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Abstract

Objective—Low mannose-binding lectin (MBL) levels and haplotypes associated with low MBL 

production have been associated with infection and severe sepsis. We tested the hypothesis that 

MBL levels would be associated with severe infection in a large cohort of critically ill children.

Design—Prospective cohort study

Setting—Medical and Surgical Pediatric Intensive Care Units (PICUs), Boston Children’s 

Hospital

Patients—Children < 21 years of age admitted to the intensive care units from November 2009 to 

November 2010.

Interventions—None

Measurements and Main Results—We measured MBL levels in 479/520 (92%) 

consecutively admitted children with severe or life-threatening illness. We genotyped 213 

Caucasian children for MBL haplotype tagging variants and assigned haplotypes. In the univariate 

analyses of MBL levels with pre-admission characteristics, levels were higher in patients with pre-

existing renal disease. Patients who received >100 ml/kg of fluids in the first 24 hours after 

admission had markedly lower MBL, as did patients post-spinal fusion surgery. MBL levels had 

no association with infection status on admission, or with progression from systemic inflammatory 

response syndrome to sepsis or septic shock. Although MBL haplotypes strongly influenced MBL 
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levels in the predicted relationship, low MBL-producing haplotypes were not associated with 

increased risk of infection.

Conclusions—Mannose-binding lectin levels are largely genetically determined. This 

relationship was preserved in children during critical illness, despite the effect of large-volume 

fluid administration on MBL levels. Previous literature evaluating an association between MBL 

levels and severe infection is inconsistent; we found no relationship in our PICU cohort. We found 

that MBL levels were lower after aggressive fluid resuscitation, and suggest that studies of MBL 

in critically ill patients should assess MBL haplotypes to reflect pre-illness levels.
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INTRODUCTION

The innate immune system is the first line of defense against invasive pathologic organisms 

and its role is essential in controlling infection in the first 24–48 hours before the adaptive 

immune system is able to mount an adequate response. One of the primary innate immune 

processes is activation of the complement system for direct pathogen killing and for 

opsonization, which marks pathogens for destruction by phagocytes. A critical antimicrobial 

protein in this pathway is mannose-binding lectin (MBL) which recognizes mannose sugars 

on the periphery of bacteria, viruses, and fungi, and on damaged human cells. (1, 2) Binding 

of this protein to cell membranes causes conformational changes that activate directed 

complement deposition for the invading microbe to be opsonized and killed. (2)

In humans, MBL is produced continuously in the liver; serum levels in healthy individuals 

have been shown to be influenced by host genetic makeup. (3, 4) The MBL protein is coded 

by the MBL2 gene which is comprised of 4 exons located on the long arm of chromosome 

10. (5, 6) Within exon 1, there are three common single nucleotide polymorphisms (SNPs) 

located at codons 52, 54, and 57 (D, B, C; collectively termed O) and a promoter gene 

polymorphism at - 221 (termed X/Y). (See Figure 1A) (5–9) Heterozygosity for any one of 

the high producing variants (A/O) produces MBL levels in the near normal or only mildly 

reduced range; homozygosity (O/O) or compound heterozygosity with promoter X/Y leads 

to markedly reduced MBL levels. (8, 10, 11)

Low-producing MBL haplotypes remain at a relatively high level in the normal population 

despite some studies showing that they are associated with worsening severity of illness and 

increased susceptibility to infection. The level of MBL determining deficiency has not been 

specifically defined; some use <1000 ng/mL while others hypothesize that clinical 

consequences begin to occur at levels < 500 ng/mL; homozygous “low-producers” of MBL 

generally have levels < 50ng/mL. (6, 10, 12–14) It is unclear if there is an advantage to low-

producing haplotypes although some have speculated MBL may worsen clinical presentation 

of infections that cause damage mainly by inflammatory responses.(6, 10, 14–16) Previous 

studies assessing the relationship between MBL levels and critical illness have varied in 

cohort size, the population studied, the outcome assessed, and whether/how MBL genotype 
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was evaluated. We speculate that this may have led to the conflicting reports on whether 

MBL is associated with severe infection.(7, 16–21) In addition, potentially confounding 

variables such as fluid administration could dilute MBL levels and influence the association.

Because relative deficiency of MBL has been associated with sepsis in some studies, 

researchers are evaluating recombinant MBL as a therapy for sepsis and other serious 

infections. (22–24) To better clarify the association between MBL and infection severity in 

children, we aimed to examine associations between MBL levels, MBL haplotypes and 

severe infections in children in the pediatric intensive care unit (PICU). We hypothesized 

that: a) haplotypes would predict serum MBL levels in the previously described manner and 

b) critically ill children with severe infections (sepsis and septic shock) would have lower 

serum MBL levels and higher frequencies of low-producing MBL haplotypes in comparison 

to those without severe infections.

MATERIALS AND METHODS

We included children admitted to the Medical and Surgical Pediatric Intensive Care Units at 

Boston Children’s Hospital from November 9, 2009 to November 9, 2010. Eligibility criteria 

were: age < 21 years; estimated PICU stay of ≥ 48 hours (this excluded short-term 

monitoring patients) or admission due to suspected infection. Patients admitted to the 

Cardiac ICU were not included in this study due to the alterations in MBL from cardiac 

bypass as well as the high rate of administration of fresh frozen plasma which contains 

MBL. Institutional Review Board approval was obtained prior to the beginning of the study. 

Informed consent was obtained by study coordinators shortly after ICU admission and data 

were obtained from parent interviews and from the electronic medical record. A second 

separate consent was obtained for genotyping. Additional details of the study cohort have 

been published previously. (25)

The Pediatric Risk of Mortality III (PRISM III) score was used to assess illness severity in 

the first 24 hours. (26) Maximum vasopressor use was scored according to the Sequential 

Organ Failure Assessment, cardiovascular (CV-SOFA) (27) modified for pediatrics as 

follows: 0–1: no vasopressors, 2: dopamine < 5 mcg/kg/min, 3: dopamine 5–15 mcg/kg/min 

or norepinephrine/epinephrine < 0.1 mcg/kg/min, 4: dopamine > 15mcg/kg/min or 

norepinephrine/epinephrine > 0.1mcg/kg/min.

Suspected infections were those with markers of infection (e.g. cultures sent, antibiotic 

therapy initiated, chest x-ray findings, etc.) or criteria for community-acquired pneumonia 

but with negative microbiologic testing. Confirmed infections included 1) bacterial: culture 

of pathogenic bacteria from blood, CSF, or lung AND treatment with intravenous 

antibiotics; 2) fungal: positive fungal culture AND antifungal treatment; 3) viral: viral 

pathogen detected; 4) multiple: more than one of the preceding types. Community-acquired 

pneumonia was defined as meeting published criteria for pneumonia with bacteria 

confirmation.(28) Severity of illness categories in the sepsis analysis were as follows: The 

“SIRS, no infection” category included patients meeting published criteria for systemic 

inflammatory response syndrome (SIRS) on ICU admission without evidence of infection.

(29, 30) Sepsis was defined as suspected or confirmed infection AND SIRS. (29) Severe 
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sepsis was defined as sepsis with an ICU admission day CV-SOFA score ≥ 2, and includes 

septic shock.

Laboratory Methods and Genotyping

Blood was obtained as close to admission as possible, either from blood drawn at the time of 

admission for other purposes, or obtained from previous leftover samples stored in the 

laboratory refrigerator. All plasma was stored refrigerated, frozen at −80°C within 7 days, 

then shipped frozen for analysis. MBL measurements were done at the Cytokine Reference 

Lab using a commercial ELISA Kit from R&D Systems (Minneapolis, MN). Samples were 

diluted 400-fold to achieve levels within the dynamic range of the assay (0.156–10ng/mL).

Genotyping was reserved for patients of Caucasian race to minimize possible confounding 

by racial stratification. Single nucleotide polymorphisms were determined for rs1800450 

(SNP “B”), rs5030737 (SNP “D”), rs1800451 (SNP “C”), and rs7096206 (Promoter “X/Y”) 

using TaqMan SNP assays (Applied Biosystems) with proprietary primer/probe 

combinations (See Fig 1A). SNP rs11003125 (Promoter “H/L”) was not included; this SNP 

had a much weaker effect on MBL levels in preliminary analysis. (31, 32) Haplotypes were 

determined as previously described, where Y represents the high producing promoter allele 

and X the low producing allele. The minor pathogenic alleles B, C, and D were collectively 

grouped as “O”. (6, 10) We compared both the individual haplotypes listed in Figure 1B as 

well as diplotypes grouped into 3 categories of High (YA/YA, YA/XA), Mid (YA/YO), and 

Low (XA/YO, YO/YO, and XA/XA) for improved power.

Statistical Methods

Because MBL levels were not normally distributed, we used nonparametric analyses with 

Spearman correlations for continuous, Mann-Whitney tests for dichotomous, and Kruskal-

Wallis tests for categorical variables. Chi-squared tests were used for the association of 

haplotype with categorical variables and Kruskal-Wallis for association with continuous or 

ordinal variables. SPSS statistical package was used for computations (version 19.0.0, IBM 

Corp.).

RESULTS

We screened 2366 consecutive PICU admissions and enrolled 520/818 (62.5%) eligible 

children in this study. (25) Of 520 enrolled, 41 did not have an MBL levels measured; this 

yielded 479 patients with MBL levels included in our study. Baseline characteristics for the 

study population are shown in Table 1. Most children were admitted via the Emergency 

Department or the Operating Room, so some MBL levels were obtained from samples just 

prior to ICU admission. Overall, 94% of samples were drawn within 48-hours of PICU 

admission.

The univariate analysis of baseline patient characteristics and the effects on MBL levels are 

shown in Table 1. The median MBL level for the entire sample was 1197 ng/mL (IQR 718–

1878 ng/mL; range 110–6154). Of the variables tested, only “Other” race (p = 0.01) and 

renal disease (p = 0.03) significantly increased MBL levels.
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Of the 520 children enrolled in the study; 213 of the 353 parents who self-identified as white 

race also gave consent for genotype analysis (60%). Of these, 201/213 (94%) also had 

sufficient samples to obtain MBL level. The proportion carrying the “O/O” diplotype (3.3%) 

and the distribution of individual haplotypes (YA 0.535, XA 0.249, and YO 0.216) were 

comparable to previous studies in white populations. (32) MBL level was correlated with 

underlying haplotype (See Figure 1B, p = < 0.001, using the promoter X/Y allele and the 

grouped exonic alleles A/O). Our findings were in agreement with previously described 

MBL linkage disequilibrium, no novel haplotypes were observed. (31) As expected, 

homozygosity for an exonic allele (“O”), or compound heterozygosity for “O” and “X” 

produced the lowest levels. Individual allele frequencies were in Hardy-Weinburg 

equilibrium.

Univariate analyses were performed on the association of MBL levels with non-infection 

reasons for PICU admission (emergent vs. elective, post-operative versus not, trauma, status 

asthmaticus, status epilepticus, and admitted for monitoring). Only admission after operative 

spinal fusion was associated with a lower MBL level (p = 0.04). We did not identify any 

association between infection-related admission categories with MBL levels (See Table 2). 

No specific infectious process was associated with lower or higher MBL levels. “MBL 

deficiency” defined as MBL level < 1000 ng/mL was also not associated with infection 

categories (p > 0.05 for both suspected and confirmed infections, including all infections, 

bacterial infections, and other infections separately, DNS).

The univariate analysis of the association between MBL levels and clinical outcomes is 

shown in Table 3. We found that subjects receiving very large volumes (> 100cc/kg) of fluid 

prior to or in the first 12 hours after admission had lower MBL levels (p = 0.007 for 

Spearman’s correlation, r = 0.12; correlation with non-categorized fluid volume). We also 

found a significant association between MBL level < 1000 ng/mL and fluid administered 

prior or within the first 12 hours. Patients with MBL level less than 1000ng/mL received 

41cc/kg (median, IQR 17–80) vs. 32.7 cc/kg (median, IQR 7.1–64.5) in patients with MBL 

greater than 1000 ng/mL (p=0.02 Mann-Whitney U)).

We also analyzed the effect of MBL2 genotype on outcomes, comparing diplotypes as High 

(YA/YA, YA/XA), Mid (YA/YO), and Low (XA/YO, YO/YO, and XA/XA) MBL producers 

(See Figure 2). As shown in Figure 2, the distribution of diplotypes was similar across 

categories of no SIRS vs. SIRS vs. sepsis vs. severe septic shock (of 213 patients assigned 

haplotypes, we were unable to assign an infectious category for 1 patient). The outcome 

variables listed in Table 3 for serum level analysis were tested for genotype association using 

Chi-square testing and none were significant (all p>0.05). We then further sub-categorized 

by age (given previous literature has implied there are some instances where younger 

children may be more affected for low production of MBL or low-producing diplotypes), 

however, there was also no statistical difference in distribution of diplotypes across the 

spectrum of non-infected vs. severe sepsis in the youngest age category (children <1 year 

old, n=43).

To determine whether MBL level and MBL2 diplotype may have a stronger influence in 

patients that do not have other, larger infectious risk factors such as neutropenia (oncologic 
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patients) or chronic respiratory insufficiency, a subpopulation of 107 patients with either no 

chronic disease or only having asthma was examined. Weak associations between fluid 

administration (p = 0.04, Spearman’s correlation, r = 0.20) and CV-SOFA score (p = 0.05, 

Spearman’s correlation, r = −0.19) with lower MBL levels were identified; but no other 

associations were identified.

DISCUSSION

In contrast to prior reports in adult and pediatric populations, we did not find lower MBL 

levels in children critically ill from infection compared to those admitted to the PICU for 

other reasons. (4, 11, 12, 16, 19, 33–38) We did find that MBL levels were diluted in 

patients that received extremely high volumes of fluid in the first 24 hours; a common 

occurrence in patients with severe sepsis that could possibly confound the relationship 

between MBL levels and infection-related critical illness. MBL levels were strongly 

genetically influenced by the combination of high, intermediate and low producing 

haplotypes. We found no relationship between carriers of low-producing MBL2 diplotypes 

and admission for infection or development of sepsis.

In a study of MBL in critically ill children, Fidler et al (4) reported an increasing proportion 

of low-producing (AO and OO) haplotypes in 50 children with SIRS and sepsis in 

comparison to children admitted for non-infectious causes. The measured MBL in their 

population was significantly lower (median MBL level of 100 ng/mL in lowest producing 

population) than levels in our study. (4) Similarly, Garred et al (37) and Gordon et al (36) 

reported MBL polymorphisms increasing risk of sepsis in critically ill adult populations. 

However, other studies in adults have not found MBL to be associated with risk for sepsis 

(39–42) or have reported a more nuanced picture that includes a mixture of both pro-

inflammatory and anti-infection effects which may be beneficial or detrimental in varying 

disease states. (33, 34, 43) Specifically in pediatrics, six studies have demonstrated an 

association between lower MBL levels, or low-MBL producing haplotypes, and increased 

severity of infection-related disease (4, 5, 15, 16, 44–46) while five studies showed similar 

findings to ours with a lack of association (12, 46–50) and two studies concluded a possible 

protective role for low-producing MBL genotypes or levels. (12, 51)

There are likely several etiologies behind the lack of association between MBL levels, low-

producing MBL haplotypes, and increased susceptibility to severe infection. First, the 

redundancy in complement activation within the innate immune system may provide relative 

resilience. (2) Second, our range of MBL levels (IQR 718–1878) are relatively high in 

comparison to a previously described cut-off of 500 for clinically important MBL 

deficiency. (4, 7, 12) Severe MBL deficiency has been described by some as <50 ng/ml, a 

level not identified in our patients; it has been postulated that patients are relatively protected 

above this low level due to pathway redundancy. (52, 53) Finally, in pro-inflammatory states 

which are often seen in critical illness, low-producing MBL may be advantageous if higher 

MBL production is associated with more severe inflammatory damage via a different 

mechanism. (42, 54–56) Grouping heterogeneous disease-states together under an umbrella 

of infection-related critical illness could combine cohorts in which MBL is detrimental due 

to inflammation with those in which it is beneficial.
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Strengths of our study included a relatively large cohort of 520 children compared to prior 

studies and a study design which allowed for comparison of multiple different subsets of 

critically ill patients while maintaining an appropriate control group of similar patients. We 

were able to replicate the previously observed relationship between MBL genotype and 

MBL level (See Figure 1B). Additionally, we were able to evaluate the association between 

MBL levels and haplotypes in 284 children with SIRS, sepsis, or severe sepsis.

This study had several limitations. Because we a priori limited our population for genetic 

analysis to whites to prevent racial stratification (6, 32), and because not all patients 

consented for genotyping, our statistical power for subset group analysis was limited as was 

our ability to generalize these results to all populations. With limited numbers, we were 

unable to assess the association of specific types of infections with MBL haplotypes and our 

findings are limited to the broader category of critically ill patients with infections. 

Additionally, although patient age may influence the importance of MBL in immune 

protection (i.e. younger patients lacking humoral immunity may be more dependent on 

innate immunity), we had relatively few neonates as this study assessed a pediatric ICU 

population.

CONCLUSIONS

We did not find an association between infection-related causes of illness and MBL levels or 

MBL2 haplotypes in children admitted to the PICU. As such, our results do not support 

testing for MBL deficiency or use of recombinant MBL as a potential immunomodulatory 

therapy for children with severe and life-threatening infections. Because large-volume fluid 

resuscitation was often a marker of a higher illness severity, we were not able to determine if 

fluid dilution of plasma proteins such as MBL may predispose patients to worse outcomes. 

Our study supports that variability in MBL levels is genetically determined. To control for 

the risk of MBL serum level dilution with large volumes of fluid, we suggest that future 

studies in critically ill patients use MBL2 haplotype carriage to reflect pre-illness MBL 

levels.
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Figure 1. 
A) Graphical representation of common MBL allelic variants and their location within the 5′ 
end of the gene. B) Boxplot demonstrating the effect of haplotype on MBL level in a subset 

of 201 patients that consented for genotyping. Haplotypes are assigned as previously 

described and ordered by median MBL level in current study.
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Figure 2. 
Bar graph showing relative frequencies of High-producing, Mid-producing, and Low-

producing MBL diplotypes in patients grouped by infection status.
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