binding to SH2 domains, causing conformation change and activation without 

phosphorylation of C-terminal tyrosine residues [13]. SHP2 activation leads to signaling 

through ERK1/2 to stimulate cell proliferation, differentiation, and survival [14–16].

It has been shown that ROS induce SRC activation [127] and that CagA-independent 

generation of ROS contributes to H. pylori-induced SHP2 activation [128]. Specifically, the 

treatment of the human gastric epithelial cell line, MKN45, and the human monocytic cell 

line, U937, by the anti-oxidant N-acetylcyteine decreases H. pylori-induced SHP2 

phosphorylation [128]. In contrast, it has been proposed that ROS, and mainly H2O2, 

reversibly inactivates protein tyrosine phosphatases, such as SHP2, by causing the oxidation 

of cysteine residues and formation of disulfide bonds [129, 130].

The contribution of ROS in the regulation of CagA phosphorylation and signaling in H. 
pylori-infected gastric epithelial cells deserves further investigation. The purported 

paradoxical effects of ROS could represent another example of the bacterium manipulating 

host cells to affect signaling events that benefit the bacterium.

7. Conclusions

The parasite-like lifestyle of H. pylori has been shaped by hundreds of thousands of years of 

coevolution with the human host. Thus, since the host expresses multiple ROS-producing 

enzymes that are redundant in gastric somatic and immune cells, H. pylori has elaborated 

strategies to counteract oxidative damage and increase its own survival. However, it is 

interesting to note that this bacterium possesses a limited arsenal to repair DNA damage; the 

bacterium does not tend to respond to ROS-induced mutagenic mutations, thus contributing 

to the high genetic variability that is observed among H. pylori strains. Therefore, we can 

raise the question of whether H. pylori favors its own genetic variation and adaptability to its 

niche by inducing ROS production by the host.

The current knowledge about the resistance of H. pylori to the effectors of the innate 

immune response has evidenced one intriguing feature: the bacterium fights the nitrosative 

stress and also inhibits NO production by the host [35]; however, it appears to only inhibit 

ROS-dependent oxidative damage without attenuating the expression/activity of SMOX or 

NOX. This could be explained by the fact that the most reactive nitrogen species result from 

the reaction of NO and ROS (e.g. peroxinitrite or dinitrogen trioxide), and that H. pylori may 

conserve energy by inhibiting just NO production, and not both NO and ROS. Therefore, it 

is conceivable that ROS are beneficial for the bacterium by favoring genomic variation 

required for long-term persistence and are deleterious for the host since their production is 

not inhibited by H. pylori.
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As experimental systems have continued to evolve, in addition to standard animal models 

(mouse, gerbils, and monkeys) and in vitro models, we now have access to various three and 

two dimensional gastric organoid systems from rodents and humans in which to recapitulate 

the microenvironment of the bacterium and the host, which will be very powerful. We are 

hopeful that these models and increased studies of human and bacterial interactions will 

counteract some of the inherent limitations of animal models, to better ascertain the role of 

polyamines and ROS in H. pylori infection.

Recent analysis of the phylogeographic origins of both the human hosts and the infecting H. 
pylori strains have highlighted that the risk of developing neoplastic lesions is mainly 

associated with a lack of coevolution between the host and the bacterium [131]. In this 

context, a future challenge will be to include human ancestry and H. pylori phylogeographic 

origin in the analysis of the expression and the role of ROS-producing systems.
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Abbreviations

8-OHdG 8-hydroxy-2-deoxyguanosine

ABL1 ABL proto-oncogene 1

AhpC alkyl hydroperoxide reductase

AKT1 V-Akt murine thymoma viral oncogene homolog 1

APEX1 endonuclease apurinic/apyrimidinic endodeoxyribonuclease 1

ARG1 arginase 1

ARG2 arginase 2

ASK1 apoptosis signal-regulating kinase

BCP bacterioferritin comigratory protein

CagA cytotoxin-associated gene A

cagPAI cag pathogenicity island

CGD chronic granulomatous disease

DUOX dual oxidase

EGFR epidermal growth factor receptor

EPIYA Glu-Pro-Ile-Tyr-Ala

ERBB2 Erb-B2 receptor tyrosine kinase 2
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ERK1/2 extracellular signal-regulated kinase 1/2

FOS FBJ murine osteosarcoma viral oncogene homolog

GSH glutathione

HIF-1α hypoxia-inducible factor 1-alpha

JNK c-Jun N-terminal kinase

JUN Jun proto-oncogene

LPS lipopolysaccharide

LRP1 receptor LDL receptor related protein 1

MYC V-Myc avian myelocytomatosis viral oncogene homolog

NapA neutrophil-activating protein A

NF-κB nuclear factor-kappa B

NO nitric oxide

NOS2 inducible nitric oxide synthase 2

NOX NADPH oxidase

ODC ornithine decarboxylase

PAOX polyamine oxidase

PI3K phosphoinositide 3-kinase

PMN polymorphonuclear neutrophil

Prx peroxiredoxin

RAC1 Ras-related C3 botulinum toxin substrate 1

ROS reactive oxygen species

SAT1 spermidine/spermine N(1)-acetyltransferase 1

SLC7A2 solute carrier family 7 (cationic amino acid transporter, y+ system), member 

2

SMOX spermine oxidase

SNAI1 snail family zinc finger 1

SOD superoxide dismutase

SRC SRC proto-oncogene

STAT3 signal transducer and activator of transcription 3
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T4SS type 4 secretion system

Tpx thiol-specific peroxidase

Trx thioredoxin

TrxR thioredoxin reductase

VacA vacuolating cytotoxin A

WT wild-type
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Highlights

• ROS are locally produced in the gastric mucosa during H. pylori infection

• Spermine oxidase and NADPH oxidases are the main sources of ROS in the 

stomach

• H. pylori has multiple strategies to resist oxidative damage

• ROS-induced mutagenic changes in H. pylori leads to genetic variation and 

adaptation

• Oxidative stress contributes to H. pylori-induced inflammation and 

carcinogenesis
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Fig. 1. 
H. pylori-infected macrophages produces H2O2 from L-arginine. H. pylori induces SLC7A2 

expression allowing the uptake of L-arginine in macrophages. The induction of ARG2, 

ODC, which requires a MYC-dependent pathway, and SMOX leads to the release of H2O2.

Gobert and Wilson Page 27

Free Radic Biol Med. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Regulation of NOX by H. pylori. NOX1 is induced in gastric epithelial cells through a PI3K/

RAC1 signaling pathway; in these cells, the production of O2
•− stimulate the expression of 

APEX that blocks RAC1. In myeloid cells, the expression of NOX2 requires a NapA/PI3K 

signals. DUOX2 has been shown to be induced in the gastric tissue of infected animals, but 

the subcellular localization of this enzyme remains unknown. PHD, peroxidase homology 

domain.
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Fig. 3. 
Biochemical pathways used by H. pylori to counteract ROS. The enzyme KatA is 

transported to the periplasm by the action of KapA and the Tat system. O2
•− is converted 

into H2O by SodB and KatA. Hydroperoxides, peroxynitrites, and H2O2 are reduced by the 

Prx/TrxA system. NapA protects H. pylori from DNA oxidation by an unknown mechanism. 

NpH and MutS are involved in oxidative DNA repair.

Gobert and Wilson Page 29

Free Radic Biol Med. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Graphical Abstract
	1. Infections with Helicobacter pylori
	1.1. Epidemiologic aspects
	1.2. Determinism of pathogenicity

	2. Polyamine-dependent ROS synthesis during H. pylori infection
	2.1. L-arginine bioavailability
	2.2. Arginase activity
	2.3. Induction of ODC
	2.4. Generation of ROS by SMOX

	3. NADPH oxidases
	3.1. NOX1
	3.2. NOX2
	3.3. DUOX2

	4. Resistance of H. pylori to oxidative stress
	4.1. SOD
	4.2. Catalase
	4.3. Peroxiredoxins
	4.4. NapA
	4.5. NADPH quinone reductase

	5. Genomic plasticity in response to ROS
	6. Endogenous effect of ROS on the host
	6.1. Cell signaling and inflammation
	6.2. Apoptosis and DNA damage
	6.3. Regulation of CagA signaling

	7. Conclusions
	References
	Fig. 1
	Fig. 2
	Fig. 3

